Overview

- IETF Audio/Video Transport WG
 - RTPv1 RFC 1889 (January 1996)
 - RTPv2 draft-ietf-avt-rtp-new-09.txt (March 2001)
- Real-Time Protocol (RTP)
 - understand: « a framing protocol for real-time applications »
 - does not define any QoS mechanism for real-time delivery!
- Real-Time Control Protocol (RTCP)
 - its companion control protocol
 - does not guaranty anything either!

Overview (cont’d)

- Protocols and their application field…
 - stream description: SDP, SMIL
 describe the session and content
 - stream control: RTSP
 remote control the session
 - media transport: RTP
 send data and metadata
 - resource reservation (if any!): RSVP, DiffServ
 make sure the communication path offers appropriate guarantees…
 … otherwise Best-Effort transmissions!

Topics

- RTP
- RTCP
- RTSP
RTP Features

- Provide support for the end-to-end transport of real-time data over datagram network
- A framing protocol that does not define any QoS mechanism for real-time delivery
- RTP does not assume anything about the underlying network
- RTP does not offer any reliability or flow/congestion control
- Designed primarily for multicast of real-time data, can also be used in unicast
- Designed for both one-way transport and interactive services

RTP generalities

- Data functions (RTP)
 - content labeling
 - source identification
 - loss detection
 - resequencing
 - timing
 - intra-media synchronization: remove jitter with playout buffers
 - inter-media synchronization: hp-synchro between audio-video

Typical use

- Usually...
 - uses UDP (TCP is not for real-time!!!)
 - no fixed UDP port negotiated out of band
 - UDP port for RTCP = UDP port for RTP + 1
 - usually one media per RTP session (i.e. port pair)

RTP Packet Encapsulation

- IP header
- UDP header
- RTP header
- RTP payload

RTP Packet Format

- Timestamping
 - Sender sets the timestamp. Timestamps increase by the time covered by a packet
 - Used for the receiver to reconstruct the original timing
 - Also used for synchronization of substreams

- Sequence numbering
 - Used to put the packets in order
 - Also used for packet loss detection
RTP Services (cont’d)

• Payload type identifier
 — Specify the payload format and the encoding/compression schemes
 — Help the receivers to know how to interpret and play out the payload data
• Source identification
 — Allows the receiver to know where the data is coming from

RTCP Introduction

• Designed to work in conjunction with RTP
• In RTP sessions, participants periodically send RTCP packets to convey feedback on quality of data delivery and information of membership
• 5 packet types are defined

RTCP generalities

• periodic transmission of control packets
• several functions
 — feedback on the quality of data distribution
 — let everybody evaluate the number of participants
 — persistent transport-level canonical name for a source, CNAME
 • usually user@host
 • will not change, even if SSRC does!
 • provides binding across multiple media tools for a single user

RTCP generalities (cont’d)

• Five RTCP packets
 — SR sender reports
 tx and rx statistics from active senders
 — RR receiver reports
 rx statistics from other participants, or from active senders if more than 31 sources
 — SDES source description, including CNAME
 — BYE explicit leave
 — APP application specific extensions

RTCP generalities (cont’d)

• distribution
 — use same distribution mechanisms as data packets (n-way multicast)
 — multiple RTCP packets can be concatenated by translators/mixers
 ⇒ compound RTCP packet
• scalability with session size
 — RTCP traffic should not exceed 5% of total session bandwidth
 — requires an evaluation of number of participants RTCP tx interval = f(number of participants)
 — at least 25% of RTCP bandwidth is for source reports
 — let new receivers quickly know CNAME of sources!

SR RTCP packets

• includes
 — SSRC of sender identify source of data
 — NTP timestamp when report was sent
 — RTP timestamp corresponding RTP time
 — packet count total number sent
 — octet count total number sent
 — followed by zero or more receiver report…
 — example:
 source 1 reports, there are 2 other sources

RR RTCP packets

- includes
 - SSRC of source: identify the source to which this RR block pertains
 - fraction lost: since previous RR (SR) sent (\(= \text{int}(256 \times \text{lost}/\text{expected})\))
 - cumul # of packets lost: long term loss
 - highest seq # received: compare losses
 - interarrival jitter: smoothed interpacket distortion
 - LSR: time when last SR heard
 - DLSR: delay since last SR

RTCP Services

- QoS monitoring and congestion control
- Source Identification
- Inter-media synchronization
- Control information scaling

RTP/RTCP

- RTP session
 - Application specifies a pair of destination transport addresses (one network address + a pair of ports for RTP and RTCP)
 - In a multimedia session, each medium is carried in a separate RTP session with its own RTCP packets
- RTP/RTCP provides functionality and control mechanisms necessary for carrying real-time content. But they are not responsible for the higher-level tasks such as assembly and synchronization

RTSP

- RTSP introduction
 - A client-server multimedia presentation protocol to enable controlled delivery of streamed multimedia data over IP network
 - An application-level protocol designed to work with lower-level protocols
- RTSP operations
 - Retrieval of media from media server
 - Invitation of a media server to a conference
 - Adding media to an existing presentation

RTSP generalities

- IETF standard
 - RFC 2326
- Real-Time Streaming Protocol
 - acts as a « network remote control »
- supports the following operations:
 - retrieval of a media from a server
 - invitation of a media server to a conference
 - recording of a conference

RTSP generalities (cont’d)

- Protocol design
 - text-based protocol
 - transport protocol independent
 - supports any session description (sdp, xml, etc.)
 - similar design as HTTP with differences yet!
 - client \(\rightarrow\) server and server \(\rightarrow\) client requests
 - server maintains a « session state »
 - data carried out-of-band
 - works either with unicast or multicast
RTSP URL

- Whole presentation
 - rtsp://media.example.com:554/twister
- A track within the presentation
 - rtsp://media.example.com:554/twister/audio

RTSP Message

- a request (client → server or server → client)

  ```
  PLAY rtsp://video.example.com/twister/video RTSP/1.0
  CSeq: 2
  Session: 23456789
  Range: start=0; end=10
  }
  RTSP/1.0 200 OK
  CSeq: 2
  Session: 23456789
  Range: start=0; end=20
  }
  RTP-Info:
  url=rtsp://video.example.com/twister/video;
  seq=1231232
  ```

RTSP methods

- Major methods
 - SETUP: server allocates resources for a stream and starts an RTSP session
 - PLAY: starts data rx on a stream
 - PAUSE: temporarily halts a stream
 - TEARDOWN: free resources of the stream, no RTSP session on server any more

- Additional methods
 - OPTIONS: get available methods
 - ANNOUNCE: change description of media object
 - DESCRIBE: get low level descr. of media object
 - RECORD: server starts recording a stream
 - REDIRECT: redirect client to new server
 - SET_PARAMETER: device or encoding control

3.2- Example: media on demand, unicast

Step 1: get description (in SDP format)

```
C 1 0 8 7 6 5 4 3 2 1 0
media descr
```

Step 2: open streams with RTSP

```
W 1 0 8 7 6 5 4 3 2 1 0
audio descr
```

Step 3: play

```
V 1 0 8 7 6 5 4 3 2 1 0
video descr
```

Step 4: teardown

```
C 1 0 8 7 6 5 4 3 2 1 0
```

RTSP Implementations

- Apple Darwin QuickTime Streaming Server
 - server M: Mac OS, Unix SDP, Full RTP/RTP, server
- Apple QuickTime 4
 - client M: Mac OS, Windows SDP, QuickTime also supports SDP files that describe multiscr.
 - with standard devices.
- Cern Wrtpp
 - server N: Linux, SDP
- Columbia University rtspd
 - server N: Solaris SDP, container files
- Entera Light Weight Streaming Application
 - server W: Windows, Unix SDP
- IBM RTSP Toolkit
 - server W: Solaris, SDP
- Kom TU-Darmstadt KOM-Player
 - player L: Linux, AIX SDP, MPEG-1 System, alternative RTSP server for IBM Video Charger
- Kompella C
 - server W: Windows, SDP
- Kwetschbaumer and Koenig srs
 - server W: SDP
- Mac OS, Unix
 - Server W: Unix, SDP
- Mbone, Neutral Media
 - RTCP
- NCSA
 - Open source: record and play
- NCSA
 - Open source, record and play
- Oracle Corporation Oracle Video Server
 - client, server W: Windows, Unix SDP, MPEG-1 System, ATM, QAM, IP
- Real Networks Real Proxy
 - server W: Windows, Unix SDP, ATM, QAM, IP
- Real Networks RealServer G2
 - server W: Windows, Unix SDP, SMIL, supports RTP for RTSP-based clients
- Real Networks RealServer G2
 - server W: Windows, Unix SDP, based on ATM
- Real Systems, RealNetworks
 - server W: Solaris, SDP
- Silicon Valley Internet Media
 - server W: Solaris, SDP
- Sun JMF 2.1
 - client S: Solaris, Windows, Mac OS
- Sun Media Central Server
 - server S: Solaris
- Vovida
 - server L: Open source, record and play
- Vovida
 - server L: Open source, record and play
Data Encoding

- Data is sampled and quantized
- Pulse Code Modulation (PCM)
 - Audio CD
 - 44100 samples/second, 16 bits/sample: 705.6 Kbps (mono) and 1.411 Mbps (stereo)
 - Differential PCM
 - Encode subsequent samples as diffs from first
- GSM: 13 Kbps,
- G.729: 8 Kbps
- G.723.3: 6.4 & 5.3 Kbps

Data Encoding

- JPEG
 - For still images: uses spatial correlation within image
- MPEG
 - For moving images: uses spatial and temporal correlations
 - Uses a sequence of frames
 - I frame: Reference frames (doesn’t depend on other frames)
 - P frames: Predictor frames (depends on past I or P frames)
 - B frames: Bidirectional frames (interpolation between I and P frames in past and future)
 - In size I > P > B
 - Usually 12 frames from I to I
 - Frequency of P and B based on experience / application and network characteristics
 - MP1 (CD-ROM): 1.5 Mbps
 - MP2 (Hi-quality DVD): 3.6 Mbps
 - MP3: 96 Kbps, 128 Kbps, 160 Kbps