ECE/CS 707 Mobile and Wireless Networking

Introduction to MIMO

Prof. Xinyu Zhang

Dept. of Electrical and Computer Engineering

University of Wisconsin-Madison

Today's agenda

- Overview of MIMO communications
- Single-user MIMO
- Multi-user MIMO
- Network MIMO

MIMO: an Overview

- MIMO (Multiple-Input Multiple-Output)
 - Transmitter/receiver can have multiple antennas
 - A modern wireless communication technology
 - * Theory: late 1980's
 - * Standards and products: after 2000's
 - Now: core feature in WLAN (802.11 WiFi) and cellular (3G LTE, WiMax)
 - Two benefits, simply put
 - * Improve link SINR
 - * Improve link concurrency

MIMO: an Overview

- MIMO network architectures
 - Single-user MIMO (in 802.11n-2009, LTE)
 - * One TX, one RX. Either TX or RX or both can have multiple antennas
 - Multi-user MIMO (in 802.11ac-2014, LTE-Advanced)
 - * One TX, multiple RX. Parallel transmissions.
 - Network MIMO (expected in near-future)
 - * Multiple TX, multiple RX. Parallel transmissions.

Single-user MIMO

Basic communication modes

MIMO benefits: an audio metaphor

Single-user MIMO benefits: capacity gains

- Diversity gain
 - Receiver diversity
 - Transmit diversity
- Multiplexing gain
 - Spatial multiplexing

Receiver diversity

 Receiver coherently combines signals received by multiple antennas

- Asymptotic gain: Increasing SNR proportionally to Nr (#of receive antennas)
 - * Intuition: received signal power adds up
- What's the capacity gain?
 - * Logarithmically, according to Shannon's equation: C=B log(1+SNR)
 - * When SNR is low, $log(1 + SNR) \approx SNR$, so gain is almost linear w.r.t. Nr

Implementing receiver diversity

Mitigating fading with receiver diversity

 Multiple receive antennas allow compensation of by nonnotches in the other

Transmitter diversity

 Transmitter sends multiple versions of the same signal, through multiple antennas

- Two modes of transmit diversity
 - * Open-loop transmit diversity
 - * Closed-loop transmit diversity

Open-loop transmit diversity

Principle

- Send redundant versions of the same signal (symbol), over multiple time slots, and through multiple antennas
- Encode the symbols differently for different time slots and TX antennas
 - * Space-Time Block Code (STBC)

Open-loop transmit diversity

- Example: 2 TX antenna STBC
 - Send two data symbols, s_1 and s_2

Received signals:

$$r(t_1) = h_1 s_1 + h_2 s_2$$

$$r(t_2) = -h_1 s_2^* + h_2 s_1^*$$

Open-loop transmit diversity

- Example: 2 TX antenna STBC
 - Diversity combining

$$y_1 = h_1^* r(t_1) + h_2 r(t_2) = (|h_1|^2 + |h_2|^2) s_1$$

- i.e., signal power is boosted from $|h_1|^2$ to $|h_1|^2 + |h_2|^2$
- Open-loop transmit diversity gain:

In general, open-loop transmit diversity increases SNR **linearly** with the number of transmit antennas

What's the capacity gain?

Closed-loop transmit diversity

Principle

- Send redundant versions of the same signal (symbol), over the same time slot
- Encode the symbols differently for different TX antennas
 - * i.e., weight the symbols on different antennas, following a precoding algorithm
 - * Precoding design requires feedback of channel state information (CSI)

- Why precoding?
 - Signals from different antennas need to sync (align) their phases
 - But the different channels (between TXantennas and RXantenna) distort signals differently, causing phase offset
 - * e.g., both TX antennas sends $x = e^{j2\pi f t}$; RX may receive $e^{j2\pi f t}$ one TX antenna, but $e^{j(2\pi f + \pi)}$ from the other, which weaken each other!

Closed-loop transmit diversity

- How does precoding help?
 - Precoding: TX compensates the phase offset, and aligns the phases of signals going through different channels

- Why CSI feedback is needed for precoding?
 - * TX must know the phase offset, in order to perform compensation

- Asymptotic gain from closed-loop transmit diversity
 - Signal level combining, also called transmit beamforming
 - * Suppose we have 2 transmit antennas, then instead of x, we receive: x+x=2x, received power becomes $4 |x|^2$, SNR increases to 4 times!
 - * More generally, with N_t TX antennas, SNR increases to N_t^2
 - * What's the capacity gain?

Spatial multiplexing

- Spatial multiplexing concept
 - Form multiple independent links (on the same spectrum band) between TX and RX, and send data in parallel through them
 - Unfortunately, there is cross-talk between antennas
 - Cross-talk must be removed by digital signal processing algorithms

Spatial multiplexing: signal processing

- Example 2x2 MIMO spatial multiplexing
 - Data to be sent over two TX antennas: x_1, x_2
 - Data received on two RX antennas:

$$y_1 = h_{11}x_1 + h_{12}x_2$$

$$y_2 = h_{21}x_1 + h_{22}x_2$$

- * Channel distortions: h_{**} can be estimated by the receiver
- * Only two unknowns: X_1 , X_2 , easily obtained by solving the equations!

Spatial multiplexing gain

Asymptotic gain

 In general, capacity gain from spatial multiplexing scales linearly with

 $\min(N_t, N_r)$

In practice

- Spatial multiplexing gain also depends on channel "condition"
 - * If the channels between different antennas are *correlated*, e.g., h_{**} are all the same, then you can't solve the equations. Spatial multiplexing becomes infeasible!
 - * Channel condition can be profiled using "condition number" (see reference)
- Practical wireless devices' multiple antennas are separated sufficiently far (further than half-wavelength), so the channel is usually uncorrelated

23

* Multi-user MIMO

talk

Concept of Multi-User MIMO (MU-MIMO)

Desired

data

* MU-MIMO enables multiple streams of data to be sent to different users in parallel, without cross-talk interference

* Single-antenna network

Cross-

Desired

data 🦯

Multi-user MIMO: how does it work?

- MU-MIMO differs from traditional MIMO
 - Data to be sent over two TX antennas: x_1, x_2
 - Data received on two RX nodes:

$$y_1 = h_{11}x_1 + h_{12}x_2$$

$$y_2 = h_{21}x_1 + h_{22}x_2$$

- Each RX only has one equation, but two variables; no way to solve it directly
 - * x2 causes cross-talk interference to x1, and vice versa

Multi-user MIMO: how does it work?

- How to remove cross-talk?
 - Send a weighted mix of x1 and x2 TX antennal sends: $W_{11}X_1 + W_{12}X_2$ TX antenna2 sends: $W_{21}X_1 + W_{22}X_2$

 h_{12} Data received on RX1: $y_1 = h_{11}(w_{11}x_1 + w_{12}x_2) + h_{12}(w_{21}x_1 + w_{22}x_2)$ $= (h_{11}w_{11} + h_{12}w_{21})x_1 + (h_{11}w_{12} + h_{12}w_{22})x_2$

RX1 only wants x1, so ideally, we should have $(h_{11}w_{12} + h_{12}w_{22}) = 0$

TΧ

Multi-user MIMO: how does it work?

- MU-MIMO precoding
 - TX can obtain h_{11} , h_{12} from RXs' feedback, so it can tune w_{12} , w_{22} to satisfy $(h_{11}w_{12} + h_{12}w_{22}) = 0$
 - * This cancels the cross-talk interference from x2 to x1
 - * Similarly, we can cancel that from x1 to x2
 - * This is called Zero-Forcing Beamforming (ZFBF)
- How does TX obtain channel state information h_{**}
 - * Simplest approach in 802.11ac: CSI feedback scheduling

MU-MIMO capacity gain

- Asymptotic capacity gain
 - If the transmitter has N_t antennas, then it can send N_t streams of data simultaneously to N_t users, increasing capacity to N_t times compared with single-antenna transmitter

Limitation

- MU-MIMO is essentially a form of spatial multiplexing
- So the channel must be well-conditioned

MIMO limitation in large networks

- Limitations of existing MIMO architectures
 - Only one transmitter at a time
 - Simultaneous transmission from different transmitters causes collision!
 - So network capacity doesn't scale with transmitter density

Network MIMO

• A giant-MIMO comprised of many APs

- APs are tightly synchronized and share data
- Mutual interference can be cancelled
- Asymptotic gain: Network capacity scales linearly with the number of APs, theoretically

Network MIMO in large networks

Is network MIMO practical?

A super-giant-MIMO solution?

APs need:

- * Full synchronization: carrier phase, frequency, sampling-clock
- * Full data sharing: large volumes of data and CSI exchange

Infeasible!

NEMOx: making network MIMO scalable

"NEMOx: Scalable Network MIMO for Wireless Networks",

ACM MobiCom'13, by Xinyu Zhang, Karthikeyan Sundaresan, Mohammad A. (Amir) Khojastepour, Sampath Rangarajan, Kang G. Shin

- A hierarchical architecture to realize scalable network MIMO
 - * Intra-cluster: dAPs within each cluster can TX concurrently
 - * Inter-cluster: neighboring clusters contend for channel access
 - Capacity can scale with #of dAPs within each cluster, and with #of clusters (capacity ≈ 6 in this case)

Summary

Take-home message:

 (1) What are the various modes of operations in MIMO?
 (2) How does each MIMO mode scale link/network capacity?

References:

- * Book1: Fundamentals of LTE
- * Book2: Fundamentals of Wireless Communications