
CS 640 1

Congestion Control in TCP

Outline
 Overview of RENO TCP
 Reacting to Congestion
 SS/AIMD example

TCP Congestion Control

•  The idea of TCP congestion control is for each
source to determine how much capacity is
available in the network, so that it knows how
many packets it can safely have in transit.
–  Once a given source has this many packets in transit, it

uses the arrival of an ACK as a signal that one of its
packets has left the network, and that it is therefore safe
to insert a new packet into the network without adding
to the level of congestion.

–  By using ACKs to pace the transmission of packets,
TCP is said to be self-clocking.

CS 640 3

TCP Congestion Control

•  In more detail
–  assumes best-effort network (FIFO or FQ routers) each

source determines network capacity for itself
–  uses implicit feedback
–  ACKs pace transmission (self-clocking)

•  Challenge
–  determining the available capacity in the first place
–  adjusting to changes in the available capacity

CS 640 4

Congestion Control Overview

•  Objective: adjust to changes in the available capacity
•  New state variable per connection: CongestionWindow

–  limits how much data source has in transit

 MaxWin = MIN(CongestionWindow,
 AdvertisedWindow)

 EffWin = MaxWin - (LastByteSent -

LastByteAcked)

•  Idea:
–  increase CongestionWindow when congestion goes down
–  decrease CongestionWindow when congestion goes up

CS 640 5

TCP RENO Overview

•  Standard TCP functions
–  Listed in last lecture: connections, reliability, etc.

•  Jacobson/Karels RTT/RTO calculation
•  Slow Start phase
•  Congestion avoidance phase

–  Additive Increase/ Multiplicative Decrease (AIMD)
–  Fast Retransmit/Fast Recovery

CS 640 6

Slow Start

•  Objective: determine the available
capacity in the first
–  Additive increase is too slow

•  One additional packet per RTT

•  Idea:
–  begin with CongestionWindow = 1 packet
–  double CongestionWindow each RTT

(increment by 1 packet for each ACK)
–  This is exponential increase to probe for

available bandwidth

•  SSTHRESH indicates when to
begin Congestion Avoidance phase

Source Destination

…

CS 640 7

Slow Start contd.
•  Exponential growth, but slower than all at once
•  Used…

–  when first starting connection
–  when connection goes dead waiting for timeout

•  Trace

•  Problem: lose up to half a CongestionWindow’s worth of
data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

CS 640 8

SSTHRESH and CWND

•  SSTHRESH called CongestionThreshold in book
•  Typically set to very large value on connection setup
•  Set to one half of CongestionWindow on packet loss

–  So, SSTHRESH goes through multiplicative decrease for each
packet loss

–  If loss is indicated by timeout, set CongestionWindow = 1
•  SSTHRESH and CongestionWindow always >= 1 MSS

•  After loss, when new data is ACKed, increase CWND
–  Manner depends on whether we’re in slow start or congestion

avoidance

CS 640 9

Congestion avoidance

•  How does the source determine whether or not the
network is congested?

•  Answer: a packet loss is detected
–  Either through a timeout

•  timeout signals that a packet was lost
•  packets are seldom lost due to transmission error
•  lost packet implies congestion
•  RTO calculation is critical

–  Or through duplicate acks (triple)

CS 640 10

Congestion Avoidance

•  In practice: increment a little for each ACK
 Increment = 1/CongestionWindow
 CongestionWindow += Increment
 MSS = max segment size = size of a single packet

Source Destination

…

•  Algorithm
–  increment CongestionWindow by one

packet per RTT (linear increase)
–  divide CongestionWindow by two

whenever a timeout occurs (multiplicative
decrease – fast!!)

–  CongestionWindow always >= 1 MSS

What is TCP’s sending rate?

•  Roughly WindowSize / RTT

•  Sender can roughly send one
WindowSize worth of data before
and no more, until the first acks
come back

CS 640 11

Source Destination

…

CS 640 12

AIMD (cont)

•  Trace: sawtooth behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

T ime (seconds)

70

30
40
50

10
10.0

CS 640 13

Fast Retransmit and Fast Recovery

•  Problem: coarse-grain
TCP timeouts lead to idle
periods

•  Fast retransmit: use 3
duplicate ACKs to trigger
retransmission

•  Fast recovery: start at
SSTHRESH and do
additive increase after fast
retransmit

Packet 1

Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

CS 640 14

Fast Retransmit Results

•  This is a graph of fast retransmit only
–  Avoids some of the timeout losses

•  Fast recovery
–  skip the slow start phase in this graph at 3.8 and 5.5 sec
–  go directly to half the last successful CongestionWindow
(ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

In summary

•  TCP Slow Start:
–  On each new ack:

•  CW = CW + 1 (MSS)

•  TCP Congestion Avoidance
–  On each new ack:

•  CW = CW + 1/CW (in MSS)

–  On triple dupack
•  SSThresh = CW/2
•  CW = CW + 3 (MSS)

CS 640 15

–  On each additional dupack
•  CW = CW + 1 (MSS)

–  On new ack
•  CW = SSThresh

–  On timeout
•  CW = 1 (MSS)

More on TCP Congestion Control

17

TCP Congestion Control
•  Very simple mechanisms in network

– FIFO scheduling with shared buffer pool
– Feedback through packet drops

•  End-host TCP interprets drops as signs of congestion
and slows down à reduces size of congestion window

•  But then, periodically probes – or increases congestion
window

– To check whether more bandwidth has become available

18

Congestion Control Objectives

•  Simple router behavior

•  Distributed-ness

•  Efficiency: Σxi(t) close to system capacity

•  Fairness: equal (or propotional) allocation
–  Metric = (Σxi)2/n(Σxi

2)

•  Convergence: control system must be stable

19

Linear Control

•  Many different possibilities for reaction to
congestion and probing
–  Examine simple linear controls

•  Window(t + 1) = a + b Window(t)
•  Different ai/bi for increase and ad/bd for decrease

•  Various reaction to signals possible
–  Increase/decrease additively
–  Increased/decrease multiplicatively
–  Which of the four combinations is optimal?

•  Consider two end hosts vying for network bandwidth

20

Four alternatives

•  Additive Increase Additive Decrease (AIAD)
•  Additive Increase Multiplicative Decrease

(AIMD)
•  Multiplicative Increase Additive Decrease

(MIAD)
•  Multiplicative Increase Multiplicative Decrease

(MIMD)

•  So why pick AIMD?

21

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

•  Both X1 and X2
increase/ decrease
by the same amount
over time
–  Additive increase

improves fairness
and additive
decrease reduces
fairness

22

Multiplicative Increase/Decrease
•  Both X1 and X2

increase by the
same factor over
time
–  Extension from

origin – constant
fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

23

Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

24

Distributed Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation x2

a=0

b=1

a>0 & b<1

a<0 & b>1

a<0 & b<1

a>0 & b>1

25

Convergence to Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

26

Convergence to Efficiency & Fairness
•  Intersection of valid regions
•  For decrease: a=0 & b < 1

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

27

What is the Right Choice?
•  Constraints limit

us to AIMD
–  Can have

multiplicative
term in increase
(MAIMD)

–  AIMD moves
towards optimal
point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

Exponentially Weighted
Moving Average

CS 640 28

Smoothing of data

Smoothing of data

•  Simple moving average

Smoothing of data

•  Weighted moving average

Smoothing data

•  Exponentially Weighted Moving Average
(EWMA)

Smoothing data

•  Exponentially Weighted Moving Average
(EWMA)

Accelerometer

-4

-2

0

2

4

6

8

10

12

14

1425154905000.00 1425154910000.00 1425154915000.00 1425154920000.00 1425154925000.00 1425154930000.00 1425154935000.00 1425154940000.00 1425154945000.00 1425154950000.00

Series1

Series2

Series3

Alpha = 0.8

Alpha = 0.5

Alpha = 0.2

Alpha = 0.1

Zoom in

-2

0

2

4

6

8

10

12

1425154918000.00 1425154920000.00 1425154922000.00 1425154924000.00 1425154926000.00 1425154928000.00 1425154930000.00

Series1

Series2

Series3

