
CS 640 1

UNIX Sockets

Outline
 UNIX sockets

CS 640 2

Berkeley Sockets

•  Networking protocols are implemented as part of
the OS
–  The networking API exported by most OS’s is the

socket interface
–  Originally provided by BSD 4.1c ~1982.

•  The principal abstraction is a socket
–  Point at which an application attaches to the network
–  Defines operations for creating connections, attaching

to network, sending/receiving data, closing.

CS 640 3

Connection-oriented example (TCP)
Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

CS 640 4

Connectionless example (UDP)
Server

Socket()

Bind()
Client

Socket()
Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

CS 640 5

Socket call
•  Means by which an application attached to the network
•  int socket(int family, int type, int protocol)
•  Family: address family (protocol family)

–  AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

•  Type: semantics of communication
–  SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
–  Not all combinations of family and type are valid

•  Protocol: Usually set to 0 but can be set to specific value.
–  Family and type usually imply the protocol

•  Return value is a handle for new socket

CS 640 6

Bind call

•  Binds a newly created socket to the specified address
•  Int bind(int socket, struct sockaddr *address, int addr_len)

•  Socket: newly created socket handle
•  Address: data structure of address of local system

–  IP address and port number (demux keys)
–  Same operation for both connection-oriented and

connectionless servers
•  Can use well known port or unique port

CS 640 7

Listen call

•  Used by connection-oriented servers to indicate an
application is willing to receive connections

•  Int(int socket, int backlog)
•  Socket: handle of newly creates socket
•  Backlog: number of connection requests that can

be queued by the system while waiting for server
to execute accept call.

CS 640 8

Accept call

•  After executing listen, the accept call carries out a
passive open (server prepared to accept connects).

•  Int accept(int socket, struct sockaddr *address, int addr_len)
•  It blocks until a remote client carries out a

connection request.
•  When it does return, it returns with a new socket that

corresponds with new connection and the address
contains the clients address

CS 640 9

Connect call

•  Client executes an active open of a connection
•  Int connect(int socket, struct sockaddr *address, int addr_len)

•  Call does not return until the three-way handshake
(TCP) is complete

•  Address field contains remote system’s address
•  Client OS usually selects random, unused port

CS 640 10

Send(to), Recv(from)

•  After connection has been made, application uses
send/recv to data

•  Int send(int socket, char *message, int msg_len, int flags)
–  Send specified message using specified socket

•  Int recv(int scoket, char *buffer, int buf_len, int flags)
–  Receive message from specified socket into specified buffer

CS 640 11

Socket Implimentation

•  Protocol implementation
–  Process per protocol

•  Use a separate process to implement each protocol
•  Messages are passes between processes

–  Process per message
•  Use one process to handle each message/communication
•  Generally more efficient

•  Buffer use
–  Applications use buffers as do protocols

•  Copies are VERY expensive
•  Message abstraction enables pointers to be used and minimal copies

CS 640 12

Practical issues – using sockets

•  You have to be very careful when using these calls
–  Specific data structures and formats
–  Ports cannot be less than 1024

•  You can use other tools to see if things are working
–  Tcpdump
–  /proc
–  netstat

•  Client and server can be on same system
•  Think about error handling methods
•  Refer to Stevens
•  Baby steps!!

