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Abstract. In this paper we evaluate the performance of practical Rate
Control Algorithms (RCAs) operating at the Media Access Control (MAC)
layer of IEEE 802.11 networks built on Atheros chipsets. The aim of
this study is two-fold: (1) to explore the performance of the RCAs with
varying wireless channel conditions at the link layer and (2) to observe
the implicit effect the RCAs have on application level throughput and
response times. By measuring the performance of heterogeneous traffic
over specific rate adaptation algorithm, we are able to conclude that
in addition to the state of the wireless channel, the performance of the
RCA is closely tied to the nature and type of data stream currently
being transmitted over the physical interface. For delay sensitive traffic
like VoIP applications, aggressively trying to increase the bit-rate dur-
ing fluctuating channel conditions might cause unacceptable packet loss
and ultimately break session connectivity. Additionally, our study indi-
cates that deriving channel information from raw RSSI values and packet
probes might not reveal the complete picture about the dynamics of the
underlying wireless channel.

1 Introduction

The IEEE 802.11 [4] physical layer (PHY) supports multi-rate transmission ca-
pabilities by dynamically choosing the most appropriate modulation technique
for the received signal strength. This in turn, empowers the Wireless Network
Interface Card (WNIC) to adapt the transmission rate to the conditions of the
underlying radio channel. While the IEEE standard defines the specifications for
802.11 MAC protocol and RF-oriented PHY parameters [4], it does not define
any particular instance of RCA and is open to the device manufacturer to im-
provise.

Currently there exists two different approaches for implementing the RCA in
WNIC. They can be broadly categorized as: (i) the software approach and (ii)
the hardware approach. In the former, the main functionalities of the RCA are
implemented as a software driver in the operating system where as in the later,
the algorithms are part of the wireless chipset. In this paper, we are interested
in investigating the performance of software RCAs that interact with the PHY



layer of the WNIC. We use the 802.11 chipset (AR5212) from Atheros Commu-
nications [12] and the Multimode Atheros Driver (Madwifi) [1] for performance
evaluation of the three available 802.11 multi-rate control algorithms: Onoe [1],
Adaptive Multi Rate Retry (AMRR) [2] and SampleRate [3] bit-rate selection
algorithm.

In particular, we are interested in investigating the following: (i) How do
the RCAs perform with variations of the Received Signal Strength Indicator
(RSSI) values? (ii) How do the performance of the RCAs impact application
level throughput for different traffic classes (heterogenous, streaming media, in-
teractive and background)?

The main focus and contributions of this paper are evaluation of the RCAs
and development of performance metrics that can be used as a framework for
comparing all of them. The rest of the paper is organized as follows. In Section 2
we briefly review the Madwifi driver and the available RCAs. This is followed by
Section 3 where we describe the experimental testbed and the qualitative metric
used for analyzing the RCAs. We validate and evaluate the effectiveness of the
RCAs on application level traffic in Section 4. Finally, in Section 5 we conclude
summarizing our observations.

2 Multiband Atheros Driver for WiFi (Madwifi)

Madwifi [1] is an Open Source driver for wireless chipsets from Atheros Com-
munications [12]. It is a multi-core driver module that comprises of (i) a PCI
hardware module (ath_pci.ko) for interfacing with PCI I/O bus (ii) Atheros
chipset specific module (ath hal.ko) for acting as the glue between the hard-
ware registers and the driver software and (iii) the device independent module
(wlan.ko) implementing the IEEE 802.11 state machine. Each of the RCAs are
available as separate kernel modules inside the main driver. Information about
the current rate and packet retransmission statistics are communicated by the
hardware to the kernel registered RCA. The RCA module collects these parame-
ters and develops its rate adaptation strategy. In Section 2.1, we have highlighted
the principal parameters and default values for each of the RCAs as present in
the Madwifi driver at the time of writing. It should be noted that optimization
and performance tuning of the RCA parameters is possible but is beyond the
scope of this work.

2.1 Rate Control Algorithms: Onoe, AMRR and SampleRate

Onoe [1] is a credit based RCA where the value of the credit is determined by
the frequency of successful, erroneous and retransmissions accumulated during
a fixed invocation period of 1000 ms. If less than 10% of the packets need to be
retransmitted at a particular rate, Onoe keeps increasing its credit point till the
threshold value of 10 is reached. At this point, the current transmission rate is
increased to the next available higher rate and the process repeated with credit
score of zero. Similar logic holds for deducting the credit score and moving to a



lower bit-rate for failed packet transmission/retransmission attempts. However,
once a bit-rate has been marked as failure in the previous attempt, Onoe will
not attempt to select that bit-rate until 10 seconds have elapsed since the last
attempt. Due to the manner in which it operates, Onoe is conservative in rate
selection and is less sensitive to individual packet failure. Further details of the
algorithm are available in [1].

AMRR [2] uses Binary Ezponential Backoff (BEB) technique to adapt the
length (threshold) of the sampling period used to change the values of bit-rate
and transmission count parameters. It uses probe packets and depending on
their transmission status adaptively changes the threshold value. The adaptation
mechanism ensures fewer failed transmission /retransmission and higher through-
put by not switching to a higher rate as specified by the backoff mechanism. In
addition to this, the AMRR employs heuristics to capture the short-term vari-
ations of the channel by judiciously setting the rate and transmission count
parameters. For further details refer [2].

SampleRate [3] decides on the transmission bit-rate based on the past his-
tory of performance; it keeps a record of the number of successive failures, the
number of successful transmits and the total transmission time along with the
destination for that bit-rate. Stale samples are removed based on a EWMA win-
dowing mechanism. If in the sampling process, no successful acknowledgment
is received or the number of packets sent is multiple of 10 on a specific link,
it transmits the packet with the highest rate which has not failed 4 successive
times. Other than that it transmits packets at the rate which has the lowest
average transmission time.

3 Experimentation and Performance Analysis

The experimental testbed used to measure the performance of the RCAs is
shown in Figure 1. It comprises of two subnets: (i) a Gigabit Ethernet wired
subnet (a.b.c.114) and (ii) an IEEE 802.11g wireless subnet (192.168.14.x). The
content delivery server (a.b.c.114) is connected to the workstation (a.b.c.228)
through a Layer 2 managed Gigabit Ethernet switch (Netgear GSM 7224). The
AP is a Linux based workstation with 32bit PCI WNIC (Netgear WAG311).
Using the tools iwpriv and iwconfig, we configured it to operate as a Master
in IEEE 802.11g mode (2450 MHz radio spectrum). The AP creates a sub-
net (192.168.14.x) for the wireless clients and uses address translation (using
iptables) for forwarding packets from the wireless network to the globally ac-
cessible wired domain. IP addresses are leased dynamically to the wireless clients
using dhcpd.
A Sharp Actius (PC-MP30) laptop with 512MB RAM and an externally supplied
32bit cardbus from Netgear (WAG511v2) is used as the mobile client. We make
sure that during the entire experiment the onboard wireless chipset is turned off.
All of the platforms (including the mobile laptop) run the same configuration of
SuSE Linux with unpatched vanilla 2.6.13.3 kernel.

The Madwifi driver used in our experiments has the following version of



RCAs: Onoe (v1.3.20), SampleRate (v1.2) and AMRR (v0.1). The correspond-
ing version of ath_hal.ko, wlan.ko and ath_pci.ko modules are 0.8.2.0, 0.8.2.0
and 0.7.0.0 respectively. Since there are no additional clients in the wireless sub-
net, we disable the RTS/CTS (Request to Send/Clear To Send) feature of the
IEEE 802.11 standard.
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Fig. 1. IEEE 802.11 Experimental Testbed in Infrastructure Mode.

3.1 Experimental Setup

In order to investigate and compare the performance of the different RCAs to
changing wireless conditions, we need to create an environment with identical
variations of RSSI. However, broadly speaking this is a difficult task since the
values of RSSI are influenced by several external factors beyond our control
(interference, power leakage, fading, multipath propagation). Commonly used
procedures like walking to and fro along a definite path or measuring the perfor-
mance from a certain distance of the AP does not guarantee controlled wireless
conditions. In order to circumvent such difficulties, we resorted to generating
a closely monitored and controlled step function of RSSI variations that was
almost identical for all the RCAs by taking advantage of the shielding influence
of a microwave operating at 2450 MHz. Such an approach has also been used
in [5][11].

For each of the experiments described below, we uploaded a 8 MB file from
the laptop to the content delivery server and collected the RSSI values, cor-
responding transmission rates and timestamps by inserting probes inside the
ath_tx_start () function in ath_pci.ko module. We used the Linux kernel func-
tion do_gettimeofday () to obtain microsecond granularity in our measurement
data.

As the laptop is placed inside the microwave and the door of the oven closed,



the shielding materials of the microwave effectively block almost all radio waves
in the 2450 MHz spectrum; causing the RSSI to vary as a step function. We
kept the duration of the step length at approximately 5 seconds during each run
of the experiment. This caused the RSSI to drop below 20dB. Subsequently, we
left the door of the microwave open for another 1 second in order to generate an
impulse function. In this case, the RSSI rose sharply above 30dB. Thereafter, we
took the laptop out and collected the probe data after the entire 8 MB data file
has successfully uploaded. We repeated the entire process till we observed min-
imal variance between identical datasets. This unique experimental procedure
ensured that we are able uniformly expose all the RCAs to two step variations
of RSSI values.

Low Link Performance Analysis In Figures [2]-[7] we show the manner in
which the RCAs react to variations of RSSI values. As expected, when the RSSI
falls, the corresponding transmission rate (governed by respective RCA), also de-
creases. However, all the RCAs react differently to short term link fluctuations
and low link conditions. To have a better visualization of such transient dynam-
ics, we have expanded certain regions (marked by ellipsis in Figures [2][4][6]) for
each of the RCAs and presented in Figures [3][5][7] respectively.
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Fig. 3. Transient Dynamics for Onoe

Fig. 2. Transmission Rate Adaptation
Rate Control Algorithm.

and RSSI Variation for Onoe Rate
Control Algorithm.

In Figures [2] and [3], we see that the credit based Onoe algorithm reacts
conservatively to RSSI changes. It changes in discrete steps and does not closely
follow changes to RSSI variation. The algorithm increases the transmission data
rate only when the current bit-rate has at least 10 credits; this makes it prac-
tically insensitive to small scale variations of RSSI values (transient dynamics).
Such behavior is also evident from Figure [3] where the RSSI varies a lot (when
the microwave door is being closed) but the bit-rate remains fixed at 18 Mbps.
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Fig. 5. Transient Dynamics for AMRR
Rate Control Algorithm.

Fig. 4. Transmission Rate Adaptation
and RSSI Variation for AMRR Rate
Control Algorithm.

In Figures [4] and [5], we illustrate the performance of both the long term
and short term response of the AMRR algorithm. Visual inspection from the
transient dynamics confirm that AMRR is most sensitive to RSSI changes among
all the three RCAs. This is explained by the fact that the AMRR algorithm resets
all the values of retransmit parameters to one. Thus, for a single retransmission
failure, the transmission rate is changed; consequently, the algorithm is able to
track small changes of RSSI value. It should be noted that unlike Onoe which
falls sharply after detecting that RSSI has changed significantly, the data rate in
AMRR closely follows the RSSI trend and changes smoothly with a certain slope
as it tries to gradually adapt the threshold backoff window. Similar to AMRR
but on a more aggressive scale, SampleRate tries to match the transmission rate
to the current wireless condition by concurrently sending probes at the next
higher data rate. This is captured in Figures [6] and [7]. Based on the statistics
of successful transmission, average throughput, round trip time, SampleRate
decides on the value of the next transmission rate.

4 Application Layer Performance and Rate Control
Algorithm

In this Section, we conduct experiments using four different traffic classes for
exploring the impact of the RCAs on application level throughput. Application
layer performance is what ultimately affects the session quality of the mobile
user. Similar to the ones proposed in universal mobile telecommunications ser-
vice (UMTS) [14], we use the following four traffic classes: (i) Heterogeneous (ii)
Streaming (iii) Interactive and (iv) Background traffic. Examples of each traffic
classes are VolIP, video streaming, web browsing and file download respectively.
The corresponding applications used in our experiments for each traffic class
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Rate Control Algorithm.

are Skype [6], Kaffeine [7], firefox [8] and sftp [9] respectively. In each of the
experiments, we vary the radio range from 12 feet to 80 feet from the AP (by
walking along the corridor of our lab and carefully retracing the path along a
predefined line), after the application software has been fired on the laptop.
This ensures that noticeable variations of RSSI (from deep fade to strong signal)
takes place. The packet level statistics collected during each run of the exper-
iment provide valuable insights about the impact of the RCAs on application
level performance; specifically with respect to average throughput, variation of
throughput with RSSI and the jitter suffered by the applications. However due
to lack of space, we present only the average throughput for each traffic class and
also the inter-packet arrival for VoIP application for the three different RCAs.
The rest of the information and detailed data sets for each experiment can be
found at our project website [13].

In addition to the traffic characteristics observed at the client, we also mea-
sured the packet level statistics (by inserting probes in the Madwifi driver) at
the wireless AP. Since our focus is on performance measurement of RCAs, we
do not present end-to-end throughput but the throughput which is reflected at
the AP and at the wireless client (a.k.a. laptop) where the RCAs are active. As
a measurement tool, we used Ethereal [10] (v0.10.12) for capturing the packet
level statistics at both the AP and the laptop. Since the traffic used in our exper-
iments involved TCP flows, we used tcptrace (v6.6.7) to compute the average
throughput statistics from the Ethereal dump files. We also modified iptraf
(v2.7.0) in order to generate the variations of application throughput sampled
at an average interval of 1 second. For VoIP experiments (based on Skype), we
wrote our own analysis tool using the 1libpcap packet library for extracting the
necessary statistics. The software is available at our website [13].

In Table 1 we provide data for the average throughput (in Kbps) observed
for each application using all the three RCAs. Such statistics provide interest-

RSSI (dB)



Table 1. Average Throughput (in Kbps) for Heterogeneous Traffic for different Rate
Control Algorithms

Rate Control VolP Interactive .
. i Elastic
Algorithms [ Up ™ | pown Streaming Up | Down
Onoe 73.89 |69.076 936.48 20.05 | 91.37 | 1946.91

AMRR 36.47 | 42.24 1243.95 26.11 |109.99 | 3295.87
SampleRate |50.49 | 66.92 1132.17 26.07 |97.79 |2617.32

ing insights regarding the performance of the RCAs. First, there is significant
differences between upstream and downstream throughput even in the absence
of any other wireless clients. Second, when it comes to non-real time traffic,
AMRR seems to perform more effectively than its counterparts. The perfor-
mance of SampleRate is very much comparable to AMRR when it comes to
average throughput (barring VoIP applications). Though the measured average
throughput for AMRR was observed to be higher than SampleRate, it exhibited
poor performance with streaming multimedia over HTTP. Even at about dis-
tances exceeding 70 feet from the AP, we observed that SampleRate was able to
buffer and play the video stream whereas for both AMRR and Onoe the media
stream got stalled. Another interesting observation is that for voice and inter-
active traffic, the average throughput achieved is much less than the theoretical
wireless channel of 1Mbps for all the three RCAs.
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Next we measured the packet inter-packet time for VoIP applications using
the three different RCAs. This is shown in Figures [8], [9] and [10]. It is observed



that the performance of Onoe when it comes to VoIP exceeds the performance of
both AMRR and SampleRate. This is not surprising since Onoe is not aggressive
like the other two and remains stable with variations of wireless conditions. On
the other hand, both SampleRate and AMRR closely follow the RSSI and tries
to move to a higher data rate as soon as wireless channel improves. This causes
the transmission rate to fluctuate a lot and results in significant packet loss
due to high channel bit error rate (BER). Thus, aggressively trying to increase
the bit-rate during fluctuating channel conditions might not bode well for UDP
based applications.

In case of AMRR, each time the laptop was taken from the AP to a distance
greater than 60 feet, the VoIP call got dropped. This is very much evident from
the delay shown in Figure [9]. For all the RCAs, we observed that the the average
inter-packet delay exceeded the desired upper bound value of 150 ms required for
VoIP applications. This is shown in Figures [8][9][10]. Consequently, we observed
unacceptable and poor voice quality in the form of audible echo at the wireless
client.
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5 Conclusions

In this paper, we have compared in a systematic manner the performance of
the three RCAs available for Atheros based wireless chipsets using the Madwifi
driver. We have investigated how each of them perform at the link layer by pro-
viding a controlled and closely monitored step function of RSSI variations. We
have also exposed the effect of RCA on application layer traffic by conducting
experiments involving four classes of heterogeneous traffic (voice, streaming, in-
teractive, background) in controlled network subnets. The average application



level throughput and packet inter-arrival time observed with different RCAs has

b

een reported in this study. Based on our observations, we conclude the follow-

ing:

— The RCAs need to be aware of the state of the wireless channel. Deriving
channel information from raw RSSI values and packet probes might not
reveal the complete picture about the wireless channel dynamics.

— There is a possibility of improving the performance of the RCAs for low
link conditions. The bit-rate adaptation technique might also depend on the
stream type being transmitted over the wireless channel.

As part of our future work, we plan to optimize and performance tune the rate
adaptation parameters for each of the RCAs and propose a new bit-rate selection
algorithm that takes the above factors into consideration.
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