
Yu-Chi Lai

Lecture 3
Network Programming

CS 640: Computer Networking

•  Client-server model
•  Sockets interface
•  Socket primitives
•  Example code for echoclient and

echoserver
•  Debugging With GDB
•  Programming Assignment 1 (MNS)

Topics

Client/server model
•  Client asks (request) – server provides (response)
•  Typically: single server - multiple clients
•  The server does not need to know anything about the

client
–  even that it exists

•  The client should always know something about the
server
–  at least where it is located

Client
process

Server
process

1. Client sends request

2. Server
handles
request

3. Server sends response 4. Client
handles
response

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

Internet Connections (TCP/IP)

Connection socket pair
(128.2.194.242:3479, 208.216.181.15:80)

Server
(port 80) Client

Client socket address
128.2.194.242:3479

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

•  Address the machine on the network
–  By IP address

•  Address the process
–  By the “port”-number

•  The pair of IP-address + port – makes up a “socket-address”

Note: 3479 is an
ephemeral port allocated

by the kernel

Note: 80 is a well-known port
associated with Web servers

Clients
•  Examples of client programs

–  Web browsers, ftp, telnet, ssh
•  How does a client find the server?

–  The IP address in the server socket address identifies the
host

–  The (well-known) port in the server socket address identifies
the service, and thus implicitly identifies the server process
that performs that service.

–  Examples of well known ports
•  Port 7: Echo server
•  Port 23: Telnet server
•  Port 25: Mail server
•  Port 80: Web server

Using Ports to Identify
Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Servers
•  Servers are long-running processes (daemons).

–  Created at boot-time (typically) by the init process
(process 1)

–  Run continuously until the machine is turned off.
•  Each server waits for requests to arrive on a

well-known port associated with a particular
service.
–  Port 7: echo server
–  Port 23: telnet server
–  Port 25: mail server
–  Port 80: HTTP server

•  Other applications should choose between 1024 and
65535

See /etc/services for a
comprehensive list of the
services available on a
Linux machine.

 The interface that the OS provides to its networking
subsystem

application layer

transport layer (TCP/UDP)
network layer (IP)

link layer (e.g. ethernet)

physical layer

application layer

transport layer (TCP/UDP)
network layer (IP)

link layer (e.g. ethernet)

physical layer

OS network
stack

Sockets as means for inter-process
communication (IPC)

Client Process Server Process

Socket

OS network
stack

Socket

Internet

Internet

Internet

Sockets
•  What is a socket?

–  To the kernel, a socket is an endpoint of communication.
–  To an application, a socket is a file descriptor that lets the

application read/write from/to the network.
•  Remember: All Unix I/O devices, including networks, are

modeled as files.

•  Clients and servers communicate with each by reading
from and writing to socket descriptors.

•  The main distinction between regular file I/O and
socket I/O is how the application “opens” the socket
descriptors.

Socket Programming Cliches
•  Network Byte Ordering

–  Network is big-endian, host may be big- or little-endian
–  Functions work on 16-bit (short) and 32-bit (long) values
–  htons() / htonl() : convert host byte order to network byte order
–  ntohs() / ntohl(): convert network byte order to host byte order
–  Use these to convert network addresses, ports, …

•  Structure Casts
–  You will see a lot of ‘structure casts’

 struct sockaddr_in serveraddr;
 /* fill in serveraddr with an address */
 …
 /* Connect takes (struct sockaddr *) as its second argument */
 connect(clientfd, (struct sockaddr *) &serveraddr,

 sizeof(serveraddr));
 …

Socket primitives
•  SOCKET: int socket(int domain, int type, int

protocol);
–  domain := AF_INET (IPv4 protocol)
–  type := (SOCK_DGRAM or SOCK_STREAM)
–  protocol := 0 (IPPROTO_UDP or IPPROTO_TCP)
–  returned: socket descriptor (sockfd), -1 is an error

•  BIND: int bind(int sockfd, struct sockaddr
*my_addr, int addrlen);
–  sockfd - socket descriptor (returned from socket())
–  my_addr: socket address, struct sockaddr_in is used
–  addrlen := sizeof(struct sockaddr)

struct sockaddr_in {
 unsigned short sin_family; /* address family (always AF_INET) */
 unsigned short sin_port; /* port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
};

•  LISTEN: int listen(int sockfd, int backlog);
–  backlog: how many connections we want to queue

•  ACCEPT: int accept(int sockfd, void *addr, int *addrlen);
–  addr: here the socket-address of the caller will be written
–  returned: a new socket descriptor (for the temporal socket)

•  CONNECT: int connect(int sockfd, struct sockaddr
*serv_addr, int addrlen); //used by TCP client
–  parameters are same as for bind()

•  SEND: int send(int sockfd, const void *msg, int len, int
flags);
–  msg: message you want to send
–  len: length of the message
–  flags := 0
–  returned: the number of bytes actually sent

•  RECEIVE: int recv(int sockfd, void *buf, int len, unsigned int
flags);
–  buf: buffer to receive the message
–  len: length of the buffer (“don’t give me more!”)
–  flags := 0
–  returned: the number of bytes received

•  SEND (DGRAM-style): int sendto(int sockfd, const void *msg,
int len, int flags, const struct sockaddr *to, int tolen);
–  msg: message you want to send
–  len: length of the message
–  flags := 0
–  to: socket address of the remote process
–  tolen: = sizeof(struct sockaddr)
–  returned: the number of bytes actually sent

•  RECEIVE (DGRAM-style): int recvfrom(int sockfd, void *buf,
int len, unsigned int flags, struct sockaddr *from, int
*fromlen);
–  buf: buffer to receive the message
–  len: length of the buffer (“don’t give me more!”)
–  from: socket address of the process that sent the data
–  fromlen:= sizeof(struct sockaddr)
–  flags := 0
–  returned: the number of bytes received

•  CLOSE: close (socketfd);

Client+server: connectionless

CREATE
BIND

SEND

SEND

CLOSE

RECEIVE

Client+server: connection-oriented

 Concurrent server

SOCKET
BIND

LISTEN
CONNECT

ACCEPT

RECEIVE

RECEIVE

SEND

SEND

CLOSE

TCP three-way
handshake

Echo Client-Server

#include’s

#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), connect(),
 sendto(), and recvfrom() */
#include <arpa/inet.h> /* for sockaddr_in and

 inet_addr() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */
#include <netdb.h> /* Transform the ip address
 string to real uint_32 */

#define ECHOMAX 255 /* Longest string to echo */

EchoClient.cpp -variable declarations

int main(int argc, char *argv[])
{
 int sock; /* Socket descriptor */
 struct sockaddr_in echoServAddr; /* Echo server address */
 struct sockaddr_in fromAddr; /* Source address of echo */
 unsigned short echoServPort =2000; /* Echo server port */
 unsigned int fromSize; /* address size for recvfrom() */
 char *servIP=“172.24.23.4”; /* IP address of server */
 char *echoString=“I hope this works”; /* String to send to

echo server */
 char echoBuffer[ECHOMAX+1]; /* Buffer for receiving

echoed string */
 int echoStringLen; /* Length of string to echo */
 int respStringLen; /* Length of received response */

EchoClient.c - creating the socket

/* Create a datagram/UDP socket and
error check */

sock = socket(AF_INET, SOCK_DGRAM,
0);

if(sock <= 0){
 printf("Socket open error\n");
 exit(1);
 }

/* Construct the server address structure */
memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out

structure */
echoServAddr.sin_family = AF_INET; /* Internet addr family */
inet_pton(AF_INET, servIP, &echoServAddr.sin_addr); /* Server IP

address */
echoServAddr.sin_port = htons(echoServPort); /* Server port */

/* Send the string to the server */
echoStringLen = strlen(echoString);
 sendto(sock, echoString, echoStringLen, 0, (struct sockaddr *)

&echoServAddr, sizeof(echoServAddr);

EchoClient.cpp – sending

EchoClient.cpp – receiving and printing
/* Recv a response */
fromSize = sizeof(fromAddr);
recvfrom(sock, echoBuffer, ECHOMAX, 0, (struct sockaddr *)

&fromAddr, &fromSize);

/* Error checks like packet is received from the same server*/
…

/* null-terminate the received data */
echoBuffer[echoStringLen] = '\0';
printf("Received: %s\n", echoBuffer); /* Print the echoed arg */
close(sock);
exit(0);
} /* end of main () */

EchoServer.cpp – creating socket
int main(int argc, char *argv[])
{
 int sock; /* Socket */
 struct sockaddr_in echoServAddr; /* Local address */
 struct sockaddr_in echoClntAddr; /* Client address */
 unsigned int cliAddrLen; /* Length of incoming message */
 char echoBuffer[ECHOMAX]; /* Buffer for echo string */
 unsigned short echoServPort =2000; /* Server port */
 int recvMsgSize; /* Size of received message */

 /* Create socket for sending/receiving datagrams */
 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if(sock <= 0){

 printf("Socket open error\n");
 exit(1);

 }

 /* Construct local address structure*/
 memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure

*/
 echoServAddr.sin_family = AF_INET; /* Internet address family */
 echoServAddr.sin_addr.s_addr =htonl(INADDR_ANY);

 echoServAddr.sin_port = htons((uint16_t) echoServPort); /* Local port */

 /* Bind to the local address */
 int error_test = bind(sock, (struct sockaddr *) &echoServAddr,

sizeof(echoServAddr));
 if(error_test < 0){
 printf("Binding error\n");
 exit(1);
 }

EchoServer.cpp – binding

for (;;) /* Run forever */
 {
 cliAddrLen = sizeof(echoClntAddr);

 /* Block until receive message from a client */
 recvMsgSize = recvfrom(sock, echoBuffer, ECHOMAX, 0,
 (struct sockaddr *) &echoClntAddr, &cliAddrLen);

 printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr));

 /* Send received datagram back to the client */
 sendto(sock, echoBuffer, recvMsgSize, 0,
 (struct sockaddr *) &echoClntAddr, sizeof(echoClntAddr);
 }

} /* end of main () */

Error handling is must

EchoServer.cpp – receiving and echoing

Socket Programming Help
•  man is your friend

– man accept
– man sendto
–  Etc.

•  The manual page will tell you:
– What #include<> directives you need at the

top of your source code
–  The type of each argument
–  The possible return values
–  The possible errors (in errno)

Debugging with gdb
•  Prepare program for debugging

–  Compile with “-g” (keep full symbol table)
–  Don’t use compiler optimization (“-O”, “–O2”, …)

•  Two main ways to run gdb
–  On program directly

• gdb progname
•  Once gdb is executing we can execute the program with:

–  run args
–  On a core (post-mortem)

• gdb progname core
•  Useful for examining program state at the point of crash

•  Extensive in-program documentation exists
–  help (or help <topic> or help <command>)

More information…
•  Socket programming

–  W. Richard Stevens, UNIX Network Programming
–  Infinite number of online resources
–  http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

•  GDB
–  Official GDB homepage: http://www.gnu.org/software/gdb/

gdb.html
–  GDB primer: http://www.cs.pitt.edu/~mosse/gdb-note.html

Project Partners
•  If you don’t have a partner

–  Stay back after class

•  Now…
– Overview of PA 1

