
CS 640 Introduction to Computer Networks Spring 2005

http://www.cs.wisc.edu/∼suman/courses/640/s05

Programming Assignment 3: Transmission Control Protocol

Assigned: March 28,2005 Due: April 15, 2005, 11:59pm

1 Introduction

The Transmission Control Protocol (TCP) standard is defined in the Request For Comment (RFC) standards
document number 793 by the Internet Engineering Task Force (IETF). The original specification written in
1981 was based on earlier research and experimentation in the original ARPANET. The design of TCP was
heavily influenced by what has come to be known as the “end-to-end argument.”

As it applies to the Internet, the end-to-end argument says that by putting excessive intelligence in
physical and link layers to handle error control, encryption or flow control you unnecessarily complicate the
system. This is because these functions will usually need to be implemented at the endpoints anyways,
so duplication of this functionality in the intermediate points can be a waste. The result of an end-to-
end network then, is to provide minimal functionality on a hop-by-hop basis and maximal control between
end-to-end communicating systems.

The end-to-end argument helped determine the design of various components of TCP’s reliability, flow
control, and congestion control algorithms.

The following are a few important characteristics of TCP.

Byte Stream Delivery

TCP interfaces between the application layer above and the network layer below. When an application sends
data to TCP, it does so in 8-bit byte streams. It is then up to the sending TCP to segment or delineate
the byte stream in order to transmit data in manageable pieces to the receiver1. It is this lack of ’record
boundaries” which give it the name ”byte stream delivery service”.

Connection-oriented Approach

Before two communicating TCP endpoints can exchange data, they must first agree upon the willingness to
communicate. Analogous to a telephone call, a connection must first be made before two parties exchange
information.

Reliability

A number of mechanisms help provide the reliability TCP guarantees. Each of these is described briefly
below.

• Checksums: All TCP segments carry a checksum, which is used by the receiver to detect errors with
either the TCP header or data.

• Duplicate data detection: It is possible for packets to be duplicated in packet switched network; therefore
TCP keeps track of bytes received in order to discard duplicate copies of data that has already been
received.2

• Retransmissions: In order to guarantee delivery of data, TCP must implement retransmission schemes
for data that may be lost or damaged. The use of positive acknowledgements by the receiver to the
sender confirms successful reception of data. The lack of positive acknowledgements, coupled with a
timeout period (see timers below) calls for a retransmission.

1

• Sequence numbers: In packet switched networks, it is possible for packets to be delivered out of order.
It is TCP’s job to properly sequence segments it receives so it can deliver the byte stream data to an
application in order.

• Timers: TCP maintains various static and dynamic timers on data sent. The sending TCP waits for
the receiver to reply with an acknowledgement within a bounded length of time. If the timer expires
before receiving an acknowledgement, the sender can retransmit the segment

2 Connection Establishment and Termination

TCP provides a connection-oriented service over packet switched networks. Connection-oriented implies
that there is a virtual connection between two endpoints.3 There are three phases in any virtual connection.
These are the connection establishment, data transfer and connection termination phases.

Three-way handshake

In order for two hosts to communicate using TCP they must first establish a connection by exchanging
messages in what is known as the three-way handshake. The diagram below depicts the process of the
three-way handshake.

From Figure 1, it can be seen that there are three TCP segments exchanged between two hosts, Host A
and Host B. Reading down the diagram depicts events in time.

Figure 1: Three way handshake

To start, Host A initiates the connection by sending a TCP segment with the SYN control bit set and
an initial sequence number (ISN) we represent as the variable x in the sequence number field.

At some moment later in time, Host B receives this SYN segment, processes it and responds with a TCP
segment of its own. The response from Host B contains the SYN control bit set and its own ISN represented
as variable y. Host B also sets the ACK control bit to indicate the next expected byte from Host A should
contain data starting with sequence number x+1.

When Host A receives Host B’s ISN and ACK, it finishes the connection establishment phase by sending
a final acknowledgement segment to Host B. In this case, Host A sets the ACK control bit and indicates the
next expected byte from Host B by placing acknowledgement number y+1 in the acknowledgement field.

In addition to the information shown in the diagram above, an exchange of source and destination ports
to use for this connection are also included in each senders’ segments.

Data transfer

Once ISNs have been exchanged, communicating applications can transmit data between each other. Most of
the discussion surrounding data transfer requires us to look at flow control and congestion control techniques

2

which we discuss later in this document. A few key ideas will be briefly made here, while leaving the technical
details aside.

A simple TCP implementation will place segments into the network for a receiver as long as there is data
to send and as long as the sender does not exceed the window advertised by the receiver. As the receiver
accepts and processes TCP segments, it sends back positive cumulative acknowledgements, indicating the
next expected byte in sequence. If data is duplicated or lost, a “hole” may exist in the byte stream. A
receiver will continue to acknowledge the most current contiguous byte it has accepted.

If data queued by the sender reaches a point where data sent will exceed the receiver’s advertised window
size, the sender must halt transmission and wait for further acknowledgements and an advertised window
size that is greater than zero before resuming.

Timers are used to avoid deadlock and unresponsive connections. Delayed transmissions are used to make
more efficient use of network bandwidth by sending larger “chunks” of data at once rather than in smaller
individual pieces.

Connection termination

In order for a connection to be terminated, four segments are required to completely close a connection.
Four segments are necessary due to the fact that TCP is a full-duplex protocol, meaning that each end must
shut down independently.6 The connection termination phase is shown in Figure 2 below.

Figure 2: Three way handshake

Notice that instead of SYN control bit fields, the connection termination phase uses the FIN control bit
fields to signal the close of a connection.

To terminate the connection in our example, the application running on Host A signals TCP to close
the connection. This generates the first FIN segment from Host A to Host B. When Host B receives the
initial FIN segment, it immediately acknowledges the segment and notifies its destination application of the
termination request. Once the application on Host B also decides to shut down the connection, it then sends
its own FIN segment, which Host A will process and respond with an acknowledgement.

3 Sliding Window and Flow Control

Flow control is a technique whose primary purpose is to properly match the transmission rate of sender to
that of the receiver and the network. It is important for the transmission to be at a high enough rate to
ensure good performance, but also to protect against overwhelming the network or receiving host.

3

TCP uses the window field, briefly described previously, as the primary means for flow control. During
the data transfer phase, the window field is used to adjust the rate of flow of the byte stream between
communicating TCPs.

Figure 3 below illustrates the concept of the sliding window.

Figure 3: Sliding Window Protocol

In this simple example, there is a 4-byte sliding window. Moving from left to right, the window ”slides”
as bytes in the stream are sent and acknowledged.

4 Congestion control

TCP congestion control and Internet traffic management issues in general is an active area of research and
experimentation. This final section is a very brief summary of the standard congestion control algorithms
widely used in TCP implementations today.

Slow start

Slow Start, a requirement for TCP software implementations is a mechanism used by the sender to control
the transmission rate, otherwise known as sender-based flow control. This is accomplished through the return
rate of acknowledgements from the receiver. In other words, the rate of acknowledgements returned by the
receiver determine the rate at which the sender can transmit data.

When a TCP connection first begins, the Slow Start algorithm initializes a congestion window to one
segment, which is the maximum segment size (MSS) initialized by the receiver during the connection es-
tablishment phase. When acknowledgements are returned by the receiver, the congestion window increases
by one segment for each acknowledgement returned. Thus, the sender can transmit the minimum of the
congestion window and the advertised window of the receiver, which is simply called the transmission window.

Slow Start is actually not very slow when the network is not congested and network response time is good.
For example, the first successful transmission and acknowledgement of a TCP segment increases the window
to two segments. After successful transmission of these two segments and acknowledgements completes, the
window is increased to four segments. Then eight segments, then sixteen segments and so on, doubling from
there on out up to the maximum window size advertised by the receiver or until congestion finally does
occur.

Congestion avoidance

During the initial data transfer phase of a TCP connection the Slow Start algorithm is used. However, there
may be a point during Slow Start that the network is forced to drop one or more packets due to overload

4

or congestion. If this happens, Congestion Avoidance is used to slow the transmission rate. However, Slow
Start is used in conjunction with Congestion Avoidance as the means to get the data transfer going again
so it doesn’t slow down and stay slow.

In the Congestion Avoidance algorithm a retransmission timer expiring or the reception of duplicate ACKs
can implicitly signal the sender that a network congestion situation is occurring. The sender immediately
sets its transmission window to one half of the current window size (the minimum of the congestion window
and the receiver’s advertised window size), but to at least two segments. If congestion was indicated by a
timeout, the congestion window is reset to one segment, which automatically puts the sender into Slow Start
mode. If congestion was indicated by duplicate ACKs, the Fast Retransmit and Fast Recovery algorithms
are invoked (see below).

As data is received during Congestion Avoidance, the congestion window is increased. However, Slow
Start is only used up to the halfway point where congestion originally occurred. This halfway point was
recorded earlier as the new transmission window. After this halfway point, the congestion window is increased
by one segment for all segments in the transmission window that are acknowledged. This mechanism will
force the sender to more slowly grow its transmission rate, as it will approach the point where congestion
had previously been detected.

Fast retransmit

When a duplicate ACK is received, the sender does not know if it is because a TCP segment was lost or
simply that a segment was delayed and received out of order at the receiver. If the receiver can re-order
segments, it should not be long before the receiver sends the latest expected acknowledgement. Typically
no more than one or two duplicate ACKs should be received when simple out of order conditions exist. If
however more than two duplicate ACKs are received by the sender, it is a strong indication that at least one
segment has been lost. The TCP sender will assume enough time has lapsed for all segments to be properly
re-ordered by the fact that the receiver had enough time to send three duplicate ACKs.

When three or more duplicate ACKs are received, the sender does not even wait for a retransmission
timer to expire before retransmitting the segment (as indicated by the position of the duplicate ACK in the
byte stream). This process is called the Fast Retransmit algorithm.

5 Problem Statement

For this part of the assignment, you have to implement a Transmission Control Protocol which should
incorporate the following features:

• Reliability (with appropriate re-transmissions)

• Data Integrity (with checksums)

• Connection Management (SYN and FIN)

• Optimizations (fast re-transmit)

For extra credit you should implement the following:

• Congestion avoidance and control (Slow start and congestion avoidance)

Then you are required to transfer a file from the client to the server using the transport control protocol
developed by you.

6 Protocol Specification

The various components of the protocol are explained step by step. Please strictly adhere to the specifications.

5

6.1 Message Format

All data are sent using UDP. You have to communicate all the transport layer information in the data
portion of a UDP packet. To support reliability, hosts will implement a variant of the Go-Back-N protocol.
The sender will tag each outgoing message with an increasing sequence number. The receiver will use the
sequence numbers to ensure that all messages have been received in the correct order. If a message is
received out of order it will be stored in the receiver’s buffer (but not delivered to an application) and an
acknowledgment corresponding to the last successful contiguous byte received will be retransmitted. The
sender will maintain an acknowledgment timeout based on the round trip time of the link between the end
hosts. If a duplicate acknowledgment is received or if the acknowledgment timeout expires the sender will
re-send the unacknowledged segment destined for the receiver. A one’s compliment checksum is used to
enforce message integrity.

The message segment will have the following format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Byte Sequence Number |

+-+

| Acknowledgment |

+-+

| Time stamp (seconds) |

+-+

| Timestamp (microseconds) |

+-+

| Length |S|F|A|

+-|

| All zeros | Checksum |

+-|

| |

| Data |

| |

+-+

• Byte Sequence Number is incremented according to the bytes sent. It indicates the position of the first
byte of the data in this segment.

• Acknowledgment indicates the next byte expected in the reverse direction.

• Timestamp is derived from the getttimeofday system call and is the time of data transmission (in
seconds and microseconds).

• Length is the length of the data portion (in bytes).

• Checksum is the one’s complement checksum computed over the Sequence Number, Timestamp,
Length, and Data fields.

• Three flags: S for SYN, A for ACK, and F for FIN.

6.2 Connection State and Peer Actions

Suppose host A wants to send a message to host B. Assume, for now, that A has never sent a message to B
(as will be clear, it does not matter if A has rebooted or has sent a message a long time ago, etc.).

6

Data Send Actions: A will send a data segment as governed by the size of the sliding congestion window.
In this assignment, the congestion window is a configured parameter (except when extended for the extra
credit).

A will include a monotonically increasing timestamp (See Section 6.3 on how to compute this timestamp)
on the packet. If A thinks this is a new connection (because it has never communicated with B before, or
because it has somehow lost the connection state to B), it will set the sequence number to 0. For each
subsequent message, A will include a new timestamp on the packet and increment the sequence number by
the number of bytes sent.

Receiver Actions:

Connection start and data transfer If this is the first time B is communicating with A and has just
received a segment with sequence number equal to zero, it creates a new connection state for A.

For each segment received, B will send an acknowledgment to A. The acknowledgment packet has
sequence number corresponding to the next expected byte. If no data is sent along with the acknowl-
edgment, the length of this segment will be zero. Note data packets cannot have zero length. B also
copies the timestamp field from the data segment into the corresponding ACK segment. Thus, A can
use this timestamp field in the acknowledgment to calculate the round trip time for segments (refer to
our discussion in class on calculating round trip times).

Retransmissions For each packet sent, the sender must maintain a retransmission timer (the computation
of the this timer is described in the next section). Whenever a packet has not been ACKed before
its retransmission timer goes off, it must be re-sent. There is a timer set for the re-transmissions as
well — thus, if the re-transmission is not ACKed, the packet will be re-re-transmitted. Apart from
timeout based retransmissions, the sender also uses three duplicate acknowledgments for the same
sequence number as an indicator of loss and retransmits the corresponding lost segment. This is the
“fast retransmit” approach.

6.3 Timeout Computation

The sender places the current time in the packet timestamp field of the message header. When a packet is
acknowledged by the receiving client it will copy the packet timestamp into the acknowledged timestamp field.
When the sender receives the acknowledgment it can subtract the acknowledgment’s timestamp from the
current time to calculate the round trip time. If a client is sending a cumulative acknowledgment of several
packets the timestamp, the timestamp from the latest received packet which is causing this acknowledgment
should be copied into the reply. We will use a simple exponentially weighted average to compute the timeout.

Before sending the first packet, the timeout value is, arbitrarily, set to 5 seconds. Assume the sender has
just received an ack with sequence S and timestamp T. Let C be the current time at the sender.

if (S = 0)

ERTT := (C - T)

EDEV := 0

TO := 2*ERTT

else

SRTT := (C - T)

SDEV := |SRTT - ERTT|

ERTT := a*ERTT + (1-a)*SRTT

EDEV := b*EDEV + (1-b)*SDEV

Timeout := ERTT + 4*EDEV

The value of a is set to 0.875 and b is 0.75.

7

6.3.1 Computing the sender timestamp

In the 32-bit timestamp field, the sender includes a monotonically increasing timestamp with granularity of
one microsecond. On Unix, for example, this value can be obtained from the struct timeval value returned
by the gettimeofday(2) call.

6.4 Message Integrity

A 16 bit one’s compliment checksum has been added to increase message integrity. RFC 1071 details the
computation of this checksum. If a client receives a message with a bad checksum it should silently discard
the segment.

6.5 Maximum Number of Retransmissions

If unacknowledged messages remain in a host’s send buffer and no response from the destination has been
received after multiple retransmission attempts, the sending host will stop trying to send the messages and
report an error. This maximum is set to 16 by default.

6.6 Maximum Transmission Unit

Maximum Transmission Unit(MTU) determines the maximum size of payload that can be transmitted in
one packet. So in order to transfer a huge file , it needs to be divided into smaller chunks the maximum size
of each chunk being MTU. It is passed as a command line argument to the client and server during startup.

7 Host Commands/Output Format

You will implement a single executable called tcpend. Command line arguments will indicate which host is
the initiator of a TCP transfer. The transfer initiator tcpend must support the following options at startup:

• tcpend -p 〈port〉 -s 〈remote-IP 〉 -a 〈remote-port〉 -f 〈file name〉 -m 〈mtu〉 -c 〈sws〉

port: Port number at which the client will run.

remote-IP : IP address of the remote process.

remote-port: port at which the remote process is running.

file name: name of the file to be transferred.

mtu : Maximum transmission unit.

sws: Sliding window size.

The remote process (that is receiving the data) uses the following set of arguments:
tcpend -p 〈port〉 -m 〈mtu〉 -c 〈sws〉

8 Host ouput

Each host should output the information about each segment that it sends and receives in the following
format.
〈 snd/rcv〉 〈 time 〉 〈 flag-list 〉 〈 seq-number 〉 〈 number-of-bytes 〉 〈 ack-number 〉

where, flag-list includes S (SYN), A (ACK), F (FIN), and D (Data). The following are valid output lines
for a connection initiator that sends 112 bytes of data:

8

snd 34.335 S - - - 0 0 0
rcv 34.8 S A - - 0 0 1
snd 34.81 - A - - 0 0 1
snd 35.5 - - - D 1 56 1
snd 35.6 - - - D 57 56 1
rcv 36.2 - A - - 0 0 113
snd 36.65 - - F - 113 0 1
rcv 37.2 - A F - 1 0 114
snd 37.3 - A - - 113 0 2

At the end of the transfer, i.e., once the connection has been closed you should print the following
statistics:

• Amount of Data Transferred/Received

• No of Packets Sent/Received

• No of Packets discarded (out of sequence)

• No of Packets discarded (wrong checksum)

• No of Retransmissions

• No of Duplicate Acknowledgements

Mailing list

Questions and comments regarding this assignment should be posted to the mailing list, cs-640@lists.students.wisc.edu.

9

