
Thread Architecture
immediate

Synchronous relationship between stages:
upstream stage blocks on downstream stage.

Different types of resources. Legend shown in a
stage box means that stage consumes the
corresponding resource intensively. Multiple stages
in one machine contain the same legend or one
stage contain multiple legends could both indicate
problems

Stage with either fixed number of threads, or has a
limit on the maxim number of threads running.Name

Stage without limits on number of threads. A new
thread is spawned whenever needed.

Asynchronous relationship between stages:
upstream stage returns as soon as it hands off
request to the downstream stage.

Scheduling point, where requests are queued.

Machine boundary. Communication between
different machines consumes network resources.

Name

Table 1: Legend Summary. Legends used in thread archi-
tecture graphs.

1 Thread Architecture of Popular

Systems
In this section we show the thread architecture of some

popular systems, and point out the scheduling problem

derived from their architecture.

Table 1 summarizes the legends used in the architec-

ture graphs, and how to read these graphs to identify po-

tential scheduling problems. We omit the stages that are

not resource intensive, or not active in normal execution

path, due to limited space. We also omit background

activities, e.g., compaction, which could be resource-

intensive, but can be managed by different mechansims,

such as throttling or utilizing system idle time.

1.1 HBase/HDFS Storage Stack
The thread architecture of the HBase/HDFS storage

stack is shown in Figure 1. When HBase clients send

queries to the Region Server, the following sequence of

actions occurs:

1. The RPC Read threads read data from client con-

nections, parse the data into RPC calls, and queue

the RPC calls. The RPC Handle threads take RPC

calls from the queue and process them (step 1).

2. If the processing of RPC requires reading data from

HDFS, the RPC Handle thread sends a read request

to the HDFS Datanode and blocks until it com-

pletes. The Datanode spawns a new thread for each

block being read (step r1 − r2 in the graph). How-

ever, RPC Handle thread first checks if the data

is stored locally. If it is, HBase will invoke the

HDFS short-circuit read mechanism and read data

directly within the RPC Handle thread, bypassing

the Datanode. 1

3. Similarly, if HDFS metadata operation is needed

during the processing of RPC, RPC Handle thread

blocks until the operation is finished by the HDFS

Namenode (step m1 −m4).

4. For puts or similar operations involving data modi-

fication, RPC Handle thread append WAL entries to

the WAL entry queue (step a1). It then blocks until

then WAL entry is persisted.

5. The LOG Append thread fetches WAL entries from

the queue and issues writes to HDFS. It does so by

putting data to be written in the data packet queue

of the corresponding Data Stream thread (step w1).

6. Data Stream thread sends data to an HDFS Datan-

ode, which spawns a Data Xceive thread for each

block being written (step w2).

7. Depending on how many copies of data need to

be written, Data Xceive thread may further pass

the data to another downstream datanode, which

spawns another Data Xceive thread to write one

more copy of the data (step w3).

8. Data Xceive thread writes data to disk. For each

packet being written to disk, it generates an ack and

passes the ack to an Packet Ack thread (step w4).

9. One Packet Ack thread is generated for each Data

Xceive thread. It collects acks from the down-

stream datanode, and send acks to either its up-

stream datanode (step w5) or to the client issuing

writes (step w6).

10. Within RegionServer (which is the HDFS write

client), each Data Stream thread will also spawn a

corresponding Ack Process thread, which is respon-

sible for receiving and processing the write acks

1HBase still contacts the Datanode to get some necessary informa-

tion, such as the file descriptor. The actually reading, however, is per-

formed locally.

1

Data Xceive

N RS

Packet Ack

Namenode

HBase Client

HBase RPC Call

HBase RPC Reply

RegionServer

1

RPC Read (10)

RS

2

RPC Handle (30)

3

S

RPC Respond (1)

R

S RB

4

Ack Process Packet Ack Data Xceive

N RS

Data stream

N RS

Mem Flush (2)

B S

LOG Sync (5)

B

LOG Append (1)

S

RPC Read (10)

RPC Handle (10)

RPC Respond (1)

f1

a1

w1

w2

w4

w3

w6

w7

a2

w3

w3

w4

w5

w1

w5

w2

m1
m2

m3

m4

w4

w5

r1

r2

r1

r2

m: HDFS meta data operations r: HDFS read operations

a: HBase WAL append operations f: HBase mem flush operations

Figure 1: HBase/HDFS Thread Architecture.

from the Datanode. Once the Ack Process thread

recieve acks from all relevant data packets, it noti-

fies the LOG sync thread that write is persisted (step

w7).

11. Once LOG Sync thread confirm the WAL entries

are persisted, it notifies the RPC Handle thread, who

can then proceed (step a2).

12. The RPC Handle thread also write changes to the

MemStore cache (step f1).

13. Once an RPC Handle thread finishes processing

one RPC, it passes the result to the RPC Respond

thread and continues to process another RPC (step

3). However, if the connection happens to be idle,

it will bypass the responder and send the response

directly through the connection (step 4).

14. The RPC Respond thread sends the response back

to the client (step 4).

15. When the MemStore cache is full, the Mem Flush

threads write the MemStore content to HDFS. The

write process follows the same steps as the writes

issued by the LOG Append thread (step w1 − w7).

The HDFS namenode, which also has the RPC Read,

RPC Handle, and RPC Respond stages, works similar as

the corresponding stages in RegionServer. However, the

namenode RPC Handle threads do not need to invoke op-

erations in other stages; they simply grab the namespace

lock and perform HDFS namespace operations.

2

References

3

