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ABSTRACT
We introduce Mobicare - a flexible, programmable archi-
tecture that efficiently exploits mobile and wireless commu-
nication systems to provide better healthcare services in a
wide-range of scenarios. The Mobicare architecture consists
of three important building blocks: a body sensor network
(BSN) consisting of wearable sensors and actuators with
wireless inter-connections; a BSN Manager (also called Mo-
bicare client) that connects the BSN to an ‘always-on’ wide-
area communication interface using GPRS or UMTS cellular
wireless links; and back-end infrastructure support (Mobi-
care servers) at healthcare providers to implement necessary
healthcare functionalities. A novelty in Mobicare is the re-
mote dynamic software update functionality applied to the
native code of the client device. We define the mechanisms
for registration and remote configuration of the body sen-
sors, as well as remote health data services such as health
information downloads and diagnosis data uploads with the
provider servers. We implement a prototype for Mobicare
as a proof-of-concept, and evaluate it in an experimental
wireless testbed consisting of Bluetooth and GPRS/UMTS
cellular networks. Our evaluation demonstrates Mobicare as
a feasible and useful infrastructure paradigm for next gen-
eration healthcare.

1. INTRODUCTION
A significant proportion of the human population suffer

from various medical conditions, including chronic ailments
and medical emergencies due to sudden injuries. In absence
of continuous medical care, many chronic ailments prove to
be fatal. On the other hand in various medical emergency
scenarios, timeliness of medical attention is even more im-
portant. In many such cases, e.g., cardiac arrest, the risk to
a patient’s life can be considerably minimized by improving
the quality and timeliness of medical care in the “golden
time window” immediately following the injury. However
under the existing healthcare systems, the fatality rate in
the US from heart failures itself is more than 42%, many of
which are due to delays incurred in initiating medical inter-
vention.

In this work we propose MobiCare — a flexible, pro-
grammable architecture that enhances mobile healthcare ser-
vices by enabling such real-time, continuous, and timely
monitoring of patients thereby enhancing quality of care for
patients and potentially saving many lives. Some important
benefits of a system like MobiCare include:
Continuous Monitoring for Chronically-ill patients:
Remote monitoring enables chronically-ill patients to con-
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Figure 1: Schematic for Mobicare.

form to long-term course of medical treatment that can con-
siderably reduce the crisis and relapse rate for such patients.
Better Quality Care and Feedback: By enabling more
effective monitoring of patient’s condition, MobiCare pro-
vides more accurate and useful information to medical per-
sonnel which ultimately leads to better medical advice and
feedback to patients. This will lead to better treatment of
ailments and an overall improvement in the quality of care
for patients.
Increased Medical Capacity: Medical centers using Mo-
biCare can treat many more patients. Hospitals often have
patients with ailments which require a long recovery period.
Using MobiCare many such such patients can be very effec-
tively monitored and treated in their homes. This offers the
potential for increased medical capacity and personalized
healthcare.
Reduced Medical Cost: The proposed mobile healthcare
mechanisms reduce relapse rates of ailments and hospital-
ization period for patients. It also reduces the need for fre-
quent medical consultation. By ensuring such reductions,
the mobile healthcare system can significantly reduce med-
ical costs.

Healthcare systems today have failed to efficiently exploit
continued advances in mobile and wireless systems, despite
their significant advantages, to provide better healthcare ser-
vices. Our goal in this work has been to effectively exploit
such recent advances to define a more efficient healthcare
infrastructure. MobiCare consists of three important build-
ing blocks: a body sensor network (BSN) consisting of wear-
able sensors and actuators that are inter-connected using the
wireless medium; a BSN Manager (also called the MobiCare
client device) that connects the BSN to an ‘always-on’ com-
munication wide-area interface, e.g., a GPRS/UMTS cel-
lular link; and backend infrastructure support (servers) at
healthcare providers that provide necessary healthcare ser-
vices to patients. Mobicare is a ‘programmable’ architecture
where client devices can be dynamically updated with new
medical system softwares, features and applications. Mo-
bicare also defines the mechanisms for remote registration
and configuration of the body sensors. Together the sys-
tem provides various health data services such as health in-
formation downloads and diagnostic data uploads between
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Figure 2: Plot shows (a) capture of two ECG signals
for a patient with congestive heart failure, and, (b)
data-rate requirements when number of the ECG
leads are varied. The ECG signals were sampled
at 250 samples per-second with 12-bit resolution
over a range of 10 millivolts. (ECG data source:
http://www.physionet.org)

patients and healthcare providers.

Enablers of MobiCare
A number of recent innovations enables the efficient design
of the MobiCare architecture. Advances in medical sensors
today enable efficient, remote monitoring of patients. For
example, sensors to measure ECG are now commercially
available from Numed [6] and Health Frontier [3]. Other
sensors from Nonin [5] and Linde AG [4] use wireless con-
nectivity (Bluetooth-based) to provide remote monitoring of
vital body signs. The CodeBlue project at Harvard has also
developed (using the Berkeley MICA2 mote) a low-power,
low-frequency, wireless pulse oximetry and ECG sensor for
patients [14]. With clinical sensing technology advancing at
a much faster rate one can expect a range of such energy-
efficient wireless medical sensors devices to become avail-
able. We will exploit such sensors to construct the BSN that
monitor patient health non-invasively to gather vital health
data, e.g., heart condition, blood pressure, serum glucose
level, temperature, oxygen saturation (02). The sensors in
BSN use a wireless interface to communicate such data to
the BSN Manager and ultimately to the back-end servers.

We also exploit the conitnued increase in coverage and
bandwidth of cellular wireless networks worldwide to build
the ‘always-on’ wide-area interface of the BSN. For instance,
the newly deployed 3G systems provide for data-rates that
are much higher than offered by conventional fixed dial-up
modems. Such networks therefore open up the possibility
for patients to be continuously monitored and their vital
health data to be very efficiently transported from the BSN
to back-end servers, thereby enhancing the timeliness and
quality of medical care.

Design Goals of Mobile Health System
In order to identify the key design goals for a mobile health
care system, we consider the monitoring requirements for pa-
tients. Figure 2 shows an example of monitored ECG data
from a heart patient and the corresponding data-rate re-
quirements when the number of such ECG leads are varied.
Figure 3 summarizes the typical time requirements and rel-
ative priority of some vital body signs including blood pres-
sure, blood gases (O2 and CO2), heart condition (ECG), and
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Figure 3: Typical priority and time requirements in
clinical measurements.

enzymes. Thus design of a mobile healthcare system should
consider the medical requirements to derive the design goals.
We make the following observations.

First, vital body signs have different time requirements
in patient monitoring (Figure 3). Such monitoring may be
needed periodically or on-demand in real-time. Time re-
quirements of such monitoring vary significantly – from few
minutes to several hours – depending on the condition of
the patient and the severity of the ailment. Flexible and
remote configuration of sensors is therefore crucial for ef-
fective mobile medical monitoring. Second, clinical sensors
that address different monitoring requirements of patients
can potentially be built by different vendors and may use
different wireless protocols and technology, each operating
in a different part of the wireless spectrum. Such uncoor-
dinated clinical sensor design (as exists today) can make
integration and self-organization of such body sensors ex-
ceedingly difficult to achieve. In order for such sensors to
function together in a single BSN, remote adaptation and
reconfiguration should be an integral requirement of the ar-
chitecture. Finally, due to its critical and real-time nature,
reliability, security and timeliness of data delivery from the
BSN to the back-end servers is crucial.

In the following we discuss how we accomplish these de-
sign goals in Mobicare:

A Programmable Architecture.A mobile health care sys-
tem should be able to dynamically integrate, organize and
configure new body sensors based on the needs and the re-
quirements of patients and health providers. Mobicare ful-
fills this goal with a programmable architecture – by ap-
plying dynamic software update functionality to the native
code of the client device. This feature has many benefits
to offer: (i) Customization – New heterogeneous clinical
sensors can be added and dynamically configured and cus-
tomized to the monitoring needs of the patient, (ii) Control
– It provides the necessary control to a health provider to
configure and control the operation of the different sensors
in a body sensor network, (iii) Updates – This enables new
features or applications to be incorporated at run-time (e.g.
a new MAC protocol for a sensor) that improves the quality
and reliability of the device.

Flexible Service Components.Service requirements in
clinical monitoring imposes additional timeliness and prior-



ity constraints on the monitoring system. For example, some
vital sign data have higher priority than others. Mobicare
enables service components to dynamically self-activate, (re)-
configure, update, and customize so as to suit the monitor-
ing needs of the patient and the health providers. By using
these mechanisms, the service components are able to effec-
tively address the time and priority requirements of health
monitoring of patients.

Reliable, Secure and Time-bound Data Delivery.The
nature of health data available from a patient sensor net-
work requires reliable, secure and time-bound data delivery
to the provider servers. However, data delivery over wireless
cellular links can be challenging. Such links are plagued by
problems of high and variable round trip times (RTTs) and
relatively low bandwidths. Links occasionally experience
‘stalls’ due to the loss of coverage (severe fades in the ‘holes’)
and during handovers (device or patient mobility). Collec-
tively, these issues exacerbate the challenges of reliable and
time-bound data delivery over wireless cellular links. Mo-
bicare overcomes these challenges through design of service
protocols that helps to quickly adapt to the changing con-
ditions of the underlying network. Additionally, Mobicare
protocol design considers the ‘nature’ of the clinical data
available and can effectively prioritize transmission of the
health-critical data as required.

Contributions
We make the following important contributions:

• We propose the first architecture that efficiently exploits
mobile and wireless communications systems for medical
healthcare services.

• We introduce programmable service architecture as an
integral component of any mobile healthcare system. This
feature allows dynamic integration, configuration as well
as control of diverse clinical sensors into the healthcare
system.

• We implement a prototype for the Mobicare client and
services, and evaluate them in an experimental wireless
testbed consisting of bluetooth and GPRS/UMTS cellu-
lar networks.

Roadmap
Our paper is laid out as follows. The next section details
the Mobicare architecture while Section 3 elaborates on its
services description. Section 4 discusses the Mobicare client
and server-end design issues while Section 5 elaborates at
length the design and implementation of dynamic software
update functionality for Mobicare clients. Section 6 presents
our evaluation while we discuss some related issues in Sec-
tion 7. Section 8 covers related work and the last section
concludes our paper.

2. THE ARCHITECTURE
The Mobicare architecture (figure 4) consists of three com-

ponents: the body sensor network, a client connected to
wide-area communication infrastructure and backend sup-
port at the healthcare service providers.

We discuss each component in detail:

Body Sensor Network – Client Interface. A body
sensor network (BSN) is a wearable network of medical sen-

sors and actuators that are interconnected using the wireless
medium. A Body Sensor Network Manager (BSNM) inter-
acts with the BSN to aggregate data gathered by the body
sensors. This body sensor network manager functionality is
implemented in a ‘Mobicare client’ device that can interact
with the health provider servers to offer mobile healthcare
services to the patients.

The Mobicare client (or the BSN Manager) functionality
is, therefore, implemented in a device which has a wide-area
wireless network interface. It periodically monitors various
clinical sensors to aggregate vital body signs and uploads
important health information to the provider servers using
a secure wireless communication channel, e.g., a cellular link.

A wearable device such as the IBM wristwatch [12] is
well-suited to serve as a Mobicare client in mobile med-
ical settings for patients. Other similar portable devices
can also be used to implement such functionality, e.g., In-
tel’s Personal Server [23] or a cellular phone. Such devices
are power-efficient, user-friendly, and they provide the nec-
essary wide-area wireless connectivity to interact with the
local environments. In particular, a cellular phone readily
offers wide-area wireless connectivity and is potentially the
best-suited device for such use. The Mobicare client consists
of standard “built-in” functions to offer flexible customized
services to a patient as needed by the healthcare provider.
These functions optimize use of link bandwidth or trans-
mission energy of the patient’s health data that are being
actively probed by the body sensors, as well as some other
costs and optimizations involved.

A Mobicare client offers remote dynamic software update
functionality applied to the native code of a device. With
dynamic update functionality, a Mobicare client device can
customize itself to new medical applications and services,
and new clinical sensors can connect to this client and be
configured into an existing body sensor network. By us-
ing flexible service components can help reconfigure service-
related parameters based on the instructions available from
the healthcare vendor. This feature is very useful to patients
that need constant monitoring of their vital body signs. For
example, to measure the pulse rate and oxygen (O2) satu-
ration for a patient, an oxi-meter sensor is attached to the
patient’s finger while ECG electrodes (probes) are entwined
on their body vests to monitor and acquire necessary health
data. Once configured these service parameters can be used
to probe and configure body sensors periodically, as well as
upload the sensor data collected with the provider servers.

Non-invasive body sensors can monitor patient vital body
sign even when they are on-the-move and following their
daily activities. Sensor data collected this way is stored and
then transmitted to the provider servers over the cellular
data network. This enables round-the-clock monitoring of
the patient’s health by the health provider. Physicians can
access individual (patient) data and can provide feedback.
Alternatively, the provider can reconfigure (program) these
sensors remotely using flexible available service parameters.

Mobicare Communication Infrastructure. Mobicare
offers the ease of mobility for patients with cellular wireless
connectivity. A Mobicare clients acts as the central unit to
serve or connect to a nearby communication gateway using
a public 2.5G, 3G cellular network or even a WLAN net-
work. High speed mobile connectivity is readily available
in most cellular handsets, and network support to handle
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Figure 4: Mobicare System Architecture and Components. Dotted components of the client highlight modules
that are dynamically reconfigurable (programmable). The ‘Mobicare client’ functionality is shown to operate
in a wearable wristwatch device.

transmission and problems such as network disconnections
(e.g. moving through tunnels) or network-supported adap-
tations (e.g. adaptation proxy) necessary during network
handover events are also supported.

The 2.5G and 3G communication infrastructure helps trans-
mit in real-time vital body sign data, video and images of
patient activities via the cellular links to mobicare health
providers. The improves the quality and timeliness of care
provided to a patient and gives better information access to
health providers for necessary action and feedback. Dur-
ing health emergency, the availability of vital signs (and
video data if necessary) to a remote consulting physician
can change the care provided during transport.

Healthcare Provider Support. Mobicare health providers
provide back-end support for healthcare services for the pur-
pose of trial and evaluation. Services offered by the center
enables patients to be continuously monitored and special-
ists able to observe the evolution of patients, and intervene,
if necessary. Mobicare health centers also provide contin-
uous collection of biological data for patients e.g. ECG,
temperature, blood glucose level etc.

Decision making by specialists located remotely forms an
important component in Mobicare. Hence training strate-
gies and decision aids are effective in supporting such re-
mote decision making. These decisions aids also sometimes
help manage the limitations in data made available from the
medical systems and information support.

3. SERVICES DESCRIPTION
Mobicare defines the mechanisms for health care services

as well as functions to activate and configure service-specific
parameters. These functions include health information down-
loads and periodic uploads with the provider servers.

3.1 Protocol Definition
Mobicare uses of an application protocol built using stan-

dard HTTP. An application layer protocol enables health
providers to reuse service infrastructures (servers), have easy
access to existing services as well as the flexibility to com-

pose new ones. Services in Mobicare are invoked using the
standard HTTP protocol by submitting an HTTP request
as a base URL (uniform resource locater) acting as a com-
mon access point for mobicare services. The name of the
service is then appended to the base URL as the final path
component, and arguments to each service are encoded and
appended as URL query parameters. Consider the example:

http://www.mobicare.net/services/Activation?Select

In this URL Activation corresponds to the name of the
service and Select gives the service step for Activation. To
interact with the servers a Mobicare client makes use of the
standard HTTP POST method in the request header along
with the URL meant for that service. The benefit using the
POST method is that it allows data to be sent to the server
in a client request itself. This data is typically directed to a
data handling program that server has access to (e.g., CGI,
servlet). Unlike the HTTP GET method, the data sent to
the server is in the body section of the client’s request. After
the server processes the POST request and headers, it passes
the body to the server program specified by the URL.

Mobicare provides adequate parameter flexibility in its
protocol definition. Any services can create custom param-
eters as suit their needs. The entity in the POST message
constitutes service-specific parameters, and these services
can pick amongst standard service parameters and execute
the protocol service steps between the client and the server.
The rules and syntax that governs Mobicare protocol are
similar to those of standard HTTP.

3.2 Service Definition
Mobicare offers services such as the device activation, re-

mote (sensor) configuration, health data services such as
downloads and health diagnosis uploads as well as remote
dynamic software update service for client devices. We dis-
cuss each of the service in detail.

3.2.1 Device Activation and Management
The device activation service in Mobicare enables client

devices to self-activate and establish an account with the



health provider. This process is also known as remote regis-
tration (activation). While the device is typically activated
once, it may go through multiple registrations as both in-
volve similar protocol steps.

Server
Mobicare Account

Server
Mobicare

Client

Clients
Registered

Records
Patient

Figure 5: Device Activation in Mobicare.

For instance, a virgin client device when activated for
Mobicare services initially will make use of a URL preset
to connect to the Mobicare server (as shown in figure 5).
The mobicare server makes use of a unique device identi-
fier (ClientId) for a Mobicare client and logs corresponding
device-specific data during the activation process. The ac-
count server uses this unique ClientId to create the patient
record and returns an allocated account code in response to
this initial connection data.

A Mobicare server associates the allocated account code
corresponding to the ClientId of the device. This account
code also serves to update other information such as the con-
figuration of new and existing service parameters. The client
device can also use an account code to query for different
other services from the health provider and load Mobicare
service-specific information available from the server. All
service-specific information is stored in the persistent mem-
ory (e.g. flash) within the device for use later. In this way
the client device logs and manages sensor-specific service
information for its body sensor network.

3.2.2 Remote Configuration Service
The configuration service allow flexible composition and

control over service parameters – new service parameters can
be added or modified. These service parameters are present
and stored in the persistent memory (flash) of the device.

Remote configuration service is very useful to health providers
for remotely manipulating service-specific parameters within
the client device. For example, this feature allows health
providers to configure sensor service-specific parameters to
manage and control settings of a body sensor network. Fur-
thermore, it can also help fix a problem in the client device
due to some misconfiguration of data and during remote dy-
namic device updates to help fix problems that require new
settings for certain service-related parameters.

Figure 6 shows example steps during configuration service
protocol exchange. In this example the server responds with
the action confirmConfig, instructing the client to proceed
with confirmConfig and to be followed by the ⁀writeConfig
service steps. The confirmConfig step enables the server to
check if there is a need to (re)configure service-specific pa-
rameters in the client. If the response of the server is a stop
(i.e. configuration not required) or try later (i.e. server
busy), the client will stop the sequence of actions. How-
ever, in the usual scenario the server responds with a num-
ber of service-specific identifiers to read their value. The
client continues with the writeConfig message, presenting
the identifiers and their values as requested. The response of
the server in writeConfig holds the identifiers and their val-
ues. The client writes this new value back to the persistent

POST /services/ConfirmConfig HTTP/1.1

HTTP/1.1 200 OK

POST /services/QueryService HTTP/1.1
Host: www.mobicare.net
ClientID: upg3424491

Host: www1.mobicare.net
ClientID: upg3424491

HTTP/1.1 200 OK
ResponseValue: Continue
FunctionsToCall: WriteConfig
AtURL: http://www2.mobicare.net/

/services/WriteConfig
ActionOnConfig: read Key1, Key2

POST /services/WriteConfig HTTP/1.1

ConfigValues: Key1=Val1, Key2=Val2

Host: www2.mobicare.net
ClientID: upg3424491

ResponseValue: stop
OperateOnConfig: Key2=newVal

HTTP/1.1 200 OK

FunctionsToCall: ConfirmConfig
AtURL: http://www1.mobicare.net/

/services/ConfirmConfig

ResponseValue: Continue

QueryService(ClientId)

ConfirmConfig(ClientId)

Response (Continue; Read Key1, Key2)

Response (OK; Config Key2=newVal)

WriteConfig(ClientId; Key2=Val1,Key2=Val2)

Response (Continue; Function=Config)

Server
Mobicare

Figure 6: Configuration Service Protocol Exchange.

memory of the device.

3.2.3 Health Data Services
Mobicare data services are of two types: (i) download data

services for health information downloads, and, (ii) upload
data services for health diagnostic uploads.

Download data service in Mobicare is used for health in-
formation downloads to the Mobicare clients. This service
is particularly useful for chronically-ill patients that need
regular feedback about their health and vital body signs.
However, other than the health information, download data
samples may also include software modules (e.g. updates
or upgrades), new applications (e.g. micro-browser) or even
content (e.g. video or jpeg images) for the device.

Health diagnostic upload service allow client devices to
collect and upload patient health data to the health providers.
The health data is collected by periodically monitoring the
body sensors and uploading this data to the health providers.
The data is analyzed by the health providers to provide any
health feedback (using the download service) if required.

Both upload and download service involve three-step pro-
tocol action. Both services initiate by sending the standard
queryService message to the Mobicare server. The server
responds with Continue and action Download for download
service (or Upload for upload services). The client issues
the next request confirmDownload (or confirmUpload) as
an indication to the server that it is ready for information
download (or that it has health diagnosis data for upload).
The server responds to the client with the appropriate URL
for upload server (or download server) for data to upload (or
download). The client in final step posts the doUpload (or
doDownload) message with health diagnosis data appended
to its body. The server responds with success once all data
is successfully uploaded (or download).

3.2.4 Dynamic Software Update Service
Dynamic software updates service is the key service that

makes mobicare architecture ‘programmable’. A remote dy-
namic update service is useful in mobile heathcare settings
for: (i) Updates: These are enhancements that improve
the quality or reliability of the device. This can be a release
for an existing piece of system software for the device (e.g. a



new MAC protocol for a new sensor) or a new medical appli-
cation for the device, (ii) Upgrades: These are extensions
that transform an existing client device into a new device
that offer novel functionalities. (iii) Application data:
This consists of application data (an application package)
or content that is downloaded by client devices from their
health providers. (more description in Section 5).

4. THE DESIGN
In this section we discuss in detail the design of the client

and the server-end system in Mobicare.

4.1 Mobicare Client Design
A Mobicare client runs in an embedded device such a

wearable wristwatch device [12], personal server [23] or a
mobile phone. Recall that the main job of the client de-
vice is to manage the body sensor network on instructions
from the health provider, implement Mobicare services and
provide a network interface to the cellular wireless network.
To offer a programmable architecture in Mobicare requires
client components be implemented in a modular fashion as
shown in figure 7.

In the following we discuss each component in detail:

Persistent Data Module (PDM). The PDM manages,
stores and provides access to the service specific parameters
in persistent memory (flash) of the client device. A virgin
client device when activated retrieves this service-specific in-
formation from the server and stores them in the PDM. The
PDM exports an API (or a secure API as an option) to be
accessed by other client modules while communicating with
the mobicare server.

Service Scheduling Block. Service scheduling block sched-
ules service calls. After accepting service calls from other
client modules it schedules them based on first-come first-
serve basis. Alternatively, service scheduling with priority
is also implemented. Scheduling services with priority is
useful since in many cases uploads of critical health data
should take precedence to less critical health data. During
the device first-time boot-up process, appropriate calls are
scheduled in this block for applications to boot-up. The
block also maintains a separate timer to query the server
(using queryService) periodically and may reschedule ser-
vice calls postponed by the servers.

Communication Handler (CH). The communication han-
dler implements the application protocol as service steps
between mobicare clients and server. In this module, Mobi-
care service specific messages are assembled and sent to the
server using the socket API supported by the target plat-
form. As discussed earlier, the technique used here is the
HTTP POST method for interacting with the Mobicare
servers. A secure channel to the server may be requested
(if available) as an option. The handler runs an indepen-
dent task and communicates with other modules (Request
Scheduling, Download and PDM) through target OS-specific
IPC (inter-process communication) mechanisms. For certain
service actions like activation (registration) and configura-
tion, it can directly write the service-specific and user sub-
scription related data to the PDM. However, during down-
loads (e.g. update, upgrades etc.), it invokes the functions
of the download module that takes care of the downloaded

data. It typically operates on a per-call basis. After receiv-
ing a response from the server, it performs message parsing
for Mobicare specific parameters and if necessary schedules
the next call to be made as defined by the protocol action
for that service.

PDM

Dynamic
Loader

(DynRTL)

Communication 
Handler

Download

User Interface Target

Request
Scheduler

Diagnostics

Bluetooth PAN Profile

TCP/IP Stack (Sensor Ware)
Mesg. Middleware

System

Device
Storage

Figure 7: Mobicare Client-Side Design.

Download Module. The download modules unpacks mod-
ules available from the server, stores them in the device
file-system and causes the dynamic loader to integrate the
software module(s) in the client’s software stack. This mod-
ule is dynamically instantiated on availability of downloaded
offers from the communication handler (available from the
health server). Once the downloaded data is transferred to
this module, it reads the headers of the download package
(discussed in Section 5.3) to determine the type of down-
loaded data. Note that the downloaded data can be an en-
tirely new medical application; or a new release of an exist-
ing service module within the client device. The data down-
loaded is then exported to its appropriate location to be
stored within the device. The module also makes use of the
dynamic loader module (discussed in Section 5.2) for load-
ing and unloading modules from the device memory.

Health Diagnosis Module. The health diagnosis module
(DM) periodically uploads health-related patient data from
the mobicare client device to the health servers. The DM
collates vital health signals from the body sensors, samples
and filters them to report the patient data to the health
server in an appropriate human-readable format. Depend-
ing on the severity of the vital health data received, urgent
report uploads are possible using composable service proto-
col actions.

4.2 Server-end Design
The server-end design is shown in figure 8. The decom-

position of the server-end system results into three differ-
ent layers – the service layer, the function (protocol) layer
and the resource layer. At the service layer the server-end
design consists of the implementation of device activation,
configuration, and data services such as health diagnosis up-
loads as well as information downloads. It also implements
tools that enable remote dynamic software update services.
Services at the server-end system are implemented using
standard (protocols) functions such as the queryService,



upload, download and configuration functions.

download upload Configurationquery

Activation
Modular
Updates

Health Remote
ConfigurationData Services

Service Layer

Function (Protocol) Layer

Backend DatabaseLogging

Resource Layer

Figure 8: Server-end decomposition.

At the resource layer, mobicare server-end systems con-
sists of the web servers with support for their own set of
servlets (server programs), a SQL database, and one or more
backend servers. Web servers run their own set of servlets
(with JServ) and that also implements the service interface
with Mobicare clients.

5. DYNAMIC SOFTWARE UPDATES
The novelty in Mobicare is the remote dynamic software

updates functionality applied to the native code of the client
device. As previously discussed, this functionality in devices
helps to accelerate deployment of new mobile health services
and applications in different ways. First, it allows for easy
sensor device customisation – new diverse clinical sensors
can be added to the body sensor network without conse-
quence to other sensors. New sensors can be dynamically
configured to join the body sensor network and this is very
useful to the patients and providers. Second, it provides
the necessary control to a health provider to configure and
operate sensors in a body sensor network. Finally, software
updates enable new medical features to be incorporated in
the device at run-time (e.g. a new sensor MAC protocol) or
even help fix software bugs. Such updates and upgrades can
improve the quality and reliability of the client device.

In order to support dynamic software updates in mobicare
clients, we need to adhere to an approach similar to that
used in Microsoft’s component object module (COM) model
[22]. However, since most embedded real-time OSes lack
this functionality, we consider in detail solutions that enable
support of this functionality in an embedded client device.

Note that support for dynamic updates requires existing
client modules to be able to offer that ‘extra functionality’
that requires it to be independent of other existing client
modules. This additional functionality enables modules to
be able to detach their interface and end instantiation when
needed. Modules can also release other modules’ interface
when instructed to allow for its release.

This leads to the following requirements in Mobicare:

Modular code organization for embedded clients,

Wrapper tool Wrapping is the first step to prepare client
modules for dynamic updates. The wrapper tool is
a compile and link time tool that can proxy-patch
modules and prepare them for dynamic binding in the
client devices,

Dynamic Loader (DynRTL) This enables two impor-
tant functions in Mobicare clients: (i) run-time dy-
namic binding including dynamic loading and unload-
ing of modules, and, (ii) dynamic updates/replacements
of modules.

PackBuild Tool A Server-end tool that packages modules
in a format intended for easy distribution and down-
load by the mobicare client devices.

In the following sections, we discuss in detail the design
and implementation of the functionality that enables ‘hot’
modular updates in mobicare client devices.

5.1 Wrapping Modules for Dynamic Updates
Wrapping is the first step to enable dynamic modular up-

dates in mobicare client devices. Mobicare offers a post-
compilation tool called the wrapper tool that externally
compiles and links individual client modules and prepares
them for dynamic binding. The tool operates at various
steps during the wrapping process of an object module be-
fore it is downloaded by the client device. The tools func-
tions to read and interpret the ELF (Executable and Linking
format) file format supported by our target client platform
VxWorks. The tool reads multiple ELF files (the file to act
upon and the file containing excluded symbols) along with
their section headers, the symbol table, the associated string
table, with the ability to modify the attributes of the sym-
bols. The file layout remains unchanged by the wrapper
tool – only the modified symbol table is written back to its
original place.

   .frame $fp,32,$31

         ...

   .mask  0xc00000100,−4

    la  $4, ModuleName

         ...

Bind:

    la  $5, 0($9)

    jal dyl_Bind

...

...

j Bind

...
j Bind

j Bind

# start address
ProxyTbl:

.word FirstProxy

.word 2

.word 11 # size of Proxy in words

# number of Proxies

.globl ProxyTbl

Code
Wrapper

mod_detach
mod_retreat

.globl ProxyTbl

Global Proxy
Table

func2:

func1:

func3:

mod.o

Figure 9: A sample wrapped module.

The chief function of this tool is to externally patch client
modules with the “wrapper code” that prepares them for
modular updates (figure 9). The tool operates in three steps.
In the first step it reads the module and intercepts unre-
solved references to external functions and and inserts the
proxy functions that invokes dynamic binding with the Dyn-
RTL loader (discussed in the next section) to resolve these
function calls. The second step of the tool patches function
code that enables existing client modules to detach (by pro-
viding the Detach function) from the (retreating) module
being replaced. The final step makes use of the retreat func-
tion that announces a module that it is being replaced, asks



permissions for this replacement and performs the retreat
actions.

The function <ModuleName> Detach resets all proxy func-
tions referring to a given target module. This module (ac-
tually its code segment) is delimited by begin and end ad-
dresses of the target OS. The following code fragment shows
the Detach function, where this data structure is used:

extern "C" void <Modulename>_Detach( void * start, void * end)
{

uint * a = ProxyTbl.first; // location of the first proxy

// Reset proxy functions

for (int i = 0 ; i < ProxyTbl.n ; i++) {
uint * w = *a + ProxyTbl.addrOffset;

if (*w >= (uint)start && *w < (uint)end)
*w = (uint)(a + ProxyTbl.jumpOffset); //reset address

a += ProxyTbl.size;

}
}

Function Interception Code. To intercept external func-
tion references in client modules, the wrapper code makes
use of the proxy functions. This interception code is ap-
plied to each individual modules by making use of an in-
direction (jump) instruction that redirects it to the Bind

proxy function. The Bind function invokes dynamic binding
(dyn bind) with DynRTL to resolve the external reference.
Figure 10 shows an interception code for function afunc and
Bind proxy implemented using the MIPS instruction set.

The (MIPS) code for Bind is wrapped to the individual
client modules using the wrapper tool. The Bind proxy func-
tion calls the function dyl bind of the DynRTL module, in-
serts the address obtained into the proxy and re-executes
this proxy function. The dyl bind function resolves the
function call and the procedure works as follows. First, it
searches for the symbol in the system symbol table and if a
symbol is found, returns with the memory address of that
symbol. However, if the symbol is not found, it will search
for all available modules (including the device file system)
for that symbol. If the symbol is detected, it will load the
corresponding module into the memory. It then returns the
memory address of that function. Note that dyl bind delays
any request while a download operation is still in progress,
until the download process is completed. This avoids the
need to explicitly remove entries of any module from the
system symbol table.

Dynamic Modular Replacements. Client modules im-
plement additional functions that allow for dynamic mod-
ular updates. Notice that in figure 10 the ModuleName ar-
gument is passed to the dyn bind DynRTL function. This
is used by DynRTL for client-server administration of the
resident modules in a client device. This administration of
modules is needed by DynRTL when a module retreats and
therefore must ask all other modules using it to detach.

The function <ModuleName> Retreat takes care to de-
tach all other client modules using this module. It dele-
gates this task to dyl DetachFrom of DynRTL, adding the
ModuleName as an argument. The following code fragment
shows the implementation:

extern "C" bool <ModuleName>_Retreat()

{
if (!dyl_DetachFrom( &ModuleName))

return false;
return CanRetreat();

}

Also notice use of can retreat in the <ModuleName> Retreat
function – this is useful for modules that are active. An ac-
tive module runs its own task (a light-weight process), and
is usually difficult to replace. This is because the internal
state of a task is unknown.

One technique to use here could be to wait and first make
sure that the module first gets into a state for it to be re-
placed. The idea here is to probe the internal state; Mobi-
care therefore makes use of a separate can retreat function
that are implemented by all other modules within the client
device. Use of can retreat enables a module to first deacti-
vate itself before being removed. The can retreat function:
(i) investigates whether the internal state of the module al-
lows a retreat, and, (ii) waits until ongoing function calls
have returned, save pertinent status information in persis-
tent memory to be picked up later by the module being
replaced. However, a drawback using this technique is that
it may introduce problems when replacing modules imple-
mented by third party or legacy modules that may or may
not implement a can retreat function. A simple solution to
this problem could be to externally patch such legacy mod-
ules with a dummy can retreat function, although even for
such cases the internal state of the module may still remain
unknown.

5.2 Dynamic Loader (DynRTL)
A dynamic loader (DynRTL) in Mobicare offers run-time

support for resolving inter-module function references (bind-
ing) as well as functions for dynamically loading and unload-
ing of modules. DynRTL module makes extensive use of the
target OS system symbol table. The symbol table contains
externally accessible functions in the system and its asso-
ciated memory addresses. DynRTL is responsible for its
relocation, registration of entry points for existing and any
new modules with the system symbol table and if needed its
removal as well.

The DynRTL implements two important functions:

Resolving inter-module References. Requests usually
originate from the ‘proxy’ functions located in the wrapper
layer of the module. DynRTL helps to resolve a reference
to functions available in the system. Upon reception of a
request, first the system symbol table is consulted to check
whether the function is already present in memory. If not,
all available modules in a dedicated directory of the local
file system are searched for the required function and - if
found - the module containing the symbol is loaded into the
memory. In both cases, the address of the requested func-
tion is returned. For the module or application itself, this
mechanism is completely transparent.

Administration of the Modules. Whenever an inter-
module function reference is resolved, a data structure in
which inter-module client-server relations are recorded is up-
dated. This data structure contains, for each module loaded
in memory, a list of other modules that use it. When a
loaded module must be unloaded, it must notify all clients of
its forthcoming retreat. The Retreat function of the module
to be unloaded delegates this task to the Dynamic Loader.
In DynRTL, Detach functions of every known client mod-
ule is called, which in turn resets all the proxy functions
that refers to a particular retreating module. In this way,
any module can be unloaded without leaving any dangling
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          . mask       0xc0000100, −4

           sw            $31, 28 ($sp)

           move        $fp, $sp

           sw            $5, 36 ($fp)
           sw            $6, 40 ($fp)
           sw            $7, 44 ($fp)
           sw            $8, 20 ($fp)

           la              $5, 0 ($9)

           lw             $4, 32 ($fp)

           addu         $sp, 32
           j                $8

           lw             $5, 36 ($fp)
           lw             $6, 40 ($fp)
           lw             $7, 44 ($fp)
           lw             $8, 20 ($fp)
           sw            $2, 16 ($8)
           move        $sp, $fp
           lw             $fp, 24 ($sp)
           lw             $31, 28 ($sp)

Bind:

                 la         $9, $N001

2:              .word   3f
3:              la         $8, 1b

jr          $8
1:              lw        $8, 2f
afunc__Fi:

          . frame      $fp, 32, $31

           sw            $fp, 24 ($sp)

           sw            $4, 32 ($fp)

           subu         $sp, 32

        jal          dyn_Bind

        la           $4, ModuleName

Call to DynRTL

afunc__Fi:

j Bind

Can_Retreat

SystemSystem
Loader Symbol Table

Interception Code for 
Dynamic Binding

Proxy Patched Bind:

mod.o (new)

mod.o (old)

Reset
Proxy Table

Indirection using
Bind Proxy

             j       Bind

dyn_Maindyn_Load

dyn_Bind

dyn_UnLoad

dyn_DetachFrom

Detach

Retreat

DynRTL

Target OS System

Figure 10: Implementation and operation of the Dynamic Loader (DynRTL) module. Each ‘updateable’
module in a client device is proxy-patched with a Bind function and all external function references are
indirected to point (jump) to this function. The function calls DynRTL module (dyn bind) for dynamic
binding that resolves the call. (Example code shown for R5 MIPS in VxWorks RTOS platform).

references.

extern "C" {

             bool                          dyl_DetachFrom( const char * module);
             void                          dyl_DownloadInProgress( bool b);
};

             bool                          dyl_Unload( const char * moduleName);
             unsigned int             dyl_Bind( const char  * client_name, char * name);

             struct MODULE * dyl_Load( char * filename);

bool                          DnLd_Main( unsigned char *dBytes);

DynRTL external functions:

DynRTL main entry function:

};

extern "C" {

Figure 11: Dynamic Loader (DynRTL) functions

Figure 11 shows the functions exported by the DynRTL
module. The main entry function for DynRTL is the DnLd Main.
Whenever there is a new software update available from
the provider server, the download module in the Mobicare
client (shown in figure 7) transfers the downloaded data to
the DynRTL using DnLd Main. The DnLd Main function per-
forms administrative tasks for operations that are specified
in the software update package itself. Some of these opera-
tions include:

• Loading, unloading and replacement of existing client
modules.

• Installing, deleting and replacing files in the local device
file system (data files as well as application software).

• Creating or deleting directories within the local file sys-
tem.

• Identifying modules that must be loaded and started
when the system is booted.

The rest of the functions exported by the dynRTL API are
used by the other client modules, as well as the application
software in the client device.

Figure 10 shows dynamic update and the binding process
of an example module mod.o. When there is a dynamic
(new) update available for the module mod.o, the download
module in the Mobicare client first instructs the DynRTL
(using DnLd Main) to replace this existing module mod.o with
a new one. In this case the DnLd Main function checks if
the module is loaded in memory and invokes a retreat call
for mod.o by invoking its wrapper Mod Retreat function.
The Retreat function checks, and if necessary, waits for the
module to get into a state where it can be retreated (us-
ing can retreat function). It then calls dyn DetachFrom in
DynRTL that detaches (deletes) the references of all other
client modules to this retreating module (old mod.o). Once
this module retreats, DnLd Main unloads it from the mem-
ory using dyn UnLoad and then loads the new module (us-
ing dyn Load) into the memory. In this way any Mobicare
client module can be added, or existing module removed or
replaced. Replacing a module involves first making in inac-
cessible to other clients modules by removing its entry point
from the symbol symbol table.

5.3 Structure of a Download Package
The structure of a download package gives the layout of

the data intended for download by Mobicare client devices.
The general structure is a two-level hierarchy, allowing se-
quential as well as simultaneous replacement of software
modules. At the highest level, groups are specified and
these are processed sequentially. Each group consists of
one or more download entries that are processed simul-
taneously.

Data intended for download by the clients is packaged us-
ing the PackBuild tool. As shown in figure 12 using the
tool we can specify operations to be performed with the data
package. Operations that may be performed over existing
client modules include remove, force retreat, replace as
well as options of how and when to effectuate the new data
module when downloaded by the client device. For exam-



Figure 12: Operation Selection in PackBuild Tool.

ple, the tool specifies several options of how downloaded
modules may take effect in the device e.g. restart, load

immediately, load-when-start etc. Compression and er-
ror checking for the download package is currently not im-
plemented.

6. EVALUATION
We have implemented the Mobicare client functionality

in C++. The target operating system used is an embed-
ded real-time OS VxWorks and the Tornado II develop-
ment tools from WindRiver [27]. Our client hardware con-
sists of an Algorithmics P4032 board with a R5 MIPS, the
RM5231 from QED, running at 133MHz. The web server is
Apache 1.3.22 running Linux 2.4.21 (single CPU 500MHz,
1GB Memory). Servlet support at the server-end is enabled
using JServ.

6.1 Client Measurements
One of the main goals of our work is to provide hot soft-

ware updates applied to the native code of the client device,
and do so efficiently. Hence to measure efficiency of our
implementation, we adhere to an approach similar to one
used in [21]. We examine use of the time and space costs
imposed by the design and implementation of our DynRTL.
We then compare these overheads with those of the stan-
dard Linux DLopen/ELF implementation. (Note that Linux
DLOpen/ELF provides dynamic binding but no ‘hot’ mod-
ular replacements.) Our measurements show that the time
overheads using DynRTL are competitive. Next, we ana-
lyze the space overhead incurred in enabling the dynamic
software update functionality using DynRTL and measure
other metrics (e.g. code size, size in the memory, etc.) for
our client implementation.

6.1.1 Time Overheads
The execution time overhead imposed by dynamic binding

using DynRTL for a Mobicare client occurs in three different
time scales:

1. Start-time Overhead (ts) – The is the time required
for a new module to register its statically-linked code
(symbols) into the system symbol table. Note that this
overhead is incurred during system initialization (e.g.
boot-up) or during ‘hot’ modular updates.

2. Run-time Overhead (tr) – This is time taken for
each external reference of a given module to be indi-
rected from the module’s proxy Bind function to the
dyn bind of DynRTL before being resolved.

3. Load-time Overhead (tl) – This is the time needed
by a running program to load a module and link it by
executing its initialization init function.

DynRTL DLOpen
Time Overhead (VxWorks) (Linux)
Start-time (ts) 1.23 ms –
Run-time (tr) 0.45 ms 0.21 ms
Load-time (tl) 0.69 ms 0.38 ms

Table 1: Time overheads for a software update using
DynRTL/VxWorks and DLOpen/Linux. (averaged
from over 10 runs)

In Table 1 we present the different components that con-
tribute to the time overheads for a sample dynamic software
update. We compare these components for our DynRTL im-
plementation in VxWorks RTOS with that of the standard
DLOpen implementation in Linux. We find that the start-
time (ts) overhead for DynRTL for the sample update is
1.23 ms and it remains negligible. At the run-time (tr) the
additional overhead comes from using the proxy Bind func-
tion that provides dynamic binding in DynRTL. Here we
find that the run time overhead is more than twice of 0.28
ms offered by DLOpen/Linux implementation. The load-
time overhead is also better for the DLOpen/Linux when
compared to our DynRTL/VxWorks implementation. The
main here difference comes from using the ELF loader in
Linux, which is highly optimized and that makes use of the
string hash-table in modules for faster look-ups. In contrast
our current implementation of DynRTL uses simple linked
lists. Note that these differences in the time overheads using
DynRTL have no noticeable impact on the performance of
the different applications.

6.1.2 Space Overheads
All ‘programmable’ modules meant for dynamic software

updates make use of the wrapper layer. The wrapper code
enables Mobicare clients to dynamically bind to other client
modules as well as detach and retreat when asked. However,
the use of a wrapper layer increases the size of these modules
(binary file size) relative to their size after compilation.

The use of a wrapper layer in a module imposes three ad-
ditional space-related costs: (i) a global proxy address table
and indirection for all exported symbols of that module, (ii)
‘Bind’ as a common proxy to all (exported) functions, and,
(iii) use of Detach and Retreat functions that are patched to
that module for enabling ‘hot’ updates. Notice that ‘Bind’
and use of Retreat/Detach function incurs only a fixed space
overhead, whereas the size of the global proxy table increases
with the number of export symbols (external references) of a
given module. Thus the total space requirements using the
wrapper code for a given module is the sum of all the above
three costs and the corresponding split for our platform is
shown in table 2.

When the number of export symbols in a module are rea-
sonable, the increase in the object file size due to the wrap-
per layer is not much. The total increase in the number



Wrapper Source Space Cost

Bind Indirection (fixed) 44 bytes
(per proxy)

Bind Proxy Code (fixed) 496 bytes
+

ModuleName Detach
ModuleName Retreat (fixed)
Length of Names (variable) 100-200 bytes
for all Proxy Functions (per proxy)

Table 2: Space overhead from Wrapper Code.

of bytes for a module file size varies between few hundred
bytes to at the most few kilobytes and this is typically in-
significant for most embedded applications. Note, however,
that the length of mangled names resulting from the use
of C++ can become considerable. For example, the use of
the standard string class (implemented in C++) and used
in our implementation for parsing application protocol mes-
sages results in names that are often between 100 and 200
bytes long.

Modules DynRTL Mobicare Client.
Metrics (w/Dbg.) (w/o Dbg.) (w/Dbg.) (w/o Dbg.)
Lines of Code 538 415 6122 5358
Bin. File Size 95 KB 44 KB 522 KB 219 KB
Size in Memory 19 KB 5 KB 124 KB 69 KB

Table 3: Measured metrics for the DynRTL and full
client-side implementation. (with and without sys-
tem debug log messages)

Table 3 provides other measured metrics for DynRTL and
for the client implementation in Mobicare. It is easy to see
from this table that implementation of DynRTL and the
Mobicare client incurs minimal overhead in terms of size in
the memory and overall binary file size. Figure 13 shows the
breakdown of the binary code-size for the different modules
used in the client.

6.2 Cellular Link Performance
We conducted tests to provide a realistic picture of cel-

lular link performance and to analyze what impact it may
have on the transport of periodic (or on-demand real-time)
mobile health data. Our link performance study had two
goals. First, we wanted to perform tests to see if cellu-
lar links offer data-rates that are feasible for mobile health
data transfers (and especially for the uplinks). Second, we
wished to evaluate the reliability of cellular links for such
health data uploads. Based on the outcome of these tests,
we review few techniques that can improve performance.

Our test bed setup consists of a commercial cellular GPRS
and UMTS 3G network testbed as shown in figure 14. The
client connects to the Vodafone UK’s GPRS and UMTS 3G
network using a PPP (point-to-point) link. In these tests we
use an Ericsson T39m ‘4+1’ handset for GPRS (PPP con-
nection using Bluetooth) with maximum data-rate of 53.2
Kbps and 13.3 Kbps for the downlink and uplink, respec-
tively. For 3G we use a dual-mode 3G-GPRS PCMCIA
card (Qualcomm chipset) that provides a maximum down-
link data-rate of 384 Kbps and an uplink data-rate of 64
Kbps. Link-layer (ARQ) retransmissions for both GPRS
and 3G network is kept enabled (network default).
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Figure 13: Breakdown of Client Code-size.
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Figure 14: Test Bed Set-up.

6.2.1 Link Performance Tests
We performed tests to measure packet latencies as well

as up/down link bandwidth using TCP. In these tests we
measured the aggregate up and downlink throughputs avail-
able using GPRS and 3G networks simultaneously. During
these tests any incidence of packet loss and re-ordering was
noted. To understand the steady-state network behavior
we selected a reasonably large file size (> 500KB) for these
transfers. The traces collected were then analyzed using
tcptrace [8]. It is to be noted that research has already
investigated performance of cellular (e.g. GPRS) downlinks
thoroughly. However, in this study, we also evaluate uplink
performance in UMTS 3G that is crucial for health data
uploads in Mobicare.

Figure 15 (a) and (b) shows the measured uplink and
downlink throughputs for UMTS 3G and GPRS networks,
respectively. As can be seen, TCP over 3G achieves good
data-rates for up/down link and close to the maximum of-
fered data-rates. We find from figure 15 that UMTS 3G
offers up/down link data-rates that are an order magnitude
higher than that of GPRS. This can have interesting impli-
cations for Mobicare. For example, an uplink transfer of 50
KB file in 3G may take around 8 secs while the same file
takes more than 80 secs to upload in GPRS! We can also
see that both GPRS and 3G show significant, often sudden,
throughput fluctuations as can be observed from figure 15
(b). The measured round trip times (RTT) observed for
the UMTS 3G links was between 250-350 ms, which is lower



(a)

(b)

D
ow

nl
in

k 
T

’p
ut

 (
by

te
s/

s)
U

pl
iin

k 
T

’p
ut

 (
by

te
s/

s)

0

2000

4000

6000

8000

10000

12000

14000

00 20 40 60 80 100 120 140 160 180

0

10000

20000

30000

40000

50000

60000

70000

00 20 40 60 80 100
Time (sec)

UMTS 3G

GPRSAvg. T’put

Inst. T’put
(10 pkt.)

Sudden T’put
Fluctuations UMTS 3G

GPRS

Figure 15: Plots shows (a) uplink and (b) down-
link throughputs measured over GPRS and UMTS
3G networks. (Cellular links are prone to sudden
throughput fluctuations.)

than the average RTT (around 800 ms) offered by GPRS.
During file upload tests, we observed that UMTS 3G links

are also prone to frequent handovers to GPRS. Using a dual-
mode 3G/GPRS card, we found that 3G link would typically
handover to GPRS and back. Figure 16 shows one such ex-
ample that captures the impact of the link-layer 3G→GPRS
handover (link-layer as there is no change of the network IP
address) with a file upload in progress. Here, we can observe
that such handovers can potentially impede data transfer
(during uploads) for a significant amount of time. The total
handover interval in this case comes to around 22 secs, dur-
ing which time a number of TCP retransmissions occurred
before data transfer could resume.

These experiments show that, while although GPRS/UMTS
cellular links offer data rates that are sufficient for mobile
health data transfers (both up and downloads), they still
pose many challenges to overcome. Because of the ‘health-
critical’ nature of certain mobile medical applications, link
reliability for efficient and timely data delivery is crucial and
therefore comes as an important metric for health applica-
tions.

6.2.2 Need for Data Adaptation and Diversity.
From the previous section we find that cellular links are

bandwidth limited and links exhibit wide asymmetry also
evident from figure 15. Therefore compressing mobile health
data can be very useful to reduce the amount of data trans-
ferred and enable faster and efficient data delivery over cel-
lular links. For example, 2-lead ECG signals captured with
12-bit resolution gives a data-rate requirement of around
60 Kbps. However, by using compression the data-rate re-
quirements can be effectively reduced to around 8 Kbps, an
improvement by a factor of at least 3. Thus Mobicare can
benefit from data adaptation as adaptation is the key to
mobility [11].

An important and useful technique that can overcome link
fluctuations and outage-like situations is by exploiting the
simultaneous coverage access available from multiple wire-
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Figure 16: Plots capture impact of the link-layer
3G→GPRS handover during data (file) upload with
(top-left and clockwise) (a) time-sequence plot, (b)
throughput plot, (c) outstanding-data plot, and, (d)
round-trip time plot. (UMTS 3G links are currently
prone to such frequent handovers to GPRS.)

less cellular providers. The idea here is to exploit diversity
from multiple such cellular access links, thereby reducing the
overall probability such link-outages that currently plague
mobile cellular systems. MAR commuter router [24] is one
such system that can efficiently aggregate bandwidths by
exploiting cellular diversity from multiple wireless links si-
multaneously, thus eliminating the chance of a link-outage or
potential performance degradation due to severe link fluctu-
ations during data transfers. Mobicare clients can also bene-
fit using a highly reliable uplink, by aggregating bandwidths
and exploiting link diversity similar to the MAR system.

7. DISCUSSIONS
In this section we discuss some other important issues

relevant in the context of Mobicare.

7.1 Device Reconfigurability
Mobicare offers a modular architecture (instead of a mono-

lithic system) that enables inter-module references to be re-
solved at run-time; modules can be replaced without con-
sequences to other modules. Thus device reconfigurability
comes as a natural benefit using a modular system archi-
tecture. Mobicare implements dynamic loading functional-
ities that are partly similar to, and partly to exceed those
that are found in dynamic link library (DLL). Tradition-
ally, DLLs are loaded together with the applications that
use it, whereas client modules in Mobicare are loaded-when-
needed. A loaded-when-needed architecture is quite similar
to the Microsoft’s Component Object Model (COM) [22].
However, in contrast to COM the concept of QueryInterface
is not used. This makes the system slower (the process of
finding a required function reference is more elaborate) but
at the same time more flexible (no grouping of functions is
enforced).

System modularity in MobiCore introduces no special re-
quirements on the modules that populate the system. Whereas
COM modules must be built according to the strict and com-
plex rules of the COM architecture, Mobicare offers a much
simpler architecture. The important benefit comes using an



arbitrary third-party module, built with a monolithic OS
model in mind, that can now be proxy-patched using the
wrapper tool and ready for use in dynamic environments.
This feature of dynamic run-time modular replacements is
unique to Mobicare.

7.2 Security Issues in Mobicare
On account of limited system resources, current clinical

sensors may be rendered ill-suited for a basic implementa-
tion of security protocols. Hence a shared-key infrastructure
for clinical sensors appears less practical due to the compu-
tational overhead involved. Nevertheless, security issues are
also generally less restrictive for a patient sensor network.
This is because such sensors are expected to fulfill certain
clinical (dedicated) task or functionality. Such sensors are
typically confined to the body sensor network, and only in
limited cases, may involve sharing key with a mobicare client
device.

Client-server security can be addressed by implementing
session layer security. Protocols such as WAP-based Wire-
less Transport Layer Security (WTLS) protocol can be used
to provide privacy, data integrity, and authentication over
the cellular link [9]. WTLS is readily available in most WAP-
based mobile phones. Moreover, it closely resembles Secure
Socket Layer (SSL)/Transport Layer Security (TLS) proto-
col, yet is optimized for use over low bandwidth wireless
links and suits resource-restricted mobile devices. Further-
more, application servers may also introduce security vulner-
ability by exposing server’s IP address to the clients. This
potential danger can be limited to some extent by ensuring
that only clients from the wireless network connect to the
server, thus, limiting the load an individual client generate
in an attempt to starve others.

7.3 Radio Over-exposure
Radio exposure caused by surrounding radio devices may

introduce additional health-related risks. However, it is un-
clear to what extent this exposure may exacerbate the risk
towards a patient’s health. For example, Ericcson suggests
heart pacemaker users to keep a distance of at least 15 cm
between a cell-phone and the pacemaker [1]. Wearable wire-
less sensor devices may also introduce additional risks to a
patient’s health due to unwanted electro-magnetic radiation.
Important factors that may influence exposure coming from
radios are frequency, transmitted power level, modulation,
and distance. An indepth study is required to critically
understand and investigate issues so that such risks could
be identified and mitigated. A recent study conducted by
NPRB [15] in the UK recommends restricting radio exposure
to a level below a certain threshold. This, it says, protects
against the potentially adverse effects on patients suscepti-
ble to electrical stimulation.

8. RELATED WORK
Researchers all over the world have started new projects

to investigate the potential in mobile healthcare [2, 14, 7].
Interestingly, much instigation in this area is stimulated by
the rapid advances made in wearable computing, sensor net-
works and mobile communications. We discuss these issues
in the context of Mobicare.

Clinical trials to gain insight into how medical systems
may help patients evolve in mobile settings were conducted
in the mid-nineties by the National Library in Medicine for

Mobile Telemedicine project [16]. Key lessons learned from
these tests were that: (i) achieving reliable, high-bandwidth
wireless data communications is difficult, (ii) transmission of
critical patient data during emergencies can make significant
difference in patient outcomes, and, (iii) remote patient di-
agnosis may be difficult. Note that most limitations as seen
in the Mobile Telemedicine Project have been overcome by
the advances made in the areas of clinical sensors, wearable
computing and mobile communications. Collective progress
in these areas make mobile medical care a reality.

The European Mobihealth project [2] is one such exam-
ple that inspires from the worldwide introduction and the
deployment of high-speed cellular technology. It aims at
developing and testing new mobile value-added services in
the area of healthcare, thus bringing healthcare to the pa-
tient. Health care services offered in Mobicare are similar in
spirit to that in Mobihealth – both aimed at solving mobile
monitoring needs for patients through cellular technology.

Dedicated clinical sensors have long been used (though
rather restrictively) in various medical settings. Such sen-
sors are examples of small-form wearable devices that ac-
complish certain dedicated tasks. However, sophisticated
wearable device such as the IBM’s Linux Wrist Watch [18,
12, 13] go way beyond the potential of the such wearable
clinical sensors. The watch packs many useful features:
Linux OS, X11, VGA graphics, Bluetooth and IrDA wireless
connectivity into a small, wearable, wristwatch device. We
believe that such wearable devices combine the necessary
functionalities to accomplish the different tasks in medical
care settings. Therefore, barring few simple modifications
to this wristwatch device, porting Mobicare client function-
ality should be straightforward. For patients a wearable de-
vice like the wrist-watch will not only monitor their ‘health-
critical’ data, but can also collect, store and perform pe-
riodic uploads with the health servers. Thus a wearable
wristwatch device comes as an integral component of any
mobile healthcare systems.

The Personal Server from Intel [23] is very useful and in-
novative concept for mobile healthcare. The Personal Server
is a mobile device that can readily store and access data
and applications, and wirelessly communicate with the lo-
cal environments. Such a device has practical use in mo-
bile health care settings for: (i) high-density data storage,
(ii) power-efficient computing, and, (iii) short-range wireless
(Bluetooth-based) connectivity. Thus the personal server
can be made to work much like a patient ‘health hub’.

Mobicare benefits from major sensor research projects like
the CodeBlue project at Harvard University [25, 14]. The
CodeBlue project offers many useful features for patient sen-
sor monitoring: (i) a robust co-ordination and communica-
tion substrate across sensor devices, (ii) a publish/subscribe
model for data delivery, and, (iii) adhoc networking for “mesh-
like” secure data connectivity for sensor nodes. Using the
MICA2 mote (originally designed at UCB [19]), CodeBlue
has developed a wireless pulse oximetry sensor and elec-
trocardiogram (ECG) sensor that can continuously moni-
tor and record vital sign and cardiac information from large
number of patients. CodeBlue offers many useful patient
network centric services. However, these services compli-
ment those offered by Mobicare and both can co-exist to
provide very effective mobile medical monitoring.

Mobicare shares many of the goals and objectives with the
Patient Centric Network (PCN) project started at MIT [7].



The PCN team is currently developing a prototype that ad-
dresses various service-specific issues for the patient sensor
network. The system will consist of software components
running on general purpose computers and networks that
will link users with a variety of medical sensors and actua-
tors. The goal in PCN, similar to that in Mobicare, is to
accelerate innovation, decrease cost, and improve the clinical
quality of medical care. Thus PCN can benefit from Mobi-
care with a programmable service architecture and mobile
medical monitoring.

Related research has investigated programmable architec-
tures in some other contexts. For example, the work in
[20, 26] investigates the programmability at the physical
layer based on digital signal processing techniques. The pro-
grammability at the physical layers allow new functionality
to be incorporated such as modulation, equalization, chan-
nel coding etc.. Programming quality of service (QoS) in
mobile networks has been well-explored in [10, 17]. [10] pro-
poses a programmable MAC framework, while [17] presents
Mobiware middleware that exerts QoS control over wire-
less access networks for adaptive mobile multimedia appli-
cations. Mobicare inspires from such programmable archi-
tectures to help accelerate deployment of new mobile health
services and applications.

9. CONCLUSIONS
The vast opportunity in ‘point-of-care’ access and the cap-

ture and transmission of patient information will continue
to drive the healthcare industry towards increased mobility.
The importance is in the shifting awareness that mobility in-
creasingly refers to – the mobility of devices, the healthcare
providers (health ‘outsourcing’) and of the patient (users)
themselves. Mobicare is the first architecture that leverages
‘point-of-care’ medical access to provide important benefits:

• Quality Health Care: Mobicare enables continuous,
round-the-clock monitoring for chronically-ill patients.
This not only improves the quality of patient care, but
also reduces relapse rates, overall hospitalization period
and costs.

• Programmable Architecture: A programmable ar-
chitecture allows for easy introduction, configuration and
customization of diverse medical sensors to a patient
sensor network. Client devices can update with new
medical features, applications and services that are tai-
lored to meet the requirements of patients and the health
providers.

• Flexible Service Components: Services in mobicare
can dynamically self-activate, (re)configure, update and
can be customized to suit (medical) monitoring needs
of the patient and the health providers. These services
effectively address the requirements of the patient’s med-
ical monitoring needs – the most significant challenge in
mobile healthcare.

• Medical Systems Integration: Mobicare enables med-
ical systems integration with full control for a body sen-
sor network. Health providers can have continuous ac-
cess, control, and configuration of body sensors using
‘always-on’ cellular connectivity.

Mobicare enables heathcare personnels to be able to timely
access, review, update and send patient information from
wherever they are, whenever they want. These factors, cou-

pled with current and expanding healthcare applications,
will further enhance personal health and ultimately popula-
tion health thereby increasing productivity.

Other than the population well-being, a sound health care
infrastructure can commensurately impact the economic health
of a nation. In terms of overall economics healthcare con-
stitutes a significant fraction of a nation’s overall Gross Do-
mestic Product (GDP). Therefore, large-scale deployment
and use of such mobile healthcare infrastructure may lead
to significant economic benefits and cost savings for a na-
tion. In this way mobile healthcare can have both long-term
social as well as economic implications for a nation.
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