CS640 Mobile IP

Today

- Tunneling and Virtual Networking
- IPv6
- Mobile IP

1

Tunneling and Virtual Networking

Traditional Connectivity

Private Network

- Corporates lease transmission lines/links
- Communication is restricted
 - Often for security reasons
- Is this scalable?

Virtual Private Network (VPN)

• Idea is simple: replace dedicated medium with shared medium *and* provide a virtually private connection

How do we create a VPN?

- We cannot just connect various sites
 - Traffic between (A, B, C) and (K, L, M) should be private
- Tunneling
 - Virtual point-to-point link between nodes that are separated by arbitrary number of networks
 - Point-to-point link made through a public network
 - Links transport encapsulated datagrams

Example Tunnel

IPv6

Outline Background Structure Deployment

IPv4 Address Allocation - 1998

Source: www.caida.org

Holes in v4 Address Space

- Each pixel represents a /24
- Routing tables were used to generate yellow portions of the table routable addresses
 - Incomplete view of the entire Internet
- Packet traces were used to generate black portions of the table source/destination addresses
 - Raises more questions than it answers
- Class A's allocated to companies, etc. used for internal routing only (?)
- Class B & C allocation from lowest to highest
- Reserved address space
- Unallocated space

IPv6 Background

- IP has been patched (subnets, supernets) but there is still the fundamental 32 bit address limitation
- IETF started effort to specify new version of IP in 1991
 - New version would require change of header
 - Include all modifications in one new protocol
 - Solicitation of suggestions from community
 - Result was IPng which became IPv6
 - First version completed in '94
- Same architectural principles as v4 only bigger ③

IPv6 planned support list

- 128-bit address space
 - This is what it's all about...
- Real-time/QoS services
- Security and authentication
- Autoconfiguration
 - Hosts autoconfig with IP address and domain name
 - Idea is to try to make systems more plug-n-play
- Enhanced routing functionality eg. Mobile hosts
- Multicast
- Protocol extensions
- Smooth transition path from IPv4
 - Can't do it all at once!

Address Space and Notation

- Allocation is classless
 - Prefixes specify different uses (unicast, multicast, anycast)
 - Anycast: send packets to nearest member of a group
 - Address space division is based on *leading bits*
 - Prefixes can be used to map v4 to v6 space and vice-versa
 - Lots of flexibility with 128 bits!
 - \sim 1500 address/sqft of the earths surface
- Standard representation is set of eight 16-bit values separated by colons
 - Eg. 47CD:1234:3200:0000:0000:4325:B792:0428
 - If there are large number of zeros, they can be omitted with series of colons
 - Eg. 47CD:1234:3200::4325:B792:0428
 - Address prefixes (slash notation) are the same as v4
 - Eg. FEDC:BA98:7600::/40 describes a 40 bit prefix

Address Prefix Assignments

0000 0000	Reserved
0000 0001	Unassigned
0000 001	Reserved for NSAP (non-IP addresses used by ISO)
0000 010	Reserved for IPX (non-IP addresses used by IPX)
0000 011	Unassigned
0000 1	Unassigned
0001	Unassigned
001	Unicast Address Space
010	Unassigned
011	Unassigned
100	Unassigned
101	Unassigned
110	Unassigned
1110	Unassigned
1111 0	Unassigned
1111 10	Unassigned
1111 110	Unassigned
1111 1110 0	Unassigned
1111 1110 10	Link Local Use addresses
1111 1110 11	Site Local Use addresses
1111 1111	Multicast addresses

Unicast Assignment in v6

- Unicast address assignment is similar to CIDR
 - Unicast addresses start with 001
 - Host interfaces belong to subnets
 - Addresses are composed of a subnet prefix and a host identifier
 - Subnet prefix structure provides for aggregation into larger networks
- Provider-based plan
 - Idea is that the Internet is global hierarchy of network
 - Three levels of hierarchy region, provider, subscriber
 - Goal is to provide route aggregation to reduce BGP overhead
 - A provider can advertise a single prefix for all of its subscribers
 - Region = 13 bits, Provider = 24 bits, Subscriber = 16 bits, Host = 80 bits
 - Eg. 001, regionID, providerID, subscriberID, subnetID, intefaceID
- Anycase addresses are treated just like unicast addresses
 - It's up to the routing system to determine which server is "closest"

Recall IPv4 Packet Format Details

0		4 8	; 16		19	31	
	V ersion	HLen	TOS		Length		
		Ident		Flags	Flags Offset		
	TTL Protocol Chec			Checksum			
	SourceAddr						
	DestinationAddr						
		Option	s (variable)			Pad (variable)	
	Data						

IPv6 Packet Format

0	4	8	16	2	24 31	
V ersion		Traffic Class		Flow Label		
		Payload Le	engtht	gtht Next Header		
	SourceAddr (4 words)					
	DestinationAddr (4 words)					
Options (variable number)						
	Data					
			~			

Packet Format Details

- Simpler format than v4
- Version = 6
- Traffic class same as v4 ToS (eg. low latency or high throughput)
- Treat all packets with the same Flow Label equally
 - Support QoS and fair bandwidth allocation
- Payload length does not include header —limits packets to 64KB
 There is a "jumbogram option"
- Hop limit is TTL field in v4
- Next header combines Options and Protocol fields in v4
 If there are no options then NextHeader is the protocol field
- Options are "extension header" that follow IP header
 - Ordered list of tuples 6 common types
 - Quickly enable a router to tell if the options are meant for it
 - Eg. routing, fragmentation, authentication encryption...

Key differences in header

- No checksum
 - Bit level errors are checked for all over the place
- No length variability in header
 - Fixed format speeds processing
- No more fragmentation and reassembly in header
 - Incorrectly sized packets are dropped and message is sent to sender to reduce packet size
 - Hosts should do path MTU discovery
 - But of course we have to be able to segment packets!

Fragmentation Extension

- Similar to v4 fragmentation
 - Implemented as an extension header
 - Placed between v6 header and data (if it is the only extension used)
 - 13 bit offset
 - Last-fragment mark (M)
 - Larger fragment ID field than v4
- Fragmentation is done on end host

0	8	16	29	31
next header	reserved	offset	reserved	Μ
ID				

Routing Extension

- Without this header, routing is essentially the same as v4
- With this header essentially same as the source routing option in v4

 Loose or strict
- Header length is in 64-bit words
- Up to 24 addresses can be included
 - Packet will go to nearest of these in "anycast" configuration
- Segments left tracks current target

0	8	16	24	31
Next header	Hd. Ext. Len	0	Segmnts	left
1-24 addresses				

Transition from v4 to v6

- *Flag day* is not feasible
- Dual stack operation v6 nodes run in both v4 and v6 modes and use version field to decide which stack to use
 - Nodes can be assigned a *v4 compatible v6 address*
 - Allows a host which supports v6 to talk v6 even if local routers only speak v4
 - Signals the need for tunneling
 - Add 96 0's (zero-extending) to a 32-bit v4 address eg. ::10.0.0.1
 - Nodes can be assigned a *v4 mapped v6 address*
 - Allows a host which supports both v6 and v4 to communicate with a v4 hosts
 - Add 2 bytes of 1's to v4 address then zero-extend the rest eg. ::ffff:10.0.0.1
- Tunneling is used to deal with networks where v4 router(s) sit between two v6 routers
 - Simply encapsulate v6 packets and all of their information in v4 packets until you hit the next v6 router

IPv6 Issues

- Address length: usable addresses vs. overhead
- Hop limit: is 65K necessary?
- Is the checksum necessary?
- How do servers handle both types of packets?
- Is security necessary in IP?
 - How is it best implemented?
- DNS can be very important in the transition how?

Mobile IP

Outline Intro to mobile IP Operation Problems with mobility

We're not quite done with IP

- You're probably sick and tired of hearing about all things IP
 - Forwarding, routing, multicast, etc...
- One last topic we must cover because it's going to be important in the future mobile networking
 - Examples of mobile networking today?
 - Examples of mobile networking tomorrow?

Mobility and Standard IP Routing

- IP assumes end hosts are in fixed physical locations
 - What happens if we move a host between networks?
- IP addresses enable IP routing algorithms to get packets to the correct network
 - Each IP address has network part and host part
 - This keeps host specific information out of routers
 - DHCP is used to get packets to end hosts in networks
 - This still assumes a fixed end host
- What if a user wants to roam between networks?
 - Mobile users don't want to know that they are moving between networks
 - Why can't mobile users change IP when running an application?

Mobile IP

- Mobile IP was developed as a means for transparently dealing with problems of mobile users
 - Enables hosts to stay connected to the Internet regardless of their location
 - Enables hosts to be tracked without needing to change their IP address
 - Requires no changes to software of non-mobile hosts/routers
 - Requires addition of some infrastructure
 - Has no geographical limitations
 - Requires no modifications to IP addresses or IP address format
- IETF standardization process is still underway

Mobile IP has two addresses for a mobile host: one home address and one care-of address.

The home address is permanent; the care-of address changes as the mobile host moves from one network to another.

Figure 10.2 Home agent and foreign agent

Figure 10.3 Remote host and mobile host

onfiguration

Mobile IP Support Services

- Agent Discovery
 - HA's and FA's broadcast their presence on each network to which they are attached
 - Beacon messages via ICMP Router Discovery Protocol (IRDP)
 - MN's listen for advertisement and then initiate registration
- Registration
 - When MN is away, it registers its COA with its HA
 - Typically through the FA with strongest signal
 - Registration control messages are sent via UDP to well known port
- Encapsulation just like standard IP only with COA
- Decapsulation again, just like standard IP

Figure 10.7 Data transfer

TCP/IP Protocol Suite

Figure 10.8 Double crossing

Figure 10.9 *Triangle routing*

