Summary of course content

Smartphones have taken the world by storm. These devices have significantly expanded capabilities that have transformed user experience and behavior. As users continue to depend on these smartphones for their daily activities, a large range of applications and services continue to emerge. Application stores are gaining in popularity and every day many new applications are being available for download targeting these mobile phones.

Smartphones form a unique class of devices requiring new way of application design. They are characterized by limited processing, memory and storage capabilities; mobility across different types of networks (untrusted WiFi hotspots, various cellular data services) that have intermittent connectivity in some cases; a different user interface (touchscreens, gestures, and limited keyboards); and limited battery power. They are multi-function in nature and often come equipped with a large array of sensors — cameras, accelerometers, touch capabilities, GPS, and even electronic compasses. Usage models for these devices are also quite unique with people using them as personal digital assistants, as notetakers, as alarm clocks, as cameras, and sometimes as a mainstream computing platform. Hence, the considerations for designing applications and services are significantly different.

This course will explore efficient strategies to design and implement applications and services for this emerging class of mobile phone platforms. The course will start with an overview various mobile platforms that are broadly available today (iPhone, Windows Mobile, and Android). It will be followed by a detailed foray into broad array of topics in developing such applications and services, that include wireless communication issues, location-based services, cloud-based design, energy consumption and efficiency issues, human-computer interaction for small form factor devices, and system integration.

The main focus of the course will be a semester-long programming project that will be done in groups of 2-3. Students will be required to quickly come up to speed with their programming platform, define a specific project objectives in detail, and showcase a full application by the end of the semester.

Course syllabus and reading list

The course material will be drawn mainly from research literature and supplemented from readings from various text books. While it is natural to characterize topics according to layers of the protocol stack as discussed below, in many cases cross-layer design mechanisms are relevant. Such mechanisms will be discussed in an appropriate context. The following is a rough overview of the course lectures and related content.

- Programming platforms preliminaries: (3 lectures)
 Programming for the iOS platform.

- Programming platform in detail: (9 lectures)
• Wireless communication: (4 lectures)
 Variability of the wireless channel, intermittent connectivity, and design for unpredictable performance.

• Mobile sensors and their functions: (2 lectures)
 How do accelerometer, gyroscope, and some other sensors work.

• Location and location-based services: (2 lectures)
 GPS and how it works, non-GPS localization techniques.

• Energy efficiency: (2 lectures)
 Energy consumption by different components, computation and communication tradeoffs for energy

• Design for usability: (2 lectures)
 Interface design issues for smartphones — touchscreen, gesture-based input, etc.

• Miscellany: (2 lectures)
 Mobile device security, privacy; cloud-based services, peer-to-peer applications, and delay-tolerance

Programming assignments and projects
There will be multiple small programming assignments that will be required in the first 6 weeks. These programming assignments will help you to get a better hands-on experience about the different platforms and services available.

However, the main focus of the course will be a semester long programming project which will be done in groups of three. More details on the programming project will be available soon. Please form your project groups early and please select your platform of choice quickly.

You can use any programming environment as long as it is a mobile environment:
- iPhone SDK (programming in Swift or Objective C)
- Android SDK (programming in Java)
- Windows Mobile SDK (programming in Java)
- HTML5/Javascsript is also an option

Class participation
This class is supposed to be interactive. So participation in class discussions is important. You are encouraged to ask questions, present your viewpoint, disagree, and lead discussions in class. In certain classes I may have a few students lead the discussion.

In addition, in each class we will have a “five minutes of fame” session. In this session, one student will prepare a short five minute oral presentation (no slides) on some interesting wireless and mobile networking related article that he or she found interesting. Slashdot is a good source of such articles.

There are points assigned to class participation on your overall grade.
Grading criteria (subject to change)

- Quizzes / Exams: 30
- Initial class programming assignments: 10
- Class participation: 5
- Project: 55
Total: 100

Text book and reference material

There is no required text book for this class. However, there are many different forms of reference material. In addition, there is a vast amount of online resources, especially for iOS programming and Swift that I will be posting on the class pages.

Here are some reference books and materials for iPhone programming:

- The Swift Programming Language (Available from iTunes store).
- Objective-C: Programming in Objective-C 2.0. Stephan Kochan.
- Cocoa Programming for Mac OS X. Aaron Hillegass.
- Core Animation for Mac OS X and the iPhone: Creating Compelling Dynamic User Interfaces. Bill Dudney.
- The iPhone Developer’s Cookbook: Building Applications with the iPhone SDK. Erica Sadun.