Lecture 17 (March 25, 2004)

Outline
Domain Name System

Domain Name System Overview
- What are names used for in general?
 - identify objects
 - locate objects
 - define membership in a group
 - ...
- Basic Terminology
 - Name space
 - defines set of possible names
 - consists of a set of name to value bindings
 - Resolution mechanism
 - When invoked with a name returns corresponding value

DNS Properties
- Size of Internet demands well devised naming mechanism
 - Specified in RFC 1034, 1035 (Mockapetris ‘87)
- Names versus addresses
 - Human readable versus router readable
 - Location transparent versus location-dependent
- Hierarchical
 - Names are divided into components
- Global versus local
 - What is the scope of naming?
- DNS for other purposes
 - Determines where user requests are routed

Examples of Mappings
- Hosts
 - pluto.cs.wisc.edu —> 192.12.69.17
- Files
 - /user/llp/tmp/foo —> (server, fileid)
- Users
 - Suman Banerjee —> suman@cs.wisc.edu

Examples (cont)
- Mailboxes
 - cs.wisc.edu
 - User
 - user@cs.wisc.edu
 - Mail program
 - 192.12.69.5
 - 3
 - TCP
 - 192.12.69.5
 - 4
 - IP
 - 192.12.69.5
 - 5

- Services
 - nearby ps printer with short queue and 2MB

Domain Naming System
- Hierarchical name space for Internet objects
 - Each suffix in a domain name is a domain
 - mailbox.cs.wisc.edu, cs.wisc.edu, wisc.edu, edu

- Names are read from right to left separated by periods
Name Servers

- Partition hierarchy into zones (administrative authorities)

- Each zone implemented by two or more name servers

Resource Records

- Each name server maintains a collection of resource records
 - (Name, Value, Type, Class, TTL)
 - Each record is a translation based on type
 - Name/Value: not necessarily host names to IP addresses

- Type (some examples)
 - A: Name = full domain name, Value = IP address
 - NS: Value gives domain name for host running name server that knows how to resolve names within the specified domain.
 - CNAME: Value gives canonical name for particle host; used to define aliases.
 - MX: Value gives domain name for host running mail server that accepts messages for specified domain.

- Class: allow other types (other than NIC) to define types
 - IN: is what is used by the Internet

- TTL: how long the resource record is valid

Root Server

May contain the following resource records:
- `(wisc.edu, dns.wisc.edu, NS, IN)`
- `(dns.wisc.edu, 128.105.12.11, A, IN)`
- `(cisco.com, thumper.cisco.com, NS, IN)`
- `(thumper.cisco.com, 128.96.32.20, A, IN)`

Wisconsin Server

May contain the following resource records:
- `(cs.wisc.edu, dns.cs.wisc.edu, NS, IN)`
- `(dns.cs.wisc.edu, 128.105.2.10, A, IN)`
- `(ecwisc.edu, dns.ecwisc.edu, NS, IN)`
- `(dns.ecwisc.edu, 128.105.40.12, A, IN)`
- `(host1.cs.wisc.edu, 128.105.9.103, A, IN)`
- `(host2.cs.wisc.edu, 128.105.9.13, A, IN)`

CS Server

CS server may contain the following resource records:
- `(cs.wisc.edu, norm.cs.wisc.edu, MX, IN)`
- `(norm.cs.wisc.edu, 128.105.8.45, A, IN)`
- `(n.cs.wisc.edu, norm.cs.wisc.edu, CNAME, IN)`
- `(othello.cs.wisc.edu, 128.105.167.12, A, IN)`
- `(o.cs.wisc.edu, othello.cs.wisc.edu, CNAME, IN)`

Name Resolution

- Strategies
 - forward
 - iterative
 - recursive

- Local server
 - need to know root at only one place (not each host)
 - site-wide cache
DNS Issues

• Top level domain names are tightly controlled
• Before an institution is granted authority for a second-level domain, it must agree to operate a DNS server that meets Internet standards.
 – Eg. all DNS info must be replicated on separate systems
• DNS is very important in the Internet
 – Security of this system is strict
• DNS lookups can affect performance
 – In practice DNS is much more complicated than you might think

PTR Record

• Used for IP to name resolution
• For IP address: a.b.c.d
 – PTR record stored at: d.c.b.a.in-addr.arpa.
• All PTR records are stored under in-addr.arpa. domain
• Consider the zone: 105.128.in-addr.arpa
 – This will typically be under control of CS dept of Wisconsin (since 128.105/16 belongs to the CS dept)
• PTR zone and the usual namespace zone may be inconsistent

DNS Redirection and CDNs

• Up to now, we have assumed that there is a single mapping between a name and an IP
• Content delivery companies (Akamai) use DNS to direct client requests to mirror servers
 – Content Delivery Networks (CDN’s) attempt to push content closer to the edge of the network
 • Distributed network of mirror servers (caches/proxies)
 – How do clients find the closest mirror?
 – CDN’s take over company’s name server

DNS Redirection contd.

• Local DNS request gets routed to company’s name server
• CDN assumes client is “near” their local DNS
• CDN responds with IP of server which is closest to client’s local DNS
 – Enables much
 – Makes many assumptions

Other Naming Protocols

• X.500
 – Naming system designed to identify people
 – Each person is defined by attributes
 • Name
 • Title
 • …
 – Too cumbersome
• Lightweight Directory Access Protocol (LDAP)
 – Evolved from X.500
 – System for learning about users