Congestion Control in TCP

Outline

Overview of RENO TCP
Reacting to Congestion
SS/AIMD example

CS 640

TCP Congestion Control

e The 1dea of TCP congestion control 1s for each
source to determine how much capacity i1s
available in the network, so that it knows how
many packets i1t can safely have 1n transit.

— Once a given source has this many packets in transit, 1t
uses the arrival of an ACK as a signal that one of its
packets has left the network, and that it 1s therefore safe
to insert a new packet into the network without adding
to the level of congestion.

— By using ACKs to pace the transmission of packets,
TCP 1s said to be self-clocking.

TCP Congestion Control

 In more detail

— assumes best-effort network (FIFO or FQ routers) each
source determines network capacity for itself

— uses 1mplicit feedback

— ACKSs pace transmission (self-clocking)
e Challenge

— determining the available capacity in the first place
— adjusting to changes in the available capacity

CS 640

Congestion Control Overview

* Objective: adjust to changes 1n the available capacity

« New state variable per connection: CongestionWindow
— limits how much data source has in transit

MaxWin = MIN (CongestionWindow,
AdvertisedWindow)
EffWin = MaxWin - (LastByteSent -
LastByteAcked)

e Jdea:

— 1increase CongestionWindow when congestion goes down
— decrease CongestionWindow when congestion goes up

CS 640

TCP RENO Overview

Standard TCP functions
— Listed 1n last lecture: connections, reliability, etc.

Jacobson/Karels RTT/RTO calculation
Slow Start phase

Congestion avoidance phase

— Additive Increase/ Multiplicative Decrease (AIMD)
— Fast Retransmit/Fast Recovery

CS 640

Slow Start

Objective: determine the available
capacity 1n the first

— Additive increase is too slow
* One additional packet per RTT

Idea:
— begin with CongestionWindow = 1 packet

— double CongestionWindow cach RTT
(increment by 1 packet for each ACK)

— This 1s exponential increase to probe for
available bandwidth

SSTHRESH indicates when to
begin Congestion Avoidance phase

CS 640

Source

Y

L

o
I
i
(i
L

Destination

Slow Start contd.

* Exponential growth, but slower than all at once
« Used...

— when first starting connection
— when connection goes dead waiting for timeout

e Trace

[] [] ®
70 — 1y I IVARAPDEFR IRV ONAR TV UR TR RPN IR VR RV EFR TRV RR TR D T ALTUTIUER TR TUERREIERURR AU RU RO DRIV RR TR TR R R TEOTVERURRRTRRR TR v
0 40

I I I I I I

1 1
1.0 20 3.0 4.0 5.0 6.0 7.0 8.0 9.0

e Problem: lose up to half a CongestionWindow’s worth of
data

CS 640

SSTHRESH and CWND

SSTHRESH called CongestionThreshold in book
Typically set to very large value on connection setup

Set to one half of CongestionWindow on packet loss

— So, SSTHRESH goes through multiplicative decrease for each
packet loss

— If'loss 1s indicated by timeout, set CongestionWindow = 1
« SSTHRESH and CongestionWindow always >= 1 MSS

After loss, when new data 1s ACKed, increase CWND

— Manner depends on whether we’re 1n slow start or congestion
avoldance

CS 640 8

Congestion avoidance

* How does the source determine whether or not the
network 1s congested?

* Answer: a packet loss is detected

— Either through a timeout
 timeout signals that a packet was lost
 packets are seldom lost due to transmission error
* lost packet implies congestion
e RTO calculation is critical

— Or through duplicate acks (triple)

CS 640

Congestion Avoidance

Source
* Algorithm
— increment CongestionWindow by one
packet per RTT (linear increase)

— divide CongestionWindow by two
whenever a timeout occurs (multiplicative
decrease — fast!!)

— CongestionWindow always>=1 MSS

 In practice: increment a little for each ACK
Increment = 1/CongestionWindow
CongestionWindow += Increment
MSS = max segment size = size of a single packet

CS 640

D

estination

10

What 1s TCP’s sending rate?

Source Destination

 Roughly WindowSize / RTT

* Sender can roughly send one
WindowSize worth of data before

i

)
0’0’

. /&
and no more, until the first acks ’<
come back —

o
o
W

(

CS 640 11

AIMD (cont)

 Trace: sawtooth behavior

70
60
50 -
o 40
X 30
20 —
10

| T | | T
1.0 20 3.0 4.0 5.0 6.0

Time (seconds)

CS 640

7.0

8.0

9.0

10.0

12

Fast Retransmit and Fast Recovery

Sender Receiver

* Problem: coarse-grain ot 1
TCP timeouts lead to 1dle Packet 2 oK 1
periods racke 3\X ACK 2

Packet 4

e Fast retransmit: use 3 kot 5 ACK 2
duplicate ACKs to trigger pacets

ACK 2

retransmission ACK 2
* Fastrecovery: start at Retransmit
SSTHRESH and do packet>

ACK 6

additive increase after fast
retransmit

CS 640

Fast Retransmit Results

70 — 1y leIII\IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIIII TSR RETRRUIUECRRIOLRERRECENORMARLEORRRICCRRAMOANTRARYOCRRRTOL CRERERRTOICRRMIRICARARRECTRIRRRRRETOOOAA O

60 -
50 -
m 40
< 30
20 -
10

1.0 2.0 3.0 4.0 5.0 6.0

» This 1s a graph of fast retransmit only
— Avoids some of the timeout losses

e Fastrecovery
— skip the slow start phase in this graph at 3.8 and 5.5 sec

— go directly to half the last successful CongestionWindow
(ssthresh)

CS 640

7.0

14

In summary

e TCP Slow Start: — On timeout

— On each new ack: * CW=1(MSS)

+ CW=CW + 1 (MSS)
 TCP Congestion Avoidance

— On each new ack: — On each additional dupack
« CW=CW + 1/CW (in MSS) * CW=CW +1(MSS)

— On triple dupack
+ SSThresh = CW/2 — On new ack

« CW=CW + 3 (MSS) * CW =SSThresh

CS 640 15

More on TCP Congestion Control

TCP Congestion Control

* Very simple mechanisms in network
— FIFO scheduling with shared buffer pool
— Feedback through packet drops

* End-host TCP interprets drops as signs of congestion
and slows down = reduces size of congestion window

 But then, periodically probes — or increases congestion

window
— To check whether more bandwidth has become available

17

Congestion Control Objectives

Simple router behavior

Distributed-ness
Efficiency: 2x,(t) close to system capacity

Fairness: equal (or propotional) allocation
— Metric = (2x,)*/n(Zx;?)

Convergence: control system must be stable

18

Linear Control

« Many different possibilities for reaction to
congestion and probing

— Examine simple linear controls
 Window(t+ 1) =a+ b Window(t)
* Different a./b, for increase and a /b, for decrease

* Various reaction to signals possible
— Increase/decrease additively
— Increased/decrease multiplicatively

— Which of the four combinations 1s optimal?
* Consider two end hosts vying for network bandwidth

19

Four alternatives

Additive Increase Additive Decrease (AIAD)

Additive Increase Multiplicative Decrease
(AIMD)
Multiplicative Increase Additive Decrease
(MIAD)

Multiplicative Increase Multiplicative Decrease
(MIMD)

So why pick AIMD?

20

Additive Increase/Decrease

* Both X, and X,
increase/ decrease
by the same amount
over time

— Additive increase
improves fairness
and additive

decrease reduces
fairness

User 2's
Allocation
X2

Fairness Line

T
T/

Efficiency Line

User 1's Allocation x;

21

Multiplicative Increase/Decrease
* Both X, and X,

increase by the

same factor over Fairness Line
. T
time 1
— Extension from User 2's
. . Allocation
origin — constant x; To!
fairness
Efficiency Line

User 1's Allocation x;

22

Convergence to Efficiency

.- Fairness Line

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;

23

Distributed Convergence to Efficiency

a0 & b>1

a=0

_ Fairness Line

User 2's
Allocation x,

a<0 & b<1
Efficiency Line

User 1's Allocation x;

24

Convergence to Fairness

.- Fairness Line

User 2's
Allocation
X2

Efficiency Line

User 1's Allocation x;

25

Convergence to Efficiency & Fairness
 Intersection of valid regions

e For decrease: a=0 & b <1

User 2's
Allocation
X2

. Fairness Line

Efficiency Line

User 1's Allocation x;

26

What 1s the Right Choice?

e (Constraints limit
us to AIMD

— Can have
multiplicative

term 1n Increase
(MAIMD)

— AIMD moves
towards optimal
point

User 2's
Allocation
X2

Fairness Line

Efficiency Line

User 1's Allocation x;

27

Exponentially Weighted
Moving Average

CS 640

28

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0

Smoothing of data

Time Domain Plot

50

100

150

200

250

300

350

400

450 s

St

o T+ T T T2+ Tk
- E EE:Ibﬂl‘—

Smoothing of data

Simple moving average

1 k—1

2 = S¢—1 T

- n=0

Ty — T

Smoothing of data

 Weighted moving average

k

St = Y WnTip1—n = WiT¢ + WoTyg + ** + Welt—pt1-
n=1

Smoothing data

* Exponentially Weighted Moving Average
(EWMA)

Sp — Iy
s =ax;+ (1 —a)sg_q, t >0

Smoothing data

* Exponentially Weighted Moving Average
(EWMA)

S — Tp
s =ax;+ (1 —a)sg_q, t >0
S¢ = axy + (1 —) sp_q
=axi+ ol — a)xey + (1 — a)?si_y

=« [:vt +(1—a)ze + (1= + (1 —a)zez+---+ (1 - a')t_l;ro] + (1 — a)’sp.

Accelerometer

14

12

10

0
14251549

05000.001425154910000. 001

Jﬁ\»

\
51 ~.v' |) 300014

YWy iy m

ARVISIA
15493 "ll‘

u.\aﬂu

Lol

\HMM

IRAA "

3154915000001 4

m i,
154920000. 01

* 154940000.001 425154945000.00142°

2

) Alpha=10.8

12

10 I'* 'rl""wrr‘ " ‘ l‘lll'ﬂ'l('

. - MLMHLM.M&“&"‘}Aﬁ“xbﬂulwnq o'l

I
5154905000 0425154910000 D42515491 5000042 5154920000 D42 5154)OD25154930000.0425154935000.D425154940000.D002515494

-2

Alpha=0.5

L ‘rl'!'pp r i Y l‘ll‘lﬂll!'

549

05000.D425154910000 DA

MLMHLM \ualr llm.Jhuuu.», o“

“'\' " —

|
4915000.0425754920000.0425154925000D425154930000.0425154935000 D402651 54940000 0425154945000 04251 54¢

Alpha=10.2

12 |

10 RIAN 'F.r'||1'rl' |' ’ ‘I} | ':]nlln'I V‘]
0 .) g . Al
|
8
6
a
2
4

.“‘ r . : 2 [A a

0 AUV PR VU VALY SV W NV TR iaetY Vi

aniws
1425154905000 D425154910000 D026 15491 5000.D025154920000 DO251548 DODA25154930000.D4025154935000. D251 54940000 DE2515-

-2

14

12

10 "l“ .'"' |1"F.']"1" “" | 'll'ﬂ l”!l (‘
' ‘A g |)

J

| |

2 ’]
‘ ‘ . v ’ .‘ .
0 AR AL Y OY Y
\
14251549050061R515491000RLRR15491 500 DB 4952000012D15492

AL
(F, v

-

(8

:
8

b b lw ke, t| | Wi
2515493000012D1549 SOCBID 5494000612B1549450001 D!

-2

Alpha=0.1

12

10

0 T T v a— 1
1425154900000.00 1425154910000.00 1425154920000.00 \'M154930000.00 1425154940000.00 1425154950000.00

12

10 — A = Y

6 e====Series]
=== Series2

4 Series3

0 Py 4 i .
1425154918000.00 1425154920000:00) 1425154 . . ‘ . . 425154930000.00

2

