Lecture 10 (Feb 19, 2004)

Outline
Network-layer Multicast

Types of Multicast

- At network-layer
 - Topic of this lecture
- Sequence of unicasts
 - Separate streams of unicast traffic for each destination from the source
 - Does not require support at network-layer
- Application-layer multicast
 - Based on unicasts
 - Constructs an overlay structure
 - Source unicasts to a subset of receivers, these receivers unicast to another subset, which unicast to another subset and so on to reach the whole multicast group

Why Multicast

- When sending same data to multiple receivers
 - better bandwidth utilization
 - less host/router processing
 - quicker participation
- Application
 - Video/Audio broadcast (One sender)
 - Video conferencing (Many senders)
 - Real time news distribution
 - Interactive gaming

IP multicast service model

- Invented by Steve Deering (PhD, 1991)
 - It’s a different way of routing datagrams
- RFC1112 : Host Extensions for IP Multicasting - 1989
- Senders transmit IP datagrams to a "host group"
- "Host group" identified by a class D IP address
- Members of host group could be present anywhere in the Internet
- Members join and leave the group and indicate this to the routers
- Senders and receivers are distinct: i.e., a sender need not be a member
- Routers listen to all multicast addresses and use multicast routing protocols to manage groups

IP multicast group address

- Things are a little tricky in multicast since receivers can be anywhere
- Class D address space
 - high-order three 3bits are set
 - 224.0.0.0 ~ 239.255.255.255
- Allocation is essentially random – any class D can be used
 - Nothing prevents an app from sending to any multicast address
 - Customers end hosts and ISPs are the ones who suffer
- Some well-known address have been designated
 - RFC1700
 - 224.0.0.0 ~ 224.0.0.25
- Standard are evolving
Getting Packets to End Hosts

• Packets from remote sources will only be forwarded by IP routers onto a local network only if they know there is at least one recipient for that group on that network
• Internet Group Management Protocol (IGMP, RFC2236)
 – Used by end hosts to signal that they want to join a specific multicast group
 – Used by routers to discover what groups have interested member hosts on each network to which they are attached.
 – Implemented directly over IP

IGMP – Joining a group

Example: R joins to Group 224.2.0.1

- R sends IGMP Membership-Report to 224.2.0.1
- DR receives it. DR will start forwarding packets for 224.2.0.1 to Network A.
- DR periodically sends IGMP Membership-Query to 224.0.0.1 (ALL-SYSTEMS.MCAST.NET)
- R answers IGMP Membership-Report to 224.2.0.1

IGMP – Leaving a group

Example: R leaves from a Group 224.2.0.1

- R sends IGMP Leave-Group
- DR receives it.
- DR stops forwarding packets for 224.2.0.1 to Network A if no more 224.2.0.1 group members on Network A.

Challenges in the multicast model

• How can a sender restrict who can receive?
 – need authentication, authorization
 – encryption of data
 – key distribution
 – still an active area of research

IP multicast routing

• Purpose: share Group information among routers, to implement better routing for data distribution
• Distribution tree structure
 – Source tree vs shared tree
• Data distribution policy
 – Opt in (ACK) type vs opt out (NACK) type
• Routing protocols are used in conjunction with IGMP
Shared distribution tree

Source tree characteristics

- Source tree
 - More memory $O(G \times S)$ in routers
 - Optimal path from source to receiver, minimizes delay
- Good for
 - Small number of senders, many receivers such as Radio broadcasting application

Source tree characteristics

- Shared tree
 - Less memory $O(G)$ in routers
 - Sub-optimal path from source to receiver, may introduce extra delay (source to root)
 - May have duplicate data transfer (possible duplication of a path from source to root and a path from root to receivers)
- Good for
 - Environments where most of the shared tree is the same as the source tree
 - Many senders with low bandwidth (e.g., shared whiteboard)

Data distribution policy

- Opt out (NACK) type
 - Start with “broadcasting” then prune branches with no receivers, to create a distribution tree
 - Lots of wasted traffic when there are only a few receivers and they are spread over wide area
- Opt in (ACK) type
 - Forward only to the hosts which explicitly joined to the group
 - Latency of join propagation

Protocol types

- Dense mode protocols
 - Assumes dense group membership
 - Source distribution tree and NACK type
 - DVMRP (Distance Vector Multicast Routing Protocol)
 - PIM-DM (Protocol Independent Multicast, Dense Mode)
 - Example: Company-wide announcement
- Sparse mode protocol
 - Assumes sparse group membership
 - Shared distribution tree and ACK type
 - PIM-SM (Protocol Independent Multicast, Sparse Mode)
 - Examples: Futarama or a Shuttle Launch

DVMRP exchange distance vectors

- Each router maintains a ‘multicast routing table’ by exchanging distance vector information among routers
 - First multicast routing protocol ever deployed in the Internet
 - Similar to RIP
 - Constructs a source tree for each group using reverse path forwarding
 - There is a “designated forwarder” in each subnet
 - Multiple routers on the same LAN select designated forwarder by lower metric or lower IP address (discover when exchanging metric info.)
 - Once tree is created, it is used to forward messages from source to receivers
 - If all routers in the network do not support DVMRP then unicast tunnels are used to connect multicast enabled networks
DVMRP

- Flood multicast packets based on RPF (Reverse path forwarding) rule to all routers.
- Leaf routers check and sends prune message to upstream router when no group member is on their network.
- Upstream router prune the interface with no dependent downstream router.
- "Graft" message to create a new branch for late participants.
- Restart forwarding after prune lifetime (standard: 720 minutes)
- draft-ietf-idmr-dvmrp-v3-09.txt (September 1999)

RPF(reverse path forwarding)

- Simple algorithm developed to avoid duplicate packets on multi-access links.
- RPF algorithm takes advantage of the IP routing table to compute a multicast tree for each source.
- RPF check:
 1. When a multicast packet is received, note its source (S) and interface (I).
 2. If I belongs to the shortest path from S, forward to all interfaces except I.
 3. If test in step 2 is false, drop the packet.
- Packet is never forwarded back out the RPF interface!

DVMRP (1)

form a source tree by exchanging metric

![Diagram](CS-640:21)

DVMRP (2)

broadcast

![Diagram](CS-640:22)

DVMRP (3)

prune

![Diagram](CS-640:23)

DVMRP (4)

X and Y pruned

![Diagram](CS-640:24)
DVMRP (4)

New member

- Source
- Datagram
- IGMP DVMRP-Graft

DVMRP (4)

New branch

- Source
- Datagram
- IGMP DVMRP-Graft