
Transport Protocols

CS 640 1

Reliability

CS 640 2

Sliding Window Revisited

•  TCP’s variant of the sliding window algorithm, which serves
several purposes:
–  (1) it guarantees the reliable delivery of data,
–  (2) it ensures that data is delivered in order, and
–  (3) it enforces flow control between the sender and the receiver.

CS 640 3

Solution: Pipelining via Sliding Window
•  Allow multiple outstanding (un-ACKed) frames
•  Upper bound on un-ACKed frames, called window

Sender Receiver
T i

m
e

…

…

CS 640 4

Buffering on Sender and Receiver
•  Sender needs to buffer data so that if data is lost, it can be resent
•  Receiver needs to buffer data so that if data is received out of

order, it can be held until all packets are received
–  Flow control

•  How can we prevent sender overflowing receiver’s buffer?
–  Receiver tells sender its buffer size during connection setup

•  How can we insure reliability in pipelined transmissions?
–  Go-Back-N

•  Send all N unACKed packets when a loss is signaled
•  Inefficient

–  Selective repeat
•  Only send specifically unACKed packets
•  A bit trickier to implement

CS 640 5

6

Sliding Window Revisited

Sending side
LastByteAcked < =
LastByteSent

LastByteSent < =
LastByteWritten

buffer bytes between
LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSent LastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvd NextByteExpected

•  Receiving side
–  LastByteRead <
NextByteExpected

–  NextByteExpected < =
LastByteRcvd +1

–  buffer bytes between
NextByteRead and
LastByteRcvd

CS 640

Flow Control in TCP
•  Send buffer size: MaxSendBuffer
•  Receive buffer size: MaxRcvBuffer
•  Receiving side

–  LastByteRcvd - LastByteRead < = MaxRcvBuffer
–  AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected
- 1) - LastByteRead)

•  Sending side
–  LastByteSent - LastByteAcked < = AdvertisedWindow
–  EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

–  LastByteWritten - LastByteAcked < = MaxSendBuffer
–  block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

•  Always send ACK in response to arriving data segment
•  Persist sending one byte seg. when AdvertisedWindow = 0

–  Keep soliciting ACKs, eventually window opens up
CS 640 7

Triggering Transmission

•  How does TCP decide to transmit a segment?
–  TCP supports a byte stream abstraction
–  Application programs write bytes into streams
–  It is up to TCP to decide that it has enough bytes to send a segment

•  TCP uses “self clocking”
–  Use ACKs as an implicit timer

•  ACK info tells if there is enough space

CS 640 8

Nagle’s Algorithm

•  We could use a clock-based timer, for example one that fires
every 100 ms

•  Nagle introduced an elegant self-clocking solution
•  Key Idea

–  As long as TCP has any data in flight, the sender will eventually receive
an ACK

–  This ACK can be treated like a timer firing, triggering the transmission
of more data

CS 640 9

Nagle’s Algorithm

When the application produces data to send
 if both the available data and the window ≥ MSS // either at
startup or when an ACK arrives

 send a full segment
 else
 if there is unACKed data in flight
 buffer the new data until an ACK arrives
 else
 send all the new data now

CS 640 10

Adaptive Retransmission

•  Original Algorithm
–  Measure SampleRTT for each segment/ ACK pair
–  Compute weighted average of RTT

•  EstRTT = α x EstRTT + (1 - α)x SampleRTT
-  α between 0.8 and 0.9

n  Set timeout based on EstRTT
n  TimeOut = 2 x EstRTT

CS 640 11

Original Algorithm

•  Problem
–  ACK does not really acknowledge a transmission

•  It actually acknowledges the receipt of data

–  When a segment is retransmitted and then an ACK arrives
at the sender

•  It is impossible to decide if this ACK should be associated with the
first or the second transmission for calculating RTTs

CS 640 12

Karn/Partridge Algorithm for RTO

•  Two degenerate cases with timeouts and RTT measurements
–  Solution: Do not sample RTT when retransmitting

•  After each retransmission, set next RTO to be double the value
of the last
–  Exponential backoff is well known control theory method
–  Loss is most likely caused by congestion so be careful

Sender Receiver

Original transmission

ACK S
am

pl
eR

 T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

 T
T

Retransmission

CS 640 13

Karn/Partridge Algorithm

•  Karn-Partridge algorithm was an improvement over
the original approach, but it does not eliminate
congestion

•  We need to understand how timeout is related to

congestion
–  If you timeout too soon, you may unnecessarily retransmit a

segment which adds load to the network

CS 640 14

Karn/Partridge Algorithm

•  Main problem with the original computation is that it
does not take variance of Sample RTTs into
consideration.

•  If the variance among Sample RTTs is small
–  Then the Estimated RTT can be better trusted
–  There is no need to multiply this by 2 to compute the

timeout

CS 640 15

Karn/Partridge Algorithm

•  On the other hand, a large variance in the samples
suggest that timeout value should not be tightly
coupled to the Estimated RTT

•  Jacobson/Karels proposed a new scheme for TCP
retransmission

CS 640 16

Jacobson/ Karels Algorithm
•  In late ’80s, Internet was suffering from congestion collapse
•  New Calculations for average RTT – Jacobson ’88
•  Variance is not considered when setting timeout value

–  If variance is small, we could set RTO = EstRTT
–  If variance is large, we may need to set RTO > 2 x EstRTT

•  New algorithm calculates both variance and mean for RTT
•  Diff = sampleRTT - EstRTT
•  EstRTT = EstRTT + (d x Diff)
•  Dev = Dev + d (|Diff| - Dev)

–  Initially settings for EstRTT and Dev will be given to you
–  where d is a factor between 0 and 1
–  typical value is 0.125

CS 640 17

Jacobson/ Karels contd.
•  TimeOut = µ x EstRTT + φ x Dev

–  where µ = 1 and φ = 4
•  When variance is small, TimeOut is close to EstRTT
•  When variance is large Dev dominates the calculation
•  Another benefit of this mechanism is that it is very efficient

to implement in code (does not require floating point)
•  Notes

–  algorithm only as good as granularity of clock (500ms on Unix)
–  accurate timeout mechanism important to congestion control (later)

•  These issues have been studied and dealt with in new RFC’s
for RTO calculation.

•  TCP RENO uses Jacobson/Karels

CS 640 18

