Inter-domain Routing

Outline

Border Gateway Protocol
Internet Structure

Original idea
Internet Structure

Today
Route Propagation in the Internet

- Autonomous System (AS)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number

- Two-level route propagation hierarchy
 - interior gateway protocol (each AS selects its own)
 - exterior gateway protocol (Internet-wide standard)

- Routes information is propagated at various levels
 - hosts know local router
 - local routers know site routers
 - site routers know core router
 - core routers know everything
Popular Interior Gateway Protocols

• RIP: Route Information Protocol
 – distributed with BSD Unix
 – distance-vector algorithm
 – based on hop-count (infinity set to 16)

• OSPF: Open Shortest Path First
 – recent Internet standard
 – uses link-state algorithm
 – supports load balancing
 – supports authentication
BGP-4: Border Gateway Protocol

- BGP-1 developed in 1989 to address problems with EGP.
- Assumes Internet is an arbitrarily interconnected set of ASs
- AS traffic types
 - Local
 - starts or ends within an AS
 - Transit
 - passes through an AS
- AS Types
 - stub AS: has a single connection to one other AS
 - carries local traffic only
 - multihomed AS: has connections to more than one AS
 - refuses to carry transit traffic
 - transit AS: has connections to more than one AS
 - carries both transit and local traffic
BGP-4 contd.

• Each AS has:
 – one or more border routers
 - Handles inter-AS traffic
 – At least one BGP *speaker* for an AS that participates in routing
 – BGP speaker establishes BGP sessions with peers and advertises:
 - local network names
 - other reachable networks (transit AS only)
 - gives *path* information
 - withdrawn routes

• BGP goal: find loop free paths between ASs
 – Optimality is secondary goal
 – It’s neither a distance-vector nor a link-state protocol

• Hard problem
 – Internet’s size (~12K active ASs) means large tables in BGP routers
 – Autonomous domains mean different path metrics
 – Need for flexibility
BGP Example

• Speaker for AS2 advertises reachability to P and Q
 – network 128.96, 192.4.153, 192.4.32, and 192.4.3, can be reached directly from AS2

• Speaker for backbone advertises
 – networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS1, AS2).

• Speaker can cancel previously advertised paths
Some BGP details

• Path vectors are most important innovation in BGP
 – Enables loop prevention in complex topologies
 – If AS sees itself in the path, it will not use that path

• Routes can be aggregated
 – Based on CIDR (classless) addressing

• Routes can be filtered

• Runs over TCP

• ASes can apply a variety of policies
BGP in practice

• 10-20 “backbone” ASs which are fairly richly connected to each other
 – Peers

• Other “lower tier” ASs hang off the backbone networks -> Customers
 – Some of them may also connect with each other at peering points → Peers

• Corporations connect as Customers to lower tier ASs or to backbone ASs depending on their need/willingness to pay
Policy with BGP

- BGP provides capability for enforcing various policies

- Policies are **not** part of BGP: they are provided to BGP as configuration information

- **Enforces** policies by
 - *Choosing appropriate paths* from multiple alternatives
 - *Controlling advertisement* to other AS’s
Which route should Frank pick to 13.13.0.0/16?
Policy I: Prefer Customer routing

Route learned from customer preferred over route learned from peer, preferred over route learned from provider

Set appropriate “local pref” to reflect preferences: Higher Local preference values are preferred
Policy II: Import Routes

- provider route
- peer route
- customer route
- ISP route
Policy II: Export Routes

- **provider route**
- **peer route**
- **customer route**
- **ISP route**

Filters block
BGP Policies Summarized

<table>
<thead>
<tr>
<th>Route learned From</th>
<th>Customer</th>
<th>Provider</th>
<th>Peer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Provider</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Peer</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Advertise to →
Export Policies: Valley-Free Routes

• “Valley-free” routing
 - Label links as (+1, 0, -1) for provider, peer and customer
 - In any valid path should only see sequence of +1, followed by at most one 0, followed by sequence of -1
 - Why?
 Export incentives

• How to make these choices?
 - Prefer-customer routing: LOCAL_PREF
 - Valley-free routes: control route advertisements (see previous slides)