Paradrop: Enabling Lightweight Multi-tenancy at
the Network’s Extreme Edge

Peng Liu
Department of Computer Sciences
University of Wisconsin-Madison

Email: pengliu@cs.wisc.edu

Abstract—We introduce, Paradrop, a specific edge computing
platform that provides (modest) computing and storage resources
at the “extreme” edge of the network allowing third-party devel-
opers to flexibly create new types of services. This extreme edge of
the network is the WiFi Access Point (AP) or the wireless gateway
through which all end-device traffic (personal devices, sensors,
etc.) pass through. Paradrop’s focus on the WiFi APs also stems
from the fact that the WiFi AP has unique contextual knowledge
of its end-devices (e.g., proximity, channel characteristics) that are
lost as we get deeper into the network. While different variations
and implementations of edge computing platforms have been
created over the last decade, Paradrop focuses on specific design
issues around how to structure an architecture, a programming
interface, and orchestration framework through which such edge
computing services can be dynamically created, installed, and
revoked. Paradrop consists of three main components — a flexible
hosting substrate in the WiFI APs that supports multi-tenancy,
a cloud-based backend through which such computations are
orchestrated across many Paradrop APs, and an API through
which third-party developers can deploy and manage their own
computing functions across such different Paradrop APs.

We have implemented and deployed the entire Paradrop
framework and in this paper, describe its overall architecture and
some of our initial experiences in using it as an edge computing
platform.

I. INTRODUCTION

Cloud computing platforms, such as Amazon EC2, Mi-
crosoft Azure and Google App Engine have become a popular
approach to provide ubiquitous access to services across
different user devices. Third-party developers have come to
rely on cloud computing platforms to provide high quality
services to their end-users, since they are reliable, always
on and robust. Netflix and Dropbox are examples of popular
cloud-based services. Cloud services requires developers to
host services, applications and data on offsite datacenters.
That means the computing and storage resources are relatively
far away from end-users’ devices. But, due to application-
specific reasons, a growing number of high quality services
desire computational tasks to be located nearby. They include
needs for lower latency, greater responsiveness, a better end-
user experience, and more efficient use of network bandwidth.
As a consequence, over the last decade, a number of research
efforts have espoused the need and benefits of creating edge
computing services that distribute computational functions
closer to the client devices, e.g., Cyber Foraging [1], Cloudlets
[2], and more recently Fog Computing [3].
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This paper presents a specific edge computing framework,
Paradrop, implemented on WiFi Access Points (APs) or other
wireless gateways (such as, set-top boxes) which allows third-
party developers to bring computational functions right into
homes and enterprises. The WiFi AP is a unique platform for
edge computing because of multiple reasons: it is ubiquitous in
homes and enterprises, is always “on” and available, and sits
directly in the data path between Internet resources and the end
device. Paradrop uses a lightweight virtualization framework
through which such third-party developers can create, deploy,
and revoke their services in different APs inside compute
containers that allow them to retain user state and also move
with the users as they change their points of attachment.
Paradrop also recognizes that WiFi APs are likely to be
resource limited for many different types of applications, and
hence allows for tight resource control through a managed
policy design.!

The Paradrop framework has multiple key components: (i)
a virtualization substrate in the WiFi APs that host third-party
computations in isolated containers (which we call, chutes);
(ii) a cloud backend through which all of the Paradrop APs
and the third-party containers are dynamically installed, instan-
tiated, and revoked, and (iii) a developer API through which
such developers can manage the resources of the platform and
monitor the running status of APs and chutes. Compared to
other heavyweight counterparts, Paradrop uses more efficient
virtualization technology based on Linux containers [4] rather
than the Virtual Machines(VMs), that means we can provide
more resources for services with the given hardware. Our
virtualization substrate evolved from our original choice of
LXC [5] to one based on Docker [6] because of the latter’s
easy to use tools and wider adoption that would reduce the
bar for developers. We also developed a backend server to
manage the gateways, and the communication between them
is through a real-time messaging protocol — Web Application
Messaging Protocol (WAMP) [7], which guarantees very low
latency in service deployment and monitoring.

We demonstrate the capabilities of this platform by demon-
strating useful third-party applications, which utilize the

'WiFi APs, like all other compute platforms, will continue to get faster and
powerful and the capabilities installable in chutes will continue to improve
— even our current low-end version can already do some image processing
and motion detection in video feeds.
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Fig. 1. Overview of Paradrop. There are three components in the system: Paradrop backend, Paradrop gateways, and the developer APIL. Developers can deploy
services in containers (we call them chutes in Paradrop platform, as in parachuting a service on-demand) to the gateways through the backend server. The
chutes are created using the developer API. Two different chutes are illustrated in this figure: 1) SecCam: a wireless security camera service that collects video
from an in-range security camera and does some local processing to detect motion; and 2) EnvSense: a system deployed in buildings to monitor temperature

and humidity with sensors. We illustrate these two applications in Section V.

Paradrop framework. Figure 1 gives an overview of the ar-
chitecture of Paradrop platform, and also shows two example
applications: a security camera application that connects with
in-range cameras for detecting motion, and an environment
sensing application that connects with temperature and hu-
midity sensors in homes and interacts with actuators such
as thermostats. In addition to the low-latency advantages of
Paradrop, the platform also has unique privacy advantages. A
third-party developer can create a Paradrop service that allows
sensitive user data (video camera feed) to reside locally in
the Paradrop AP, and not send a continuous feed to some
cloud service over the open Internet. Over the last two years,
we have installed and deployed Paradrop as a platform using
many different use cases. Our contributions in this paper are
the following:

o We discuss the unique challenges in a WiFi AP based
edge computing platform with virtualization techniques,
and propose corresponding solutions to overcome these
challenges.

e« We propose a system architecture and fully implement
it on hardware to provide a reliable and easy to use
edge computing platform for developers to deploy edge
computing applications.

o We analyze and evaluate the system in terms efficiency
and effectiveness. We also discuss the flexibility and
scalability of the system.

« We introduce the approach to develop applications for
Paradrop platform with two example applications. And
we also discuss other possible applications that can be
developed for this platform.

This paper is organized as follows. We first give an overview
of the goals of Paradrop platform in section II. Then we

introduce the design of the platform and the solutions to
overcome the challenges in Section III. The following section
(IV) illustrates the implementation of the core components of
the system. Section V introduces two example applications
that we developed for Paradrop platform. We also discuss
other possible applications that can be deployed on Paradrop
platform in this section. We evaluate the system in Section
VI. Finally we discuss the related work in Section VII and
conclude the paper in Section VIII.

II. PARADROP OVERVIEW

A. Enabling Multi-tenant wireless gateways and applications
through Paradrop

A decade or two ago, the desktop computer was the only
reliable computing platform within the home where third-
party applications could reliably and persistently run. However
diverse mobile devices, such as smart phones and tablets, have
deprecated the desktop computer since, and today persistent
third-party applications are often run in remote cloud-based
servers. While cloud-based third-party services have many
advantages, the rise of edge computing concepts stems from
the observation that many services can benefit from a persistent
computing platform, right in the end-user premises.

With end-user devices going mobile there is one remaining
device, which provides all the capabilities developers require
for their services, as well as the proximity expected from an
edge computing framework. The gateway — which could be a
home WiFi Access Point (AP) or a cable set-top box provided
by a network operator — is a platform that is continuously on,
and due to its pervasiveness is a primary entry point into the
end-user premises for such third-party services.



But, why would we want to push computation onto the home
gateways (e.g., WiFi APs and cable set-top boxes)? We believe
there are a few simple reasons:

o The home gateways can handle it. Modern home gate-
ways are much more powerful than what they need to
be for their networking workload. Further, if one is not
running a web server out of the home, the gateway sits
dormant a majority of the time (when no one in the home
is using it).

o Utilizing computational resources in the home gateway
gives us a local footprint within the home for end-devices
that are otherwise starved for computational resources,
namely many cheap Internet of Things sensor and actua-
tor components. Using Paradrop, developers can offload
some computation of one (or even a group of) IoT devices
onto the AP without the need for cloud services or a
dedicated desktop! In particular, if one installs different
sensors from different vendors this advantage becomes
even more apparent. If a home as controls for home
blinds, temperature sensors, a specific thermostat, etc.,
the computational function to make decisions on when
to actuate some of these devices are best made, locally,
in the Paradrop AP. They can achieve better efficiency
by eliminating unnecessary network traffic, which has
additional benefits to avoid network congestion when the
network traffic is high.

o Pervasive hardware: Our world is quickly moving to-
wards households only having mobile devices (tablets and
laptops) in the home that are not always on or always
connected. Developers can no longer rely on pushing
software into the home without also developing their own
hardware too.

A developer-centric framework. A focus on edge computa-
tion would require developers to think differently about their
application development process, however we believe there are
many benefits to a distributed platform such as Paradrop. The
developer has remained our focus in the design and implemen-
tation of our platform. Thus, we have implemented Paradrop
to include a fully featured API for development, with a focus
on a centrally managed framework. Through virtualization,
Paradrop enables each developer access to resources in a way
as to completely isolate all services on the gateway. A tightly
controlled resource policy has been developed, which allows
fair performance between all services.

B. Paradrop Capabilities

Paradrop takes advantage of the fact that resources of the
gateway are underutilized most of the time. Thus each service,
referred to as a chute, borrow CPU time, unused memory, and
extra disk space from the gateway. This allows vendors an
unexplored opportunity to provide added value to their services
through the close proximity footprint of the gateway.

Figure 2 shows a Paradrop gateway, along with two services
to motivate our platform: “SecCam” and “EnvSense”. The
current instance of Paradrop gateways have been implemented
on a PCEngines single board computer [8] running Snappy
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Fig. 2. The fully implemented Paradrop gateway, which shares its resources
with two wireless devices including a Security Camera and an Environmental
Sensor.

Ubuntu on an AMD APU 1GHz processor with 2GB of
RAM. This low-end hardware platform was chosen to show-
case Paradrops capabilities with existing gateway hardware.
We have ourselves implemented two third-party services by
migrating their core functionality to the Paradrop AP platform
to demonstrate its potential. Each of these services contain
a fully implemented set of applications to capture, process,
store, and visualize the data from their wireless sensors within
a virtually isolated environment. The first service is a wireless
environmental sensor designed as part of the Emonix research
platform [9], which we refer to as “EnvSense”. The second
service is a wireless security camera based on a commercially
available D-Link 931L webcam, which we call “SecCam”.
Leveraging the Paradrop platform, the two services allow us
to motivate the following advantages of Paradrop, if developers
design their services right. While some of them generally
apply to edge computing platforms, some of the advantages
stem from our construction and use of WiFi APs as the hosting
substrate. They include:

e Privacy: Many sensors and even webcams today rely on
the cloud as the only storage mechanism for generated
data. Leveraging the Paradrop platform, the end-user no
longer must rely on cloud storage for the data generated
by their private devices, and instead can borrow disk
space available in the gateway for such data.

e Low latency: Many simple processing tasks required by
sensors are performed in the cloud today. By moving
these simple processing tasks onto gateway hardware
which is one hop away from the sensor itself, a reliable
low latency service can be implemented by the developer.

o Proprietary friendly: From a developer’s perspective,
the cloud is the best option to deploy their proprietary
software because it is under their complete control. Using
Paradrop, a developer can package up the same software
binaries and deploy them within the gateway to execute
in a virtualized environment, which is still under their



complete control.

e Local networking: In the typical service implemented
by a developer, the data is consumed only by the end-
user, yet stored in the cloud. This requires data generated
by a security camera in the home to travel out to a
server somewhere in the Internet, and upon the end-user’s
request travel back from this server into the end-user’s
device for viewing. Utilizing the Paradrop platform, a
developer can ensure that only data requested by the end-
user is transmitted through Internet paths to the end-user’s
device.

o Additional wireless context: A WiFi AP can sense more
information about end-devices, e.g., proximity of differ-
ent devices to each other, location in specific rooms, and
much more. If such an API is exposed to developers
(with care from privacy management), it enables new
capabilities that is complementary to other means of
accessing the same information.

o Internet disconnectivity: Finally, as services become more
heterogeneous they will move away from simple nice to
have features, into mission critical, life saving services.
While generally accepted as unlikely, a disconnection
from the Internet makes a cloud based sensor completely
useless, and is unacceptable for services such as health
monitoring. In this case, a developer could leverage the
always-on nature of the gateway to process data from
these sensors, even when the Internet seems to be down.

III. SYSTEM DESIGN
A. Challenges and Solutions

Virtualization technology is used in Paradrop platform to
provide isolated environment to services running on the gate-
way. One key difference of Paradrop platform compared to
cloud computing platform is that the gateway hardware has
lower performance than servers in data centers. As a result,
the efficiency of the virtualization technology is the most
important consideration in the system design. There are two
types of virtualization approaches: Virtual Machines(VMs)
and Containers. Container is more lightweight and faster to
boot. So we use container-based virtualization rather than VMs
to provide isolated environment for the services deployed on
the gateways.

Another challenge to design Paradrop platform is that de-
velopers normally do not have direct access to the gateways in
the deployment because of NATSs or firewalls. Therefore it is
hard for them to manage and debug the services running in the
platform. To solve this problem, we need to deploy a message
router to connect developers’ console to the gateways. We use
Web Application Messaging Protocol (WAMP) [7] to transmit
messages between consoles and gateways.

Unlike servers in data center, after we deploy Paradrop
gateways in the network edge - user’s home or office, it is
harder for us to control the hardware and upgrade software
on it. Reliable software update mechanism is important for
the project deployment and maintenance. We need a software
system with secure and transactional update capability. The
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Fig. 3. A chute is running on an AP. The dashed green box shows the block
diagram representation of a “chute” installed on a ParaDrop enabled gateway.
Each chute hosts a stand-alone service and has its own network subnet.

software system also needs to support image backup and roll
back features so that we can manage the software running on
gateways easily and flexibly. We built the software stack for
the gateway based on Snappy Ubuntu [10] which meets our
requirements.

B. Paradrop System Architecture Overview

Paradrop platform has two core components as shown in
figure 1. The backend and gateways are connected by a WAMP
message router. The gateways provide virtualized environment
for the services. Whereas the backend maintains the informa-
tion of the gateways and users. It also provides a repository
to store files for the services which can be deployed on the
gateways. It manages the resource provision to developers and
the services running on the routers in a secure way.

C. Implementing Services for the Paradrop Platform

The primary component of Paradrop is the package called
a chute (short for parachute) because the framework uses it to
install services across different gateways. Each developer can
deploy many chutes (figure 3) to their AP, thanks to a low-
overhead container technology. These chutes allow for fully
isolated use of computational resources on the gateway. As we
design and implement services on the gateways; we can, and
should, separate these services into unique chutes. Think of
each chute as a different application in the Android Play Store
(you wouldnt combine a TODO list tracker with a calculator
would you?).

There are several primary concerns of the Paradrop platform
including installation procedure, API, and networking config-
uration.

Dynamic Installation: In order to allow end-users to easily
add services to their gateway, each service should have the
ability to be dynamically installed. This process is possible
through the virtualization environment of each chute. When an
end-user wishes to add a service to their home, they simply
register an account with the developer. Using the Paradrop
API, the developer links the users account with their gateway.
If the service utilizes a wireless device, the gateway can fully
integrate with the device without any interference from the
end-user.

Paradrop API: The focus of Paradrop is to enable third-
party developers to provide high quality services to their



users. In order to enable this, a seamless API was developed,
based on a RESTful paradigm, which allows the developer to
have complete control over the configuration of their chutes.
As services evolve, the API will provide all the capabilities
required without the need for modification to the configuration
software. This is possible through the use of a JSON based
data backend which allows abstract configuration and control
over each chute.

Network setup: The networking topology of a dynamic,
virtualized environment controlled by several entities is very
complex. In order to maintain control over the networking
aspects of the gateway, we leveraged an SDN paradigm. All
configuration related to networking between the chutes and
the gateway are handled through a cloud service, which is
interfaced by the developers and network operators. The use
of SDN is what allows developers to transparently redirect the
users request to their web services from within the gateway.
Resource Policies: The multitenancy aspects of Paradrop
require tight policy control over the gateway and its limited re-
sources. Currently the major resources controlled by Paradrop
include: CPU, memory, and networking. Using the API, the
developer specifies the type of resources they require depend-
ing on the services they implement. Through the management
interface, the network operator, can dynamically adjust the
resources provided to each chute. These resources are adjusted
first by a request sent to the chute, and if not acted upon, then
by force through the virtualization framework tools.

IV. IMPLEMENTATION

In this section, we introduce the implementation details of
Paradrop platform. Paradrop has evolved from a VM-based
version to a Linux Containers (LXC) [4] based architecture,
and finaly to the current Docker [6] based architecture, though
the design motivations and strategies are kept the same. We
only cover the implementation of the latest version in this
paper. As we introduce in section III, WAMP is used to
connect the Paradrop backend and the gateways. WAMP is
an open standard WebSocket [11] subprotocol that provides
two application messaing patterns in one unified protocol:
Remote Procedure Calls + Publish & Subscribe [7]. These two
messaging patterns exactly match our requirements to manage
and monitor the Paradrop gateways with minimum latency.
We built our system based on Autobahn [12], which provides
open-source implementations of the WebSocket Protocol and
WAMP. A WAMP router was needed for the Paradrop platform
and we selected crossbar.io. Crossbario [13] is an open
source multi-protocol application router based on Autobahn
and WAMP. We installed crossbario on a Ubuntu 14.04
machine which is accessible by both the backend server and
the gateways.

A. The Paradrop Backend Implementation

The Paradrop backend manages the platform resources in a
centralized manner. We implemented Paradrop backend with
Python programming language based on the Twisted [14]
network framework. The major components of the backend are
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Fig. 4. Architecture of the Paradrop backend. The backend manages all the

resources of the Paradrop platform and provides APIs for users to deploy
services on the gateways.

shown in Figure 4. Two important interfaces are implemented
for the backend server:

o The WAMP APIs for the Paradrop gateways. In the
gateway side, the backend communicates with all the
gateways to dispatch commands and receive responses
and status reports. The soft real-time characteristic of
WAMP guarantees the minimal latency in that process
[7].

o« The HTTP RESTful APIs for users(developers, end-
users and administrators). In the user side, the backend
aggregates the information from all the gateways, and
provides the information to Paradrop frontend, by which
the information can be visualized and shown to users. The
backend server also stores some persistent information
about the Paradrop platform deployment, e.g., the loca-
tion of the gateways, configuration of the gateways, etc.
The backend server also relays the commands from users,
e.g., start a chute on one ore more specific gateways, and
then relay the responses from the gateways to users.

The backend has authentication mechanisms. All users need
to register to the backend first in order to get permissions
for the resource. The backend server stores information about
the users, gateways and chutes in a MongoDB database [15].
We are in the process to implement a repository to manage
the published chutes in the backend server. Users can deploy
chutes to their gateways through the web frontend with that
repository. Currently the user who wants to deploy a chute to
a gateway needs to make sure the chute package is available
locally for the Paradrop developer console.

B. The Paradrop Gateway Implementation

Paradrop gateway is the execution engine of the Paradrop
platform. First of all, we need to reliably maintain Paradrop
software components on the operating system of the gateway.
In order to securely and reliably manage the Paradrop software
components running on the gateway, we selected Snappy
Ubuntu as the operating system. Every software component



is a snappy package in Snappy Ubuntu, and users can trans-
actional upgrade or rollback the component reliably[10]. It is
easy to maintain the software on Paradrop gateways in a large
deployment with that capability.

On one hand, we want to provide an isolated and virtualized
environment for the chutes deployed on the gateway. On
the other hand, we want to keep the virtualization overhead
minimum because the hardware platform of the gateway is not
as powerful as the server in the cloud computing platform.
There are two virtualization options for us on the Linux
operating system: Virtual Machines (VMs) and containers.
While the goal is similar, they virtualize the system in different
level. Hypervisor-based VMs virtualize at the hardware layer,
while containers virtualize at operating system layer. Felter
et al. did measurement study to compare the overhead of
VMs and Linux containers. More specifically, they compared
KVM [16] with Linux containers [4]. They concluded that
KVM’s complexity makes it not suitable for workload that is
latency-sensitive or have high I/O rates, though both KVM
and container have very low overhead on CPU and memory.
Moreover since hypervisor-based virtualization provides ac-
cess to hardware only, we still need to install an operating
system in the virtual environment, which quickly gobbles up
resources on the gateway, such as RAM, CPU and bandwidth
[17]. Therefore we selected Linux containers to build Paradrop
platform. Instead of using LXC [5] directly, we built Paradrop
based on Docker [6], which is an open-source engine to
commoditize LXC. Docker adds features such as layered
image and NAT, which ease the development, management
and deployment of chutes. Docker also nicely solve the de-
pendency problem when developers migrate software tested in
development environment to deployment environment. There
are some complexities to build Paradrop with Docker. For ex-
ample, LXC is an example of OS-containers, whereas Docker
is an App-container. Therefore Docker is suitable for the chute
that only has one process. If a complicated service needs to run
multiple processes, we can either launch multiple containers
or use Docker supervisor. Moreover, since Docker is a pure
execution environment, we need to manage the networking
environment by ourselves. We can not provide a operating
system environment including networking configurations in a
container like LXC does.

An Paradrop daemon (also called Instance tools) runs on the
gateway to implement all the functions related to Paradrop
platform. It implements all Docker related features based
on a python wrapper of Docker APIs. And it exposes the
controlling and monitoring interfaces to outside world. Its
major responsibilities include:

o Registers the gateway to the Paradrop backend.

o Monitors gateway’s status and report it to the Paradrop
backend.

« Receives RPCs and messages from the Paradrop backend,
and manage containers on the gateway accordingly, e.g.
install, launch, stop, uninstall, etc.

The Paradrop daemon interfaces support both WAMP and
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Fig. 5. Major software components on a Paradrop gateway. All the compo-
nents are snappy packages. We implemented Paradrop daemon with Python
from scratch. And we made the snappy packages for dnsmasq and hostapd
based on the corresponding open source projects. The Docker engine is pack-
aged by Ubuntu. All the snappy packages can be securely and transactionally
updated over-the-air if required.

HTTP protocols. Therefore Paradrop gateway can be accessed
by the developer tools indirectly through the WAMP message
router or directly if they are in the same network. That is
convenient for developers for issues debugging. And also for
the users whose gateways does not have stable access to the
backend server.

Paradrop daemon also controls the firewall, DHCP, WiFi,
etc. to provide an environment for the chutes managed by
Docker engine, and also for the devices connecting to the
gateway.

Other than providing run-time environment for the chutes,
the daemon also manage the resources on the gateway. Every
chute needs to have the parameters to define the resource
requirement in a config file. The Paradrop daemon enforces
the resource policies when it is creating or starting a chute
instance. Currently Paradrop supports policies for below re-
sources:

¢ CPU: CPU resource for a chute is controlled by a “share”
value of the container. We can specify the share value
when we create a container, or change it when the
container is running. The “share” value defines relative
share of the CPU resource that one chute can use when it
compete with other chutes. It does not limit the maximum
CPU resource a chute can use. We will explain that in
detail in section VI.

e Memory: The maximum memory size can be used by a
chute is restricted by a value defined in its config file.

« Disk size: Currently we only define a common maximum
disk size for all chutes. In the future, we may support
defining different disk size for different chutes.

o Network: The Paradrop daemon tracks all the network
interfaces used by chutes, and restrict their speed by
traffic shaping. We might implement a strategy based on
“share” value similar to the CPU resource management
in the future release.

Some edge computing applications need the storage re-



source to cache content, or to provide local storage services. So
we need a flexible way to manage the limited storage resources
in the gateways. We plan to implement policies to manage
the block devices based on Linux kernel’s device mapper
and Docker’s “devicemapper” storage driver [18]. Example
policies include disk size quota for a chute, read/write speed,
etc.

C. The Paradrop Developer Console Implementation

We implemented the developer console with Python. Since a
chute can be implemented with any languages or libraries, the
developer tool is agnostic to the contents of a chute. Essentially
a chute is a Docker image along with some Paradrop platform
specific files. The developer console provides the tools that
we can use to interact with the Paradrop platform. Developers
can create chute locally, upload chute to backend, and install
chutes from local machine or backend to the gateways that
they have permissions to do so. It also provides command
line tools to monitor the status of the chutes and gateways. If
a developer has direct access to the gateways (in development
environment), he or she can access the gateways directly
without the WAMP message router.

D. The Paradrop Web Frontend implementation

We are in the process to implement a Web frontend for
Paradrop platform. It will provide all the features of the
developer console except building a chute. Moreover, it will
provide a better user interface for users and administrators to
install chutes on their gateways in an intuitive way. The web
interface to monitor the status of chutes and gateways will also
be nicer compared to the command line tools.

E. The Pardrop Workflow

In order to clearly show the implementation of the Paradrop
platform, this section introduces the workflow that a developer
working with the Paradrop platform. Developers need to
interact with two components of the Paradrop platform:

o The build tools in developer console - our command line
tools that enable registration, login, and control.

o The instance tools - the tools of Paradrop daemon run-
ning on the Paradrop gateways to launch chutes on the
virtualization substrate.

Figure 6 shows the two components that a developer need
to work with. By providing tools to create and manage chutes,
the platform implementation is transparent to developers. They
can think the Paradrop hardware just some normal resources
sit close to user’s mobile devices, and focus on the application
logic development.

If we want to deploy an application on the Paradrop
platform, the first step is to try the application locally, and
then we can pack the binary and configuration files into a
chute by the build tools. After that we can deploy and debug
the chute on a local Paradrop gateway. After we verify the
functionality of the chute, we can either install the chutes to
routers we want, or publish the chutes to a ChuteStore of
the Paradrop platform. Service providers and end-users can
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Fig. 6. Paradrop platform from developer’s view: We refer to Build Tools
when we talk about the command line program running on developer’s
development computer that control and communicates with the rest of the
Paradrop platform. The Instance Tools leverage Docker to allow Paradrop
apps to run on router hardware. This “hardware” could be a Paradrop gateway,
a Raspberry Pi, or even a virtual machine on your computer that acts as a
router (which is why we call it an Instance sometimes).

install the chute on the specified Paradrop routers. We are in
the process to build the ChuteStore. Our goal is to make the
chute management easy and flexible for developers, users and
administrators.

V. PARADROP APPLICATIONS

Developers can deploy diverse chutes (applications and
services) on Paradrop platform. Any service running on a
cloud computing platforms can be easily ported to Paradrop
platform with few changes if it can take advantage of edge
computing. In order to make the service compatible with
Paradrop platform, we need to provide some configuration
files to define the resource requirement of service, e.g. CPU,
memory, network, etc. With Paradrop developer tools, we can
package the binary files, scripts, Dockerfile, and Paradrop
configuration files to a chute. Then the chute can be de-
ployed on Paradrop gateways to provide the service. Figure
7 illustrates the process to deploy and launch a chute on a
gateway. Depends on the applications requirements, we can
either deploy the whole service to the Paradrop platform; or
for a complex service composed by many microservices, we
can deploy some parts of the service (some microservices) to
the Paradrop platform. In the later case, Some microservices
running in the cloud will cooperate with the microservices on
Paradrop platform to provide the service to end-users.

In this paper, we only present two example applications in
details. Both of them are Internet of Things (IoT) applications.
IoT is becoming a huge part of the networking world. Yet
many IoT devices rely on backend services that must traverse
the Internet to utilize their full potential. Using Paradrop, we
can pull that intelligence back into the gateway.

A. A Security Camera Service Using Paradrop

In this section, we present a walkthrough about using a
WiFi-based video camera with a Paradrop gateway to imple-
ment a security camera service called SecCam. The SecCam
service is based on a commercially available wireless IP
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Fig. 8. The IP camera service without Paradrop platform and with Paradrop
platform. With Paradrop platform, we can deploy the camera service into the
gateway. If the mobile device has direct connection with the camera service
on the gateway, it will control the camera and get video data from it directly
without relying on the service deployed in cloud. If not, the camera service on
the gateway still can do most work (e.g. motion detection), and it can setup a
peer-to-peer connection to the mobile device with the help of the mini camera
service in cloud. We do not discuss the mini camera service in this paper for
brevity. Paradrop makes the chute deployment easy and flexible.

camera (D-Link 931L webcam), where we took the role of
developer to fully implement the service.

DLink provides cloud service “mydlink” [19] to which user
can register their camera. With that service, users can access
the camera remotely. They can view the image and modify the
settings with a web client or mobile apps supporting “mydlink”
cloud service. The cloud service is very convenient to setup,
but the video data need to be pushed to cloud platform and
users do not have much control about it. We propose to move
the functionality of the cloud service to the Paradrop gateway
to give users full control about the camera device and the video
data.

For this service, we require networking interfaces to com-

municate with the webcam and the Internet, as well as ample
storage for images. To augment storage resources on Paradrop
gateways, we add a flash card to the gateway device which
provides GBs of storage. The applications for SecCam allow
for motion detection from the webcam, user defined alerts,
as well as visualization of the detected images. The motion
detection component is a Python based program with user
defined characteristics such as threshold of motion, time of
day, and rate of detection. Visualization of the motion is
implemented as a PHP based web page, which is hosted within
the SecCam chute. Figure 8 compares the camera service
deployed in cloud and Paradrop platform.

We need to create a chute for the “SecCam” service, which
has the following responsibilities:

o Create the SecCam SSID. This SSID provides an iso-
lated WiFi network and subnet to the security cameras.
This is designed so that devices purchased by end-users
do not have to be programmed when they arrive at the
house (they can be flashed with a default SSID and
password by the company). This subnet will not have
internet access, and any network traffic be consumed by
the chute.

o Image capture service. The service will run a simple
Python program to capture images from an IP camera,
calculate differences to detect motion, and store those
images to disk. The images stored to disk will then be
visualized using a web server which runs inside the chute.

o Web server. The web server provide service to users in
local network to view the video and check the logs. We
implemented a very simple web server with PHP.

A chute is described by a Dockerfile and a Paradrop
configuration file.

o The Dockerfile follows the specification of Docker. It
defines the Docker image which will be managed by the
Docker engine on the Paradrop gateways.

o The Paradrop configuration file is a YAML formatted file
for Paradrop platform. It describes the resource require-
ment of the chute.

Figure 9 shows the configuration file of the SecCam chute,
and figure 10 shows its Dockerfile. The Docker image is based
on Ubuntu 14.04. The static file of the web server and the
source code of image capture service are installed on the
image when we launch the chute on the Paradrop gateway.
Alternatively we can store the pre-built image in a private
repository so that we can launch the chute directly.

B. The EnvSense Service

This service is a wireless environmental sensor designed as
part of the Emonix research platform [9]. Since the service is
fully implemented, we only need to migrate the service, rather
than rewrite it to fit Paradrop platform. The original service
runs in a server to collect data from the sensors, process
and store the data, and visualized the data. After identify
the resources required to run the service, we can create a
configuration file and then create a chute. The steps to create



owner: Paradropdate: 2016-02-06

name: seccam
description: |
This app launches a virtual wifi AP |
and detects motion on a wifi webcam.
net:
wifi:
type: wifi
intfName: wlanO
ssid: seccamv2
dhcp:
lease: 12h
start: 100
limit: 50
resource:
cpu: 1024
memory: 128M
wan:
down: 25000
up: 10000
dockerfile:
local: Dockerfile

Fig. 9. The configuration file of the SecCam chute. It defines the environment
of the container to run the chute.

FROM ubuntu:14.04
MAINTAINER Paradrop Team <info@paradrop.io>

RUN apt-get update && apt-get install -y \
apache2 \
libapache2-mod-php5 \
python-imaging

ADD http://paradrop.io/storage/seccam/srv.tar.gz /var/www/
RUN tar xzf /var/www/srv.tar.gz -C /var/www/html/

ADD http://paradrop.io/storage/seccam/cmd.sh /usr/local/bin
CMD ["/bin/bash","/usr/local/bin/cmd.sh"]

Fig. 10. The Dockerfile of the SecCam chute. This Dockerfile is a simplified
version. We need to download some files for the chute from a web server. In
deployment, these files can be included in the chute package.

the configuration file are similar to the SecCam service so we
omit them here for brevity.

As a future work, we will divide the EnvSense service to be
multiple microservices. E.g. we want to run data collection and
processing microservices on the Paradrop platform, and run
data storage and visualization services on the cloud platform.
Then we need to modify the original implementation, however
it will be fairly easy with the development and management
tools provided by Paradrop.

C. Other possible applications

Other than IoT, applications in other categories can also
take advantage of the Paradrop platform. For instance, P2P
technology is a well known approach to reduce the workload
of media server. However, it is challenging to use P2P on
mobile devices because of below issues:

« Mobile devices are powered by battery, so that it can not
afford the overhead to upload the media data or share the
data with other peers.

o The wireless connections have restricted bandwidth com-
pared to wired connections, in many cases mobile devices
do not have abundant bandwidth can be used to share
media data with other peers.

o Compared to wired network, wireless network is dy-
namic, so that the overhead to maintain the status of peers

TABLE I
OVERHEAD OF THE VIRTUALIZATION SCHEMES ON THE FIRST
GENERATION HARDWARE PLATFORM OF PARADROP GATEWAY

Test Host | LXC Lguest
Start Time (sec) - 2 40
Packet Latency (ms) 0.04 0.20 39.0
Throughput Fairness Host 0% | 60%/40%
Chute | 50% | 30%/30%

can be too high and offset the potential advantages of P2P
technology.

WiFi gateway, as the last hop of mobile devices’ connection
to media server, is a good place to deploy the P2P technology.
With Paradrop platform, they can be deployed in a chute in
order to provide transparent service to the mobile devices.
We also built a media caching service on the Paradrop
platform to prefetch and cache video data from the media
servers, e.g. Netflix. That service improves user experience by
eliminating network congestions. Some applications that use
edge computing to optimize the bandwidth usage of wireless
applicantions have been developed by other researchers. For
example, Zhang et al. use computing resource in network
edge to optimize the wireless video surveillance system [20].
Such kind of applications can be easily deployed in Paradrop
platform if the application can run on Linux operating system.

VI. SYSTEM EVALUATION
A. Efficiency of virtualization

Virtualization solution is the core of Paradrop platform. We
implemented three generations of virtualization scheme in the
Paradrop platform evolution.

« Hypervisor-based virtualization: OpenWRT [21] +
Iguest. In the first generation of Paradrop platform, we
implemented the virtualization solution based on lguest.
Lguest is a small x86 32-bit Linux hypervisor for running
Linux under Linux [22]. A number of hypervisor solu-
tions have appeared that use Linux as the core, including
KVM [16] and Iguest. We selected lguest because of its
relatively simple implementation (5000 lines of code) and
its availability in the mainline Linux kernel to our first
generation hardware platform. Though the simplicity of
Iguest is attractive, it is slower than other hypervisors.
And recent measurement study by Felter et al. confirmed
that VMs have high latency in I/O operations [17] and
they are not suitable to latency sensitive applications.
Another problem of lguest is that it is a paravirtualization
hypervisor, which means the guest OSes need to be
Iguest-enabled. That restriction increases the efforts to
port a service to the Paradrop platform.

o Linux Container: OpenWRT + LXC. We implemented
the second virtualization scheme with Linux container
(LXC), which is more lightweight than hypervisor-
based virtualizations. Containers have low overhead than
hypervisor-based virtualization scheme because they do
not emulate hardware, and they share the same operating



system as the host. There are two user-space implemen-
tations of containers, each exploiting the same kernel
features [5]. We selected “LXC” because it is flexible
and has more userspace tools. In order to implement
container-based virtualization scheme, the virtualization
application must be supported by the host Linux kernel.
We did not think that would be a big concern for many
applications. Dale et al. measured the overhead of the
first two generations of virtualization schemes [23] and
the results are shown in Table I. To implement a fast start
time for the chute, LXC should be used since it boots
in 2 seconds compared to 40 seconds for Iguest. Lguest
needs much longer time because we needed to boot the
guest operating system before we can run an application.
Packet latency results also show the advantage of LXC.
Table I also shows the throughput fairness, LXC can
achieve good fairness along with much lower overhead
than Iguest.

e Linux Container: Snappy Ubuntu + Docker Though
the second generation virtualization scheme have very
low overhead, and the implementation on OpenWRT is
very efficient for the hardware platform we selected for
the first generation Paradrop gateway. We began to realize
that the operating system disparity on the gateway and the
cloud platform could be an obstacle to develop or port
applications to Paradrop platform. Therefore we switched
to Snappy Ubuntu while we upgraded the hardware
platform to a more powerful one with 64bit processor.
We also made a big change on the software architecture
by switching from LXC to Docker. Although Docker
and LXC share the same underlying container-based
virtualization technology, Docker provides much easier to
use tools for us to implement the Paradrop platform. And
they have similar efficiency. To have a clear idea about
the latency to deploy, start, stop, and destroy a chute on a
gateway, we measured the time taken for these operations.
The results are shown in Table II. The hardware platform
is: AMD G Series T40E APU, 1GHz Dual Core, 2GB
DDR3 DRAM. We tested the system with the chute of
SecCam application we described in sectionV. The test
results depend on the network bandwidth because we
need to download the Ubuntu 14.04 based image from
the Docker repository, some Ubuntu packages from an
Ubuntu repository, and a package including the files for
the web pages along with the Python implementation of
the service from a file server. The steps to install packages
on the base image are also time consuming. Figure 11
illustrates the time taken by each step.

B. Effectiveness of resource management

To evaluate the effectiveness of the resource management of
Paradrop platform, we developed two test chutes and deployed
them on a gateway to stress test the system. Figure 12 shows
the result. Docker uses cgroups to group processes running
in a container. This allows us to manage the resources for
containers. When we build a container, we can specify a

TABLE II
CHUTE OPERATIONS BENCHMARK ON THE LATEST HARDWARE PLATFORM
OF PARADROP GATEWAY

Operation | Time (sec)
Deploy 527
Start 5
Stop 17
Delete 7

1. Download base image 175s
2. Update system and install packages 321s
3. Download file for the server and setup Apache 3s
| )
7/ 4. Install the service 9s

5. Cleanup intermediate images and start the container 19s

527

0 Time (second)

Fig. 11. Time taken by each step in a chute deployment. Step 2 took 321
second, which is more than 50% of the total time. If an application is sensitive
to deploying time, we can pre-build and store the image for that application
in the private repository, then step 2 can be eliminated.
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Fig. 12. CPU resource management test. We started two chutes from the
beginning. Chute A and B have share values 512 and 1024 respectively. Both
of them can stress test the CPU when they work. Chute A started working from
the beginning, and became idle after 25 seconds. Chute B started working 5
seconds later, it also kept working for 25 seconds then became idle. In the
beginning, chute A’s CPU load is about 99%. After 5 seconds, Chute A and B
started to compete for CPU resource. They achieved a balance in 11 second,
and Chute B’s CPU load was about twice of Chute A’s CPU load since then.
After chute A became idle, chute B used all the CPU resource and the CPU
load was about 99%. Total CPU load of the containers is always about 99%
because there was no other computationally intensive task running on the
gateway.

CPU share. The default value is 1024. This value does not
mean anything when we talk about it alone. But when two
containers both want to use 100% CPU, the share values will
decide how much share of the CPU that the containers can
use. For example, if container A’s share is 512, container
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Fig. 13. Network speed limit test. We launched a test chute including a HTTP
server and a 100MB file. In order to avoid the network bandwidth variation
of wireless interfaces, we conducted the test with an Ethernet interface. We
limited the network bandwidth of the chute to be seven different values, and
tested the actual bandwidth when a user download the large file from the
chute. Without the speed limit, the network bandwidth is 89.6Mbps. We can
see the actual bandwidths are not higher than the limits, and the discrepancy
is small.

B’s share is 1024. When two containers are busy running in
the same time, container B will have two times share than
container A. However, Docker does not limit a container to
use free resources. For example, if container B is idle, then
container A can use all available CPU resources. The test
results indicate the container’s CPU resource can be effective
managed. Currently we can specify the CPU share value for
the chute in the configuration file. It is also possible to change
the CPU share of the container on-the-fly, though we do not
provide this API for now. It is fairly easy to extend the system
to add that support if necessary.

By default every chute can use all the memory resource in
the gateway. That is not encouraged, because it can lead to
issues that one chute can easily make the system unstable by
allocating too much memory. We can specify the maximum
memory that a chute can use in the configuration file. One
thing needs to note is that we can also control the swap
available for a chute. By default we disable the swap usage
for the chute, so we need to be careful to specify enough (but
not too much) memory to a chute. We verified that with a
test chute which allocate 256MB memory in start. When we
limited the memory allocated to the chute is only 200MB, the
chute could not start successfully. It would start successfully
when the limit is 260MB though.

Network is an important resource for the services deployed
on the gateway. All the running chutes share the network
bandwidth (LAN and WAN side). Docker (at least the ver-
sion we are using) does not provide the support to throttle
bandwidth. So we employed traffic shaping feature of “tc”
command to implement the network resource management for
the chutes. For the chutes that need network interfaces, we
use “tc” command to limit the bandwidth of these network

interfaces for the traffic of these chutes. Test results in figure
13 indicate our approach is effective.

Paradrop gateway has an SD card with 16GB capacity. By
default every container in the Docker can get 10GB of space,
that is too much for a chute to run on a Paradrop gateway.
We changed that to be 1GB for every chute, that should be
enough for most applications. In the future we plan to support
different quotas for different chutes.

The read/write performance of the SD card is not very high.
We need to carefully control the speed that a chute to access
the file system or else one chute would slow down all other
chutes easily. We plan to add the capability to control the I/O
speed in the future.

C. Flexibility and convenience to deploy services in the edge

Paradrop platform is highly flexible to deploy edge comput-
ing applications. The flexibility is guaranteed by below design
choices.

o The operating system on the Paradrop gateway is Snappy
Ubuntu. It provides secure and transactional update ca-
pability to us to reliably manage the software on the
gateways. Moreover, Snappy Ubuntu is similar to the OS
in the cloud computing platform, so developer can port
or develop applications for Paradrop easily.

e« We implemented a virtualized environment based on
Docker for the gateway. Developers can select the pro-
gramming languages, libraries, and platforms based on
their experience and requirements. For example, devel-
oper can use different versions of Python to develop
the services. That flexibility makes Paradrop platform
easy to be accepted by developers. Moreover, Docker
is a popular virtualization solution for cloud computing
service deployment. Therefore the barrier to port a whole
service or some microservices of a large service from
cloud computing platform to Paradrop platform is very
low. The only requirement of Paradrop platform on a
service is that the service should be able to run on
relatively new Linux kernel. We believe that will not be a
problem in practice. Compared to develop an application
for Android or iOS, developers of Paradrop platform do
not need to install the SDKs or learn new application
frameworks.

e WAMP based messaging mechanism simplified the de-
ployment of Paradrop gateways. Paradrop platform lever-
ages both the remote procedure call and publish/subscribe
messaging schemes to implement the communications
between Paradrop backend server and Paradrop gateways.
Developers do not need to maintain direct connections to
the gateways in order to debug their chutes in deploy-
ment.

D. Scalability

By splitting and distributing the services on the cloud to
the Paradrop gateways, Paradrop platform provides a good
platform to deploy services in large scale. In the future, we
plan to only transmit latency-sensitive messages with WAMP,



and transmit other messages with HTTP protocol. Then the
WAMP message router (crossbar.io) will not be the bottleneck
of the system even with a large number of gateways. The web
server in the Paradrop backend can be replicated if necessary
to support large scale deployment.

VII. RELATED WORK

Virtualization. Virtualization is the core technology in cloud
computing. Academia and industry have explored different
approaches to virtualize the hardware resources. The idea of
virtualization is not new. The origins of the technology can be
traced back to the ages of the mainframe. But in the last decade
the fast development and applications of cloud computing lead
to fast evolution of virtualization technologies. Virtualization
is widely used to improve the resource utilization, and to
simplify the data center management. Hypervisor-based virtu-
alizations, e.g. Xen [24], VMware ESX [25], KVM [16], lguest
[22], etc. emulate hardware resources to the guest operating
system and they can achieve high flexibility. But they have
drawbacks on booting time and overhead. Container-based
virtualization, also known as operating system (OS) level
virtualization, is an alternative technique and it has advantage
on efficiency over hypervisor-based virtualization. Examples
include FreeBSD jails [26], Solaris Containers [27], etc.
Because of the availability of supporting technique in Linux
kernel like namespace [28], cgroups, etc. Container-based
virtualization is becoming a popular virtualization approach
for the Linux operating system [29], [4]. In addition to the
applications on cloud computing in data centers, researchers
predicated the virtualization will be widely used in other
environments, e.g. desktops, smartphones, etc. [30]. Paradrop
leverages the virtualization technology to provide isolated,
controlled environment to the services deployed in the network
edge. We are using it in a distributed, resource restricted
environment. Whereas cloud computing uses virtualization
technology in centralized located and managed data centers
with high performance hardware.

CPU offloading. CPU offloading approaches propose to of-
fload computationally intensive tasks from the battery driven
mobile devices to co-located specialized devices or cloud
in order to improve the battery life of mobile devices or
performance. MAUI [31] and ThinkAir [32] are two exam-
ples that enabled fine-grained computing offload of mobile
code to the infrastructure. Rather than offload tasks from the
mobile devices to the cloud, Paradrop deploys services or
microservices in the wireless gateways to support applications
on mobile devices.

Edge computing. Many researchers have explored the advan-
tages of the edge computing and proposed different approaches
to leverage them. Balan et al. proposed cyber foraging: a
mechanism to augment the computational and storage capabil-
ities of mobile devices. Cyber foraging uses opportunistically
discovered servers to improve the performance of interactive
applications and distributed file system on mobile clients [1].
Satyanarayanan et al. proposed cloudlet, a trusted, resource-
rich computer or cluster of computers that’s well-connected to

the Internet and available for use by nearby mobile devices
[2]. Cloudlet can achieve interactive response because of
of the cloudlet’s physical proximity and one-hop network
latency. Bonomi et al. discussed Fog Computing, which brings
data processing, networking, storage and analytics closer to
mobile devices. They argued that the characteristics of Fog
Computing, e.g. low latency and location awareness, very large
number of nodes, etc. make it the appropriate platform for a
number of critical Internet of Things services and applications
[3].

Some applications were built to leverage the advantages of

edge computing architecture. MOCHA is a mobile-cloudlet-
cloud architecture that partitions tasks from mobile devices
to cloud and distribute compute load among cloud servers
(cloudlet) to minimize the response time [33]. Zhang et al.
built Vigil, a real-time distributed wireless surveillance system
that leverage edge computing to support real-time tracking and
surveillance in different scenarios [20].
Smart routers. As the performance of WiFi routers keep
increasing, many companies are interested to build smart
routers that can be managed and monitored by mobile applica-
tions [34], [35]. Users can even install third-party applications
on some of them [36]. Their goal is to optimize the user
experience of mobile devices users, whereas Paradrop has a
different goal to push services from data centers to the network
edge.

VIII. CONCLUSION AND FUTURE WORK

Paradrop platform is a flexible edge computing platform
that users can deploy diverse applications and services at the
“extreme” edge of the network. In this paper we introduce
the three key components of the platform: a flexible hosting
substrate in the WiFi APs that supports multi-tenancy, a
cloud-based backend through which such computations are
orchestrated across many Paradrop APs, and an API through
which third party developers can deploy and manage their
computing functions across such different Paradrop APs. We
built the system with low overhead virtualization technology
to efficiently use the hardware resources of the Paradrop APs,
and we implemented effective resource management policies
to provide a controlled environment for services running on
the Paradrop APs.

We have already conducted tutorials and workshops with
Paradrop in multiple forums (at the US Ignite 2014 conference
and at a GENI Engineering Conference also in 2014) with
great success. Users were able to build services such as
SecCam from scratch, within a few hours, providing some
preliminary evidence of its ease of use.

The platform is still under active development. We will
continue to evolve the APIs. We plan to add more accessories’
support to the Paradrop gateway, e.g. Bluetooth Low Energy
(BLE), audio sensors, etc. to further improve the capabilities
of the gateways. We are in the progress to implement the
“ChuteStore” for developers to publish their chutes, and for
users to search and install chutes on their wireless gateways.
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