
Transport Protocols 
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Reliability 
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Sliding Window Revisited 

•  TCP’s variant of the sliding window algorithm, which serves 
several purposes:  
–  (1) it guarantees the reliable delivery of data,  
–  (2) it ensures that data is delivered in order, and  
–  (3) it enforces flow control between the sender and the receiver. 
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Solution: Pipelining via Sliding Window 
•  Allow multiple outstanding (un-ACKed) frames 
•  Upper bound on un-ACKed frames, called window 
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Buffering on Sender and Receiver 
•  Sender needs to buffer data so that if data is lost, it can be resent 
•  Receiver needs to buffer data so that if data is received out of 

order, it can be held until all packets are received 
–  Flow control 

•  How can we prevent sender overflowing receiver’s buffer? 
–  Receiver tells sender its buffer size during connection setup 

•  How can we insure reliability in pipelined transmissions? 
–  Go-Back-N 

•  Send all N unACKed packets when a loss is signaled 
•  Inefficient 

–  Selective repeat 
•  Only send specifically unACKed packets 
•  A bit trickier to implement 
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Sliding Window Revisited 

Sending side 
LastByteAcked < = 
LastByteSent 

LastByteSent < = 
LastByteWritten 

buffer bytes between 
LastByteAcked and 
LastByteWritten 

Sending application 

LastByteWritten 
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LastByteSent LastByteAcked 

Receiving application 

LastByteRead 

TCP 

LastByteRcvd NextByteExpected 

•  Receiving side 
–  LastByteRead <  
NextByteExpected 

–  NextByteExpected < = 
LastByteRcvd +1 

–  buffer bytes between 
NextByteRead and 
LastByteRcvd 
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Flow Control in TCP 
•  Send buffer size: MaxSendBuffer 
•  Receive buffer size: MaxRcvBuffer 
•  Receiving side 

–  LastByteRcvd - LastByteRead < = MaxRcvBuffer 
–  AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected 
- 1) -  LastByteRead) 

•  Sending side 
–  LastByteSent - LastByteAcked < = AdvertisedWindow 
–  EffectiveWindow = AdvertisedWindow - (LastByteSent - 
LastByteAcked) 

–  LastByteWritten - LastByteAcked < = MaxSendBuffer 
–  block sender if (LastByteWritten - LastByteAcked) + y > 
MaxSenderBuffer 

•  Always send ACK in response to arriving data segment 
•  Persist sending one byte seg. when AdvertisedWindow = 0 

–  Keep soliciting ACKs, eventually window opens up 
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Triggering Transmission 

•  How does TCP decide to transmit a segment? 
–  TCP supports a byte stream abstraction 
–  Application programs write bytes into streams 
–  It is up to TCP to decide that it has enough bytes to send a segment 

•  TCP uses “self clocking” 
–  Use ACKs as an implicit timer 

•  ACK info tells if there is enough space 
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Nagle’s Algorithm 

•  We could use a clock-based timer, for example one that fires 
every 100 ms 

•  Nagle introduced an elegant self-clocking solution 
•  Key Idea 

–  As long as TCP has any data in flight, the sender will eventually receive 
an ACK 

–  This ACK can be treated like a timer firing, triggering the transmission 
of more data 
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Nagle’s Algorithm 

When the application produces data to send 
 if both the available data and the window ≥ MSS // either at 
startup or when an ACK arrives 

  send a full segment 
 else 
  if there is unACKed data in flight 
   buffer the new data until an ACK arrives 
  else 
   send all the new data now 
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Adaptive Retransmission 

•  Original Algorithm 
–  Measure SampleRTT for each segment/ ACK pair 
–  Compute weighted average of RTT 

•  EstRTT = α x EstRTT + (1 - α )x SampleRTT 
-  α between 0.8 and 0.9 

n  Set timeout based on EstRTT 
n  TimeOut = 2 x EstRTT 
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Original Algorithm 

•  Problem 
–  ACK does not really acknowledge a transmission 

•  It actually acknowledges the receipt of data 

–  When a segment is retransmitted and then an ACK arrives 
at the sender 

•  It is impossible to decide if this ACK should be associated with the 
first or the second transmission for calculating RTTs 
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Karn/Partridge Algorithm for RTO 

•  Two degenerate cases with timeouts and RTT measurements 
–  Solution:  Do not sample RTT when retransmitting  

•  After each retransmission, set next RTO to be double the value 
of the last  
–  Exponential backoff is well known control theory method  
–  Loss is most likely caused by congestion so be careful 
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Karn/Partridge Algorithm 

•  Karn-Partridge algorithm was an improvement over 
the original approach, but it does not eliminate 
congestion 

 
•  We need to understand how timeout is related to 

congestion 
–  If you timeout too soon, you may unnecessarily retransmit a 

segment which adds load to the network 
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Karn/Partridge Algorithm 

•  Main problem with the original computation is that it 
does not take variance of Sample RTTs into 
consideration. 

•  If the variance among Sample RTTs is small 
–  Then the Estimated RTT can be better trusted 
–  There is no need to multiply this by 2 to compute the 

timeout   

CS 640 15 



Karn/Partridge Algorithm 

•  On the other hand, a large variance in the samples 
suggest that timeout value should not be tightly 
coupled to the Estimated RTT 

•  Jacobson/Karels proposed a new scheme for TCP 
retransmission 
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Jacobson/ Karels Algorithm 
•  In late ’80s, Internet was suffering from congestion collapse 
•  New Calculations for average RTT – Jacobson ’88 
•  Variance is not considered when setting timeout value 

–  If variance is small, we could set RTO = EstRTT 
–  If variance is large, we may need to set RTO > 2 x EstRTT 

•  New algorithm calculates both variance and mean for RTT 
•  Diff = sampleRTT - EstRTT 
•  EstRTT = EstRTT + ( d x Diff) 
•  Dev = Dev + d ( |Diff| - Dev) 

–  Initially settings for EstRTT and Dev will be given to you 
–  where d  is a factor between 0 and 1 
–  typical value is 0.125 
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Jacobson/ Karels contd. 
•  TimeOut = µ x EstRTT + φ x Dev 

–  where µ = 1 and φ = 4 
•  When variance is small, TimeOut is close to EstRTT 
•  When variance is large Dev dominates the calculation 
•  Another benefit of this mechanism is that it is very efficient 

to implement in code (does not require floating point) 
•  Notes 

–  algorithm only as good as granularity of clock (500ms on Unix) 
–  accurate timeout mechanism important to congestion control (later) 

•  These issues have been studied and dealt with in new RFC’s 
for RTO calculation. 

•  TCP RENO uses Jacobson/Karels 
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