Wireless Networking

CS 407
The Networking Stack

The Seven Layers of OSI

- Physical Layer
- Data Link Layer
- Network Layer
- Transport Layer
- Session Layer
- Presentation Layer
- Application Layer

Transmit Data

Receive Data

Physical Link
What do they do?

Interact with apps
Rendering content
Group of flows
End-to-end
Addressing, routing
Channel contention
Signal to bits
Why use layers?

• Separation of functions
• Modularity and providing an abstraction of a function to higher layers
 – A good software engineering practice

• Can change the implementation of one layer without affecting any other layer as long as we keep to the API exposed by the layer
What does each layer do?

• Physical – Convert bits to signals and vice versa
• Data link – How to contend for a channel, especially important in wireless environments
• Network – Addressing, routing, especially getting packets from point A to B
• Transport – mostly with reliable, in-order delivery
• Session – handle a group of flows
• Presentation – How to render content on the screen (browser)
• Application – how applications specifically communicate between endpoints
What matters?

TCP/IP Stack

Interact with apps
Rendering content
Group of flows
End-to-end
Addressing, routing
Channel contention
Signal to bits
Examples

TCP/IP Stack

Browser
HTTP

TCP, UDP
IP
802.11 (WiFi)
802.11 (WiFi)

Interact with apps
Rendering content
Group of flows
End-to-end
Addressing, routing
Channel contention
Signal to bits
TCP

• Transmission Control Protocol
• Connection-oriented
• Reliable
• Congestion Control
• Flow Control
• “End-to-end” semantics

• Source and Destination IP and port numbers
UDP

• User Datagram Protocol
• Connectionless
• Unreliable

• Source and Destination IP and port numbers
Intro to networking

• What is an IP address
 – Identifies your location in the Internet
 – Can change
 – Assigned to a specific NIC

• What is a flow
 – <Src IP, Src port, Dst IP, Dst Port, protocol>
Wireless networking

- No wires!
- Shared media
- Interference and noise
- Bandwidth and range limits
- Variable performance
- Mobility
- Implications for higher network layers
Understand your assumptions

• Disconnected operations
 – Does your app require you to be connected always?

• Delay tolerant
 – Can you handle unpredictable delays?
 – Is caching strategies useful to your app?

• Always on
 – What happens when the app is not running?
Cellular vs WiFi

Cost: Expensive licensed spectrum

Range: 1 to 20 km

Tx power: 1-10 W

Protocols: Highly coordinated

Throughputs: ~ 10 Kbps – 2 Mbps

Cost: Cheap and unlicensed use

Range: ~100 m

Tx power: ~0.1 W

Protocols: Uncoordinated

Throughputs: ~ 1 Mbps – 100 Mbps
Cellular network planning

• Ideal - Hexagonal patterns

• In real life – Macro and Microcells
Signal attenuation

![Graph showing signal attenuation with distance and power axes. The graph depicts a decrease in power as distance increases.}

- **Power** decreases as the distance increases.
- **Tx Range**, **Detection**, and **Interference** are illustrated on the right side of the diagram.
Signal attenuation

• Energy radiates in all directions
 – Consider a sphere \(4 \times \pi \times r^2\)

• SINR = Signal to Interference + Noise Ratio
Example 1

Consider an extremely noisy channel in which the value of the signal-to-noise ratio is almost zero. In other words, the noise is so strong that the signal is faint. For this channel the capacity C is calculated as

$$C = B \log_2 (1 + \text{SNR}) = B \log_2 (1 + 0) = B \log_2 1 = B \times 0 = 0$$

This means that the capacity of this channel is zero regardless of the bandwidth. In other words, we cannot receive any data through this channel.
Example 2

We can calculate the theoretical highest bit rate of a regular telephone line. A telephone line normally has a bandwidth of 3000. The signal-to-noise ratio is usually 3162. For this channel the capacity is calculated as

\[C = B \log_2 (1 + \text{SNR}) = 3000 \log_2 (1 + 3162) = 3000 \log_2 3163 \]
\[= 3000 \times 11.62 = 34,860 \text{ bps} \]

This means that the highest bit rate for a telephone line is 34.860 kbps. If we want to send data faster than this, we can either increase the bandwidth of the line or improve the signal-to-noise ratio.
Example 3

The signal-to-noise ratio is often given in decibels. Assume that $\text{SNR}_{\text{dB}} = 36$ and the channel bandwidth is 2 MHz. The theoretical channel capacity can be calculated as

$$\text{SNR}_{\text{dB}} = 10 \log_{10} \text{SNR} \quad \rightarrow \quad \text{SNR} = 10^{\text{SNR}_{\text{dB}}/10} \quad \rightarrow \quad \text{SNR} = 10^{3.6} = 3981$$

$$C = B \log_2 (1 + \text{SNR}) = 2 \times 10^6 \times \log_2 3982 = 24 \text{ Mbps}$$
Example 4

For practical purposes, when the SNR is very high, we can assume that $\text{SNR} + 1$ is almost the same as SNR. In these cases, the theoretical channel capacity can be simplified to

$$C = B \times \frac{\text{SNR}_{\text{dB}}}{3}$$

For example, we can calculate the theoretical capacity of the previous example as

$$C = 2 \text{ MHz} \times \frac{36}{3} = 24 \text{ Mbps}$$
Example 5

We have a channel with a 1-MHz bandwidth. The SNR for this channel is 63. What is the appropriate bit rate?

Solution
We use the Shannon formula to find the upper limit.

\[
C = B \log_2 (1 + \text{SNR}) = 10^6 \log_2 (1 + 63) = 10^6 \log_2 64 = 6 \text{ Mbps}
\]
dB

• dB = deciBel

• dBm = 10 log10 (power in mW)

• dBW = 10 log10 (power in W)

• Express 1 W in dBW and dBm
• Express 1 mW in dBW and dBm
• Express 10 mW in dBW and dBm
Channel capacity

• Shannon’ law
 – $C = B \log (1 + \text{SINR})$

• Spectral efficiency: units of b/s/Hz

• Check
Spatial re-use

- Macrocell vs Microcell vs Pico/Femtocells
Impact of Wireless Environment on Networks

- The wireless spectrum
- Physical impairments
- Contention for the shared medium
- Effects of mobility
- Restrictions on terminal equipment
- Security
Wireless Spectrum (1)

Broadcast TV
- VHF: 54 to 88 MHz, 174 to 216 MHz
- UHF: 470 to 806 MHz

FM Radio
- 88 to 108 MHz

Digital TV
- 54 to 88 MHz, 174 to 216 MHz, 470 to 806 MHz
Wireless Spectrum (2)

3G Broadband Wireless
- 746-794 MHz, 1.7-1.85 GHz, 2.5-2.7 GHz

Cellular Phone
- 800-900 MHz

Personal Communication Service (PCS)
- 1.85-1.99 GHz
Wireless Spectrum (3)

- Wireless LAN (IEEE 802.11b/g)
 - 2.4 GHz

- Wireless LAN (IEEE 802.11a)
 - 5 GHz

- Bluetooth
 - 2.45 GHz

- Local Multipoint Distribution Services (LMDS)
 - 27.5-31.3 GHz
Physical Impairments: Noise

• Unwanted signals added to the message signal
• May be due to signals generated by natural phenomena such as lightning or man-made sources, including transmitting and receiving equipment as well as spark plugs in passing cars, wiring in thermostats, etc.
• Sometimes modeled in the aggregate as a random signal in which power is distributed uniformly across all frequencies (white noise)
• Signal-to-noise ratio (SNR) often used as a metric in the assessment of channel quality
Physical Impairments: Interference

- Signals generated by communications devices operating at roughly the same frequencies may interfere with one another
 - Example: IEEE 802.11b and Bluetooth devices, microwave ovens, some cordless phones
 - CDMA systems (many of today’s mobile wireless systems) are typically interference-constrained

- Signal to interference and noise ratio (SINR) is another metric used in assessment of channel quality
Physical impairments: Fading (1)
Physical impairments: Fading (2)

• Strength of the signal decreases with distance between transmitter and receiver: path loss
 – Usually assumed inversely proportional to distance to the power of 2.5 to 5
• Slow fading (shadowing) is caused by large obstructions between transmitter and receiver
• Fast fading is caused by scatterers in the vicinity of the transmitter
Diversity

• A diversity scheme extracts information from multiple signals transmitted over different fading paths
• Appropriate combining of these signals will reduce severity of fading and improve reliability of transmission
• In space diversity, antennas are separated by at least half a wavelength
 – Other forms of diversity also possible
 – Polarization, frequency, time diversity
Contention for the Medium

- If A and B simultaneously transmit to C over the same channel, C will not be able to correctly decode received information: a collision will occur.
- Need for medium access control mechanisms to establish what to do in this case (also, to maximize aggregate utilization of available capacity).
Effects of Mobility

- Destination address not equal to destination location
- Addressing and routing must be taken care of to enable mobility
- Can be done automatically through handoff or may require explicit registration by the mobile in the visited network
- Resource management and QoS are directly affected by route changes

Figure from Kurose & Ross

Wireless Environment and Wireless LANs
35
Form Factors

• Form factors (size, power dissipation, ergonomics, etc.) play an important part in mobility and nomadicity
 – Mobile computing: implies the possibility of seamless mobility
 – Nomadic computing: connections are torn down and re-established at new location

• Battery life imposes additional restrictions on the complexity of processing required of the mobiles units
Security

• Safeguards for physical security must be even greater in wireless communications

• Encryption: intercepted communications must not be easily interpreted

• Authentication: is the node who it claims to be?
Medium sharing approaches

• Time division multiple access (TDMA)

• Frequency division multiple access (FDMA)

• Code division multiple access (CDMA)
TDMA

• Examples
 – GSM
 – IS136
 – iDen
 – DECT
 – Satellite communications
TDMA

• Advantages
 • Active only during own time slot, can do anything else in other time slots
 • Measure the channel, search for other transmitters in different frequencies, etc.
 • Facilities inter-frequency handoffs efficiently (imagine a macrocell and a microcell operating in the same region with different frequencies)

• Disadvantages
 • Need guard slots to protect between two transmitters (to avoid very tight synchronization)
 • This wastes capacity of the channel
Spread Spectrum

- Introduction
- Frequency Hopping Spread Spectrum
- Direct Sequence Spread Spectrum
Why Spread Spectrum?

• Spread spectrum signals are distributed over a wide range of frequencies and then collected back at the receiver
 – These wideband signals are noise-like and hence difficult to detect or interfere with
• Initially adopted in military applications, for its resistance to jamming and difficulty of interception
• More recently, adopted in commercial wireless communications
Frequency Hopping Spread Spectrum (FHSS)

• Data signal is modulated with a narrowband signal that *hops* from frequency band to frequency band, over time

• The transmission frequencies are determined by a spreading, or hopping code (a pseudo-random sequence)
Direct Sequence Spread Spectrum (DSSS)

- Data signal is multiplied by a spreading code, and resulting signal occupies a much higher frequency band
- Spreading code is a pseudo-random sequence
DSSS Example
Spreading and De-spreading DSSS
Wireless Networks

- Mobile wireless WANs
- Fixed wireless WANs
- WLANs: the 802.11 family
- WLANs/WPANs: Bluetooth
Generations in Mobile Wireless Service

• First Generation (1G)
 – Mobile voice services

• Second Generation (2G)
 – Primarily voice, some low-speed data (circuit switched)

• Generation 2½ (2.5G)
 – Higher data rates than 2G
 – A bridge (for GSM) to 3G

• Third Generation (3G)
 – Seamless integration of voice and data
 – High data rates, full support for packet switched data
Evolution of Mobile Wireless (1)

Advance Mobile Phone Service (AMPS)
- FDMA
- 824-849 MHz (UL), 869-894 MHz (DL)
- U.S. (1983), So. America, Australia, China

European Total Access Communication System (E-TACS)
- FDMA
- 872-905 MHz (UL), 917-950 MHz (DL)
- Deployed throughout Europe
Cellular generations

- **1G – AMPS**
 - Advanced mobile phone systems
 - Used a FDMA style communication system
 - Separate channel for each user
 - Allowed for spatial frequency re-use

- Limitations:
 - Analog and hence susceptible to noise, eavesdropping
 - Can overhear ESN and replay
Cellular generations

- **1G**
 - Had separate uplink and downlink frequencies
 - 824 to 849 MHz (uplink)
 - 869 to 894 MHz (downlink)
 - Each channel was 30 KHz wide
Evolution of Mobile Wireless (2)

Global System for Mobile communications (GSM)
- TDMA
- Different frequency bands for cellular and PCS
- Developed in 1990, expected >1B subscriber by end of 2003

IS-95
- CDMA
- 800/1900 MHz – Cellular/PCS
- U.S., Europe, Asia
Evolution of Mobile Wireless (3)

General Packet Radio Services (GPRS)
- Introduces packet switched data services for GSM
- Transmission rate up to 170 kbps
- Some support for QoS

Enhanced Data rates for GSM Evolution (EDGE)
- Circuit-switched voice (at up to 43.5 kbps/slot)
- Packet-switched data (at up to 59.2 kbps/slot)
- Can achieve on the order of 475 kbps on the downlink, by combining multiple slots
Cellular generations

• 2G
 – GSM or Global System for Mobile Communications (voice)
 – 2.5G
 • Data extensions were called GPRS (Generalized Packet Radio Services)
 • Speeds further increased in EDGE (Enhanced Data rates for GSM Evolution)
 – Communication channels: 850/1900 MHz (Canada/US) or 900/1800 MHz
 – Uses TDMA communication
Cellular generations

• 2G
 – IS95
 • CDMA (Code Division Multiple Access)
 – CDMA allows parallel communication at the same time and frequency but using separate codes
CDMA example

- Use pseudorandom sequences that are orthogonal (cancel out)
CDMA example

• Assume dot product
• 4 orthogonal codes
 – a.b = 0
CDMA example

• Consider a simpler model of 2 bit codes
 – Sender 0: (1, -1) and Sender 1: (1, 1)
 – Data: 1, 0, 1, 1 Data: 0, 0, 1, 1
 Encoded sender 0: (1, -1, -1, 1, 1, -1, 1, -1)
 Encoded sender 1: (-1, -1, -1, -1, 1, 1, 1, 1)

• Simultaneous transmit in medium:
 – (0, -2, -2, 0, 2, 0, 2, 0)
CDMA example

• Simultaneous transmit in medium:
 – (0, -2, -2, 0, 2, 0, 2, 0)

• Sender 0 code: (1, -1)

• Multiply received pattern with sender code
 – (((0, -2), (-2, 0), (2, 0), (2, 0)) . (1, -1))
 = (2, -2, 2, 2), i.e., 1, 0, 1, 1
CDMA example

- Sender 0 code = a, data = x
- Sender 1 code = b, data = y
- Sent a.x + b.y

- Decode a.(a.x + b.y) = (a.a) x + a.b.y = (a.a) x
CDMA

• Advantages
 – Avoids narrow-band interference
 – Does not require strong coordination across different transmitters
 – Uses much more bandwidth than minimum requirements
 – Can allow a single handset to simultaneously talk to two different base stations (use two codes) and achieves better handoffs

• Disadvantages
 – Need to balance transmit power of different transmitters
Asynchronous CDMA

- Synchronous CDMA assumes all users synchronized and use orthogonal codes

- In asynchronous, each user picks a pseudo-random code, and there is some unwanted interference from other sources
 - Equalizing received power from different sources is an important necessity
 - Adding more users, adds to the noise level and so gracefully degrades performance
Universal Mobile Telecommunication Systems (UMTS)
- Wideband DS-CDMA
- Bandwidth-on-demand, up to 2 Mbps
- Supports handoff from GSM/GPRS

IS2000
- CDMA2000: Multicarrier DS-CDMA
- Bandwidth on demand (different flavors, up to a few Mbps)
- Supports handoff from/to IS-95
Fixed Wireless

• Microwave
 – Traditionally used in point-to-point communications
 – Initially, 1 GHz range, more recently in the 40 GHz region

• Local Multipoint Distribution Service (LMDS)
 – Operates around 30 GHz
 – Point-to-multipoint, with applications including Internet access and telephony
 – Virginia Tech owns spectrum in SW VA and surroundings

• Multichannel Multipoint Distribution Service (MMDS)
 – Operates around 2.5 GHz
 – Initially, for TV distribution
 – More recently, wireless residential Internet service
WLANs: IEEE 802.11 Family

• 802.11 working group
 – Specify an open-air interface between a wireless client and a base station or access point, as well as among wireless clients
• IEEE 802.11a
 – Up to 54 Mbps in the 5 GHz band
 – Uses orthogonal frequency division multiplexing (OFDM)
• IEEE 802.11b (Wi-Fi)
 – 11 Mbps (with fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band
 – Uses DSSS
• IEEE 802.11g
 – 20+ Mbps in the 2.4 GHz band
WLANs/WPANs: Bluetooth

- Cable replacement technology
- Short-range radio links
- Small, inexpensive radio chip to be plugged into computers, phones, palmtops, printers, etc.
- Bluetooth was invented in 1994
- Bluetooth Special Interest Group (SIG) founded in 1998 by Ericsson, IBM, Intel, Nokia and Toshiba to develop an open specification
 - Now joined by > 2500 companies
IEEE 802.11

- Characteristics
- Modes of operation
- Association, authentication and privacy
IEEE 802.11 Standard

• Final draft approved in 1997
• Operates in the 2.4 GHz industrial, scientific and medical (ISM) band
• Standard defines the physical (PHY) and medium access control (MAC) layers
 – Note that the 802.11 MAC layer also performs functions that we usually associated with higher layers (e.g., fragmentation, error recovery, mobility management)
• Initially defined for operation at 1 and 2 Mbps
 – DSSS, FHSS or infrared
 – Extensions (IEEE 802.11b, IEEE 802.11a, etc.) allow for operation at higher data rates and (in the case of 802.11a) different frequency bands
Reference Model (1)

<table>
<thead>
<tr>
<th>Data Link Layer</th>
<th>Physical Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Media Access Control (MAC) sublayer</td>
<td>MAC sublayer management</td>
</tr>
<tr>
<td>Physical Layer convergence procedure (PLCP) sublayer</td>
<td>PHY sublayer management</td>
</tr>
<tr>
<td>Physical medium Dependent (PMD) sublayer</td>
<td>station management</td>
</tr>
</tbody>
</table>
Reference Model (2)

• Physical Medium Dependent (PMD) sublayer
 – Defines a method for transmitting and receiving data through the medium, including modulation and coding
 – Dependent on whether DSSS, FHSS or IR is used
• Physical Layer Convergence Procedure (PLCP) sublayer
 – Maps MAC layer PDUs into a packet suitable for transmission by the PMD sublayer
 – Performs carrier sensing
• MAC sublayer
 – Defines access mechanism, based on CSMA
 – Performs fragmentation and encryption of data packets
IEEE 802.11b

- Standard released in 1999
- 2.4 – 2.483 GHz band
- Uses DSSS
- Data rates of up to 11 Mbps
 - Data rates are automatically adjusted for noisy conditions, so can operate at 1, 2, 5.5 or 11 Mbps
- Modes of operation
 - Infrastructure-based
 - Ad-hoc
- Most widely implemented to date
Infrastructure Mode (1)

- Basic Service Set (BSS)
- Access point serves as a local bridge
- Stations communicate through the access point, which relays frames to/from mobile stations
Infrastructure Mode (2)

- Extended Service Set (ESS)
- A set of infrastructure BSSs
- Access points communicate among themselves to forward frames between BSSs and to facilitate movement of stations between BSSs
Ad Hoc Mode

- Independent Basic Service Set (IBSS) or Peer to Peer
- Stations communicate directly with each other
- When no direct link is feasible between two station, a third station may act as a relay (multi-hop communications)
Distribution Systems

• The architectural component used to interconnect BSSs is the distribution system (DS)

• DS enable mobile device support
 – Address-to-destination mapping
 – Seamless integration of several BSSs

• In practice, an access point implements DS services
Distribution Systems and Access Points

ESS

BSS 1

STA 1

STA 2

AP

DS

BSS 2

STA 3

STA 4
Integration with Wired LANs

IEEE 802.x LAN

Wireless Environment and Wireless LANs
77
Association

• To deliver a message within the DS, must know which AP to access for a given mobile station
• Before a station is allowed to send a message through an AP, it must associate itself with that AP
 – At any given time, a station must be associated with no more than one AP
 – An AP may be associated with multiple stations
• As it moves between BSSs, a mobile station may reassociate itself with a different AP
Authentication

• 802.11 provides link-level authentication between stations

• 802.11 also supports shared key authentication
 – Requires that wired equivalent privacy (WEP) be enabled
 – Identity is demonstrated by knowledge of a shared, secret, WEP encryption key

• Typically, authentication is performed at association with an AP
Privacy

• Default state is “in the clear” – messages are not encrypted

• Optional privacy mechanism, WEP, is provided
 – Goal is to achieve a level of security at least as good as in a wired LAN

• Note that encryption provided by WEP is relatively easy to break
Bluetooth

- Characteristics
- Comparison with IEEE 802.11
Introduction

• Motivation: cable replacement in peripherals and embedded devices
• Named after Harald Blaatand “Bluetooth” II, king of Denmark 940-981 A.D.
• Estimated > 670 M Bluetooth-enabled devices by 2005
Requirements

- Universal framework to integrate a diverse set of devices in a seamless, user-friendly, efficient manner
- Devices must be able to establish ad hoc connections
- Support for data and voice
- Similar security as cables
- Simple, small, power-efficient implementation
- Inexpensive!
Characteristics

• Operates in the ISM band (like 802.11b)
• Frequency hopping spread spectrum
• Up to 720 kbps data transfer with a range of 10 m
 – Transmission rate decreases if interference from other devices is present
• Master/slave architecture
 – A collection of master + slaves is called a piconet
 – Up to 7 slave devices may communicate with a master
 – Piconets can be linked together to form a scatternet
Comparison with 802.11

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Bluetooth</th>
<th>IEEE 802.11b</th>
<th>IEEE 802.11a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum</td>
<td>2.4 GHz</td>
<td>2.4 GHz</td>
<td>5 GHz</td>
</tr>
<tr>
<td>Max Data Rate</td>
<td>725 kbps</td>
<td>11 Mbps</td>
<td>54 Mbps</td>
</tr>
<tr>
<td>Connections</td>
<td>Point-to-Multipoint</td>
<td>Point-to-Point</td>
<td>Point-to-Point</td>
</tr>
<tr>
<td>Frequency Selection</td>
<td>FHSS</td>
<td>DSSS</td>
<td>OFDM</td>
</tr>
<tr>
<td>Circuit cost (est. 2001)</td>
<td>$ 11.00</td>
<td>$ 46.00</td>
<td>N/A</td>
</tr>
</tbody>
</table>