Transport Protocols

CS 640 1

Reliability

CS 640

Sliding Window Revisited

« TCP’s variant of the sliding window algorithm, which serves
several purposes:
— (1) 1t guarantees the reliable delivery of data,
— (2) 1t ensures that data 1s delivered in order, and
— (3) 1t enforces flow control between the sender and the receiver.

CS 640 3

Solution: Pipelining via Sliding Window

* Allow multiple outstanding (un-ACKed) frames
* Upper bound on un-ACKed frames, called window

Sender Receiver

Time

CS 640 4

Buffering on Sender and Receiver

Sender needs to buffer data so that 1f data is lost, it can be resent
Receiver needs to buffer data so that i1f data 1s received out of
order, 1t can be held until all packets are received

— Flow control

How can we prevent sender overflowing receiver’s buffer?
— Receiver tells sender its buffer size during connection setup

How can we insure reliability in pipelined transmissions?
— Go-Back-N
» Send all N unACKed packets when a loss 1s signaled
* Inefficient

— Selective repeat
* Only send specifically unACKed packets
A bit trickier to implement

CS 640 5

Sliding Window Revisited

Sending application

LastByteWritteny

t ﬁ
LastByteAcked LastByteSent

Sending side

LastByteAcked <=
LastByteSent

LastByteSent <=
LastByteWritten

buffer bytes between
LastByteAcked and
LastByteWritten

CS 640

Receiving applicatio

TCP
yLastByteRead

: 3

to
NextByteExpected LastByteRcvd

Recelving side
— LastByteRead <
NextByteExpected

— NextByteExpected <=
LastByteRcvd +1

— buffer bytes between
NextByteRead and
LastByteRcvd

6

Flow Control in TCP

Send buffer size: MaxSendBuffer
Receive buffer size: MaxRcvBuffer

Recelving side

— LastByteRcvd - LastByteRead < =MaxRcvBuffer

— AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected
- 1) - LastByteRead)

Sending side

— LastByteSent - LastByteAcked <= AdvertisedWindow

— EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

— LastByteWritten - LastByteAcked <=MaxSendBuffer

— block sender if (LastByteWritten - LastByteAcked) +y >
MaxSenderBuffer

Always send ACK 1n response to arriving data segment
Persist sending one byte seg. when AdvertisedWindow = 0

— Keep soliciting ACKs, eventually window opens up

CS 640 7

Triggering Transmission

 How does TCP decide to transmit a segment?
— TCP supports a byte stream abstraction
— Application programs write bytes into streams

— It1s up to TCP to decide that it has enough bytes to send a segment
e TCP uses “self clocking”

— Use ACKs as an implicit timer

* ACK info tells if there 1s enough space

CS 640 3

Nagle’s Algorithm

We could use a clock-based timer, for example one that fires
every 100 ms

Nagle introduced an elegant self-clocking solution
Key Idea

— As long as TCP has any data 1n flight, the sender will eventually receive
an ACK

— This ACK can be treated like a timer firing, triggering the transmission
of more data

CS 640 9

Nagle’s Algorithm

When the application produces data to send
if both the available data and the window > MSS // either at

startup or when an ACK arrives

send a full segment
clse
if there 1s unACKed data 1n flight
buffer the new data until an ACK arrives
clse
send all the new data now

CS 640 10

Adaptive Retransmission

* Original Algorithm
— Measure SampleRTT for each segment/ ACK pair

— Compute weighted average of RTT
* EstRTT = o x EstRTT + (1 - a)x SampleRTT
- abetween 0.8 and 0.9

s Set timeout based on EstRTT
» TimeOut =2 x EstRTT

CS 640 11

Original Algorithm

 Problem

— ACK does not really acknowledge a transmission
« It actually acknowledges the receipt of data
— When a segment is retransmitted and then an ACK arrives
at the sender

« It 1s impossible to decide if this ACK should be associated with the
first or the second transmission for calculating RTTs

CS 640 12

Karn/Partridge Algorithm for RTO

Sender Receiver Sender Receiver

SampleR TT
SampleR TT

* Two degenerate cases with timeouts and RTT measurements
— Solution: Do not sample RTT when retransmitting

» After each retransmission, set next RTO to be double the value
of the last

— Exponential backoft is well known control theory method
— Loss 1s most likely caused by congestion so be careful

CS 640 13

Karn/Partridge Algorithm

« Karn-Partridge algorithm was an improvement over
the original approach, but 1t does not eliminate
congestion

* We need to understand how timeout 1s related to
congestion

— If you timeout too soon, you may unnecessarily retransmit a
segment which adds load to the network

CS 640 14

Karn/Partridge Algorithm

* Main problem with the original computation is that it
does not take variance of Sample RTTs into

consideration.
e If the variance among Sample RTTs 1s small
— Then the Estimated RTT can be better trusted

— There 1s no need to multiply this by 2 to compute the
timeout

CS 640 15

Karn/Partridge Algorithm

* On the other hand, a large variance in the samples
suggest that timeout value should not be tightly
coupled to the Estimated RTT

» Jacobson/Karels proposed a new scheme for TCP
retransmission

CS 640 16

Jacobson/ Karels Algorithm

In late ’80s, Internet was suffering from congestion collapse
New Calculations for average RTT — Jacobson ’88

Variance 1s not considered when setting timeout value
— If variance 1s small, we could set RTO = EstRTT
— If variance is large, we may need to set RTO > 2 x EstRTT

New algorithm calculates both variance and mean for RTT
Diff = sampleRTT - EstRTT

EstRTT = EstRTT + (d x Diff)

Dev = Dev + d (|Diff| - Dev)

— Initially settings for EstRTT and Dev will be given to you
— where d is a factor between 0 and 1
— typical value 1s 0.125

CS 640 17

Jacobson/ Karels contd.

TimeOut = u X EstRTT + ¢ X Dev

— where u=1and ¢ =4
When variance 1s small, TimeOQOut is close to EstRTT
When variance 1s large Dev dominates the calculation

Another benefit of this mechanism 1s that 1t 1s very efficient
to implement in code (does not require floating point)

Notes

— algorithm only as good as granularity of clock (500ms on Unix)
— accurate timeout mechanism important to congestion control (later)

These 1ssues have been studied and dealt with in new RFC’s
for RTO calculation.

TCP RENO uses Jacobson/Karels

CS 640 18

