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Abstract

This paper studies TCP performance over static, ad
hoc networks that use IEEE 802.11 protocol as the access
method. Our study reveals some interesting results. First,
there exists an optimal value for TCP congestion window
size, at which the TCP throughput is maximized. How-
ever, TCP does not operate around this optimal point, and
typically grows its window much larger; this leads to de-
creased throughput and increased packet loss. To better
understand this behavior, we further study the character-
istics of TCP packet loss. Our results show that, network
overload is mainly signified by wireless link contention. As
long as the buffer size at each node is reasonable (larger
than 10 packets), buffer overflow-induced packet loss is rare
and packet drops due to link-layer contention dominate.
Link-layer drops offer the first sign for network overload.
We further observe that multihop wireless links collectively
demonstrate Random Early Detection (RED) like graceful
drop behavior, but the current TCP protocol does not adapt
well to this built-in grace drop characteristic. We further
propose two techniques of link RED and adaptive spacing
at the link layer, and simulations show that they can improve
TCP throughput by 5% to 30%.

1 Introduction

Wireless ad hoc networks offer convenient
infrastructure-free communication over shared, multihop
wireless channels. Following a peer-to-peer networking
model, they enable a group of networking devices to
communicate among one another over error-prone wireless
links. Network applications often require reliable data
delivery, and must depend on a reliable transport protocol
for this purpose. TCP has successfully fulfilled this
requirement in the Internet domain, its design has been
well tested over the years and a large base of applications
already makes use of it. For these reasons, TCP also seems
to be the natural choice for users of ad hoc networks that

want to communicate reliably with each other and even
with the rest of the Internet.

TCP is an adaptive transport protocol that controls its
offered load according to the available bandwidth of the un-
derlying network. For wireless ad hoc networks, such as
those based on the IEEE 802.11 protocol – thede facto ac-
cess method, this characteristic is of particular importance;
the wireless channel is a scarce resource, has limited ca-
pacity and is shared by multiple users, thus improving its
utilization (through increasing channel spatial reuse and re-
ducing packet loss) is highly desirable.

Earlier research on TCP over ad hoc networks inves-
tigated the mobility-induced factors on TCP performance,
such as link breakage and routing failures [2, 3]. However,
the impact upon TCP of sharing the wireless medium has
not yet been sufficiently addressed. The goal of this work is
twofold: First, we seek to provide a comprehensive under-
standing of TCP performance over multihop wireless net-
works, by studying the behavior of throughput and the evo-
lution of packet loss. Then, based on the findings of this
study, we describe an initial design effort to improve TCP
performance and achieve higher channel utilization.

The analysis of TCP performance over static, multihop
wireless networks, reveals some interesting results. First,
there exists an optimal value for TCP congestion control
window size, at which the throughput is maximized. How-
ever, over ad hoc wireless networks, the standard TCP pro-
tocol does not operate around this optimal point, and typ-
ically grows its window much larger. As a consequence,
the network experiences considerable packet loss, and its
throughput decreases. Our findings show that by carefully
tuning the protocol parameters, an improvement in the order
of 5% to 30% can be readily achieved.

TCP buffer loss and link-layer packet drops also exhibit
an interesting pattern, which can prove helpful as an indi-
cation of network overload. As long as the buffer at each
node/router is not too small (larger than 10 packets), buffer
overflow-induced packet loss is rare and packet drops due
to link-layer contention dominate. We further observe that
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multihop wireless links collectively demonstrate RED1 -like
graceful drop behavior, but the current TCP protocol does
not adapt well to this built-in drop characteristic. From the
above, we see that contention loss2 offers the first sign of
network overload, and provides a way for TCP to identify
its optimal operating window size.

The previously made observations also shed some light
on how to improve TCP performance over multihop wire-
less networks. In this paper, we propose two link layer tech-
niques that improve TCP efficiency: a Link-RED algorithm
to tune the wireless link’s drop probability, and an adaptive
link-layer pacing scheme to increase the spatial reuse of the
channel. The goal is to let TCP operate in thecontention
avoidance region.

To summarize, this paper makes the following two im-
portant contributions:

� Through a combination of analysis, simulations, and
real experiments, an extensive study of TCP perfor-
mance over multihop wireless networks is presented,
and the reasons behind suboptimal behavior are iden-
tified.

� Two techniques at the link-layer that improve perfor-
mance by a factor of 5% to 30% are described and
evaluated.

The rest of the paper is organized as follows. Back-
ground information, including a brief introduction to the
802.11 MAC protocol, is provided in section 2. A thor-
ough study of the TCP throughput on various topologies
and traffic patterns follows in section 3. Section 4 provides
more insights on the packet loss of the TCP protocol and the
link-layer. In section 5, mechanisms that improve the TCP
performance are proposed and evaluated. Discussions of
several important issues follow in section 6. Related work
is presented in section 7 and the paper concludes in section
8.

2 Background

We consider a static, multihop, wireless ad hoc network,
in which every node also acts as a router, forwarding pack-
ets originated from other nodes. A single radio channel is
shared for wireless transmissions, and only receivers within
the transmission range of the sender can receive the packets.
The IEEE 802.11 Distributed Coordination Function, thede
facto access method used in ad hoc networks, serves as the

1Random Early Detection (RED) is a congestion control mechanism
used in the Internet. It starts to gradually drop incoming packets as the
queue size builds up.

2The term “contention loss” is used to denote packet drops that are due
to link-layer contention, as it will be further described in section 2.

wireless MAC protocol. In 802.11, each packet transmis-
sion is preceded by a control handshake of RTS/CTS mes-
sages. Upon overhearing the handshake, the nodes in the
neighborhood of both the sender and the receiver will defer
their transmissions, to ensure the successful completion of
the subsequent data packet transmission.

Failures in the transmission of control and data packets
are usually caused either by the effect of the Hidden Ter-
minal problem [12, 18], or by channel errors. Specifically,
the sender drops the DATA packet after re-sending the RTS
message seven times and does not hear a CTS reply from
the receiver. DATA packet is also dropped after four re-
transmissions without receiving an ACK.

The locality of wireless transmissions implies that con-
tention for the shared medium is location dependent. A col-
lision occurs when a receiver is in the reception range of two
simultaneously transmitting nodes, thus unable to cleanly
receive signal from either of them. In such cases, link-layer
contention loss happens when packets are dropped due to
collisions or failed handshakes. The location-specific na-
ture of contention, coupled with the multi-hop nature of the
network, also allows for spatial channel reuse. Specifically,
any two transmissions that are not interfering with each
other can potentially send data packets over the physical
channel simultaneously, which improves aggregate chan-
nel utilization. Figure 1 illustrates an example for con-
tention loss and spatial reuse, in which pairs of A-B and
E-F may transmit simultaneously, but simultaneous trans-
missions from pairs of A-B and C-D will collide.

3 TCP throughput study

In this section we study the throughput of TCP over sev-
eral topologies of ad hoc networks. Since the shared, wire-
less medium is bandwidth-constrained, we are interested in
the conditions under which TCP maximizes the wireless
channel utilization. For this purpose, using simulations,
analysis and real experiments, we examine TCP through-
put with respect to its window size, and an optimal value
for this window is identified. This optimal value results in
maximum TCP throughput, which increases channel spa-
tial reuse, and minimizes at the same time the link-layer
contention. The section concludes with an analysis of the
throughput that TCP achieves during the steady state.

3.1 TCP optimal window size – chain topologies

To give insight on the TCP throughput behavior, we be-
gin our study by presenting simulation results on a 7-hop
chain, as well as a more general chain topology, consisting
of � hops (h-hop). Then, an analysis on TCP optimal con-
gestion window size in the h-hop chain is provided, and a
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Figure 1. Spatial reuse and contention.An example of 8 hop chain. Note that the optimal spatial reuse is achieved when nodes A, D and
G transmit simultaneously first and then B, C, and E follow.

set of real experiments verifies the simulation and analytical
results.

3.1.1 Simulation results

For our simulation study, we use thens-2 simulator with
CMU wireless extensions. The parameters are tuned to em-
ulate the AT&T Lucent wireless card, operating at 2Mbps.
In the physical layer model ofns-2, the effective transmis-
sion range of each node is set to 250 meters, and the carrier
sensing and interfering range are set to 550 meters. We also
ignore the impact of channel errors, since, as shown in [9],
the seven retransmissions provided by 802.11 are sufficient
in order to recover from typical channel errors. To mini-
mize the significant effect of routing protocol dynamics on
TCP [2, 3], we use manually pre-configured source rout-
ing, to set up the TCP data path. We choose TCP NewReno
for our studies, which is an improved version of TCP Reno
that handles more efficiently multiple packet losses in the
same window. Comments on other TCP versions will be
discussed in section 6. Table 1 shows the default settings
used in our simulations.

Our experiments start with a 7-hop chain topology. We
vary the maximum TCP window size and observe the cor-
responding throughput at the given window. To this end,
we artificially bound the maximumallowed sender win-
dow size������ for TCP, in the range of 1 to 32 pack-
ets. This is equivalent to enforcing flow control in TCP,
where������ plays the role of advertised receiver win-
dow size. At each������, we run one TCP flow over
such network, for 300 seconds. Figure 2 (left) plots the TCP
throughput vs. the������ value. The results show that
TCP achieves the best throughput when������ is set to
a value of 3 in a 7-hop topology. When������ is in the
range of 1�3, the throughput grows almostlinearly with
������. When������ � �, TCP throughput starts
to decrease but stabilizes eventually. In figure 2, results for
three different packet sizes – 576B, 1024B and 1460B – are
also presented; it is clear that TCP achieves its best through-
put at a window size of 3, irrespective of the packet size.

We now generalize our simulations to the case of an h-
hop chain, by varying the hop count from 3 up to 48. Figure

2 (middle) presents the optimal TCP window size as a func-
tion of the hop count. As we observe from the straight line
of this figure, which will be proven through the analysis fol-
lowing in the next section, the optimal window size can be
well approximated by��� in the�-hop chain, as the chain
becomes longer. Figure 2 (right) also plots TCP throughput
at the optimal window size���, for different values of hop
count. From the graph, it is clear that TCP optimal through-
put tends to decrease, as the length of the chain increases.
As a final remark, in all cases, the measured value does not
deviate from the predicted one by more than 2 packets.

3.1.2 Analysis

At this point, we provide a simple, yet insightful analysis
on the optimal congestion window size� � of TCP, in an
�-hop chain. The analysis makes several ideal assumptions,
however it does capture important physics of the TCP per-
formance. One assumption is that the distance between any
two neighboring nodes in the chain is close to the maxi-
mum transmission range of 250 meters. Furthermore, for
the purpose of illustrating the analysis, a global scheduler,
which perfectly coordinates and synchronizes transmissions
at each node, is assumed to be available. In what it follows,
we will elaborate on the 8-hop chain of figure 1.

Consider the interference range as 550 meters. It is eas-
ily noticeable from the figure that maximal spatial reuse is
achieved if the scheduler adopts the following policy: nodes
A, E simultaneously transmit first, followed by concurrent
transmissions of B, F, then of D and H, and finally, nodes
C and G transmit at the same time; then, the same process
repeats. In general, all nodes that are 4 hops apart in the
chain can send their packets simultaneously, thus maximiz-
ing the spatial channel reuse. In essence, this translates to
each node being able to transmit one packet every 4 data
slots3, according to this policy. Therefore, if the raw capac-
ity of the shared wireless link is�, the effective bandwidth
of the network becomes� � � �

� .
Also note that the 802.11 protocol makes use of the RTS-

CTS-DATA-ACK sequence for each data transmission; it
will not send the next data packet, until the ACK for the

3Each slot is equal to the transmission time of one packet
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Wireless Channel Raw Capacity 2M bps
Radio Transmission Range 250 meters

Carrier Sensing Range 550 meters
Buffer Size at Each Intermediate Node/Router 50 packets

Adjacent Node Distance 200 meters
Routing Protocol Manual Source Routing

TCP Version TCP NewReno
Default TCP Packet Size 1460 bytes

Default TCP Receiver Window Size 32 packets

Table 1. Simulation parameters
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Figure 2. Best TCP Throughput is achieved when window size is about 3 in an 7-hop Chain Left: Single TCP throughput
for different packet sizes. Middle: TCP optimal window in variable length ad hoc chains. Right: Best throughput vs. hop count.

packet currently under service is received. Essentially, the
DATA-ACK loop over each wireless hop (as illustrated in
figure 1) has functionality similar to a link-layerStop-and-
Wait protocol. However, unlike the wireline Ethernet coun-
terpart, each link can only transmit one packet at a time,
and cannot deliver multiple packets back-to-back. Hence,
at any time�, each hop can only allow one packet on the
fly. If each packet is	 bits and the raw link capacity is�,
then the one-way RTT is given by:
�� � � � �

�
. With the

optimal window size being� �, the effective bandwidth be-
comes�� � ��

���
. Since�� � �

� , we obtain the optimal
TCP window size (in packets) as:

� � � �� �
�� �
�

	
�

�

�
� �

	

�
�
�

	
�

�

�

At this window size of�� , TCP can achieve best throughput.
Of course, the assumption of perfect coordination among
neighboring nodes is unrealistic. If the coordination is im-
perfect, the best window size for TCP that maximizes its
throughput may be larger in reality. But the above analy-
sis still provides a good approximation, indicating at what
window size TCP achieves the best throughput, at least in a
statistical sense. This has been confirmed by the real exper-
iments that follow.

3.1.3 Verification through real experiments

To confirm the results obtained through simulations and
analysis, we also performed experiments on a real testbed.
We set up a 7-hop ad hoc network of chain topology, us-
ing 8 laptops computers, running the Linux kernel, version
2.4.3. Each notebook was equipped with an AT&T Lu-
cent ORiNOCO wireless card, operating at a frequency of
2.422GHz, having a bit rate of 2Mbps and the RTS/CTS
option turned on. In this topology, only neighboring nodes
are within the transmission range of each other, and man-
ual routing was employed, in order to eliminate the dy-
namics of routing protocols. The maximum window size
of the TCP connection was controlled by adjusting the ad-
vertised window size at the end nodes, through theMaxi-
mum Window Clamp sysctl variable of the IPv4 stack.

Figure 3, shows the measured TCP throughput with dif-
ferent advertised window sizes. Each data point in the fig-
ure is the average calculated over 5 runs. The measurements
match the results previously obtained through simulations,
with a slight divergence of about 10%, mainly due to packet
losses, caused by the imperfect conditions of the wireless
channel.

3.2 More complex scenarios

The results described above show that there exists an op-
timal value for the TCP window size in the chain topol-
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Figure 3. Real testbed measurements of TCP
throughput for different maximum advertised window
sizes and a packet size of 1460 bytes.

ogy, so that channel reuse is maximized. This results in
best channel utilization and consequently maximum TCP
throughput. In order to gain an even deeper understand-
ing of the TCP throughput behavior, we expand our study
to more complicated scenarios of complex topologies and
multiple TCP flows.

3.2.1 Complex topologies

Figure 4 depicts the cross and grid topologies tested in our
simulations, using the same parameters as those in section
5. In the cross topology, we run two TCP flows from node
0 to node 6 and from node 7 to node 12, while in the 13
X 13 grid topology, we run 4, 8 and 12 TCP flows, half of
them for each direction and spaced out evenly. In the ran-
dom topology, 200 nodes are placed within a rectangular
area of size���� � ����, and 20 TCP flows run, with the
sources and destinations being randomly selected. Due to
the randomness of the latter scenario, we repeat the simula-
tion for each������ setting with 10 different randomly
generated topologies and TCP flows, compute the average
value as the final result.

Cross topology On a 13-node cross topology, we run 2
TCP flows. The optimal window for each flow is 2, but we
measured aggregated TCP window to be 12 packets, along
with 25% degraded throughput. In fact, we show that the
optimal TCP window size in such cross topology� �

�� �
����� �, where� is the hop count for each flow. When� �
�, as in the 13-node case,� �

�� � ��, which matches well
with the simulation results. The derivation of this formula
is given in the appendix.

Grid topology On the 169-node grid, we ran 4, 8, and
12 TCP flows. In all cases, the measure TCP windows are
significantly larger than the optimal, with throughput de-
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Figure 4. More complex topologies, used in the sim-
ulationLeft: the cross topology, with 13 nodes. The distance be-
tween two neighboring nodes is 200 meters, 2 TCP flows run in
each direction. Right: the 13x13 grid topology, where distances
between adjacent nodes are 200 meters, both horizontally and ver-
tically.

creases from 15% up to 30% in 12 flows case. In particular,
for the 4 TCP flow case, we computed the optimal window
for each flow to be� ����� �. When� � ��, � �

�� � � which
also matches our simulation results well. The derivation of
the above formula can again be found in the appendix.

Random topology We also run extensive experiments
with random topologies. For each random topology, we re-
peat the simulation with increasing������ limitation of
each flow just as in the chain topology. We still observe that
there exists an optimal window when the maximum aggre-
gated throughput is achieved. However, we are not able to
analytically characterize the optimal window in the random
topology.

3.2.2 Multiple flows

In the TCP study of multiple flows, the network capacity
is shared by all flows. In theory, if the flows are distributed
uniformly in the topology, the aggregate of the optimal TCP
window of all these flows approximates the network pipe
line capacity, which corresponds to the case of maximum
spatial reuse of the underlying network. Thus, we test mul-
tiple TCP flows scenarios of 4, 8, and 12 flows over the grid
topology, and the results are presented in table 2. The same
observation on the existence of an optimal value of the TCP
window size also holds for the multiple flows scenario.

3.3 Suboptimal TCP performance in Ad Hoc Net-
work

All our simulations and analytical results confirm that for
a given topology and traffic pattern, there exists an optimal
window size, at which TCP achieves the best possible spa-
tial channel reuse, and consequently maximizes the channel
utilization. However, if we let TCP������ unbounded
(i.e., the normal TCP behavior), a common observation for
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Topology Number of flows Optimal Measured Optimal Average measured
Throughput (Kbps) Throughput (Kbps) Window Window

6-hop Chain 6 298 272 2 22
7-hop Chain 3 255 215 2 16

13-node Cross 2 248 203 4 12
169-node Grid 4 287 241 8 14
169-node Grid 8 957 824 8 19
169-node Grid 12 872 690 8 26

200-node Random 20 1,196 1,015 - -

Table 2. TCP performance over more complex topologies with multiple flows.The data for TCP throughput and window are the
aggregation of all flows in topology. In all cases, TCP stable performance is suboptimal.

all topologies and scenarios examined before is that TCP
experiences a 10% to 30% decrease in its throughput. For
example, The TCP throughput difference between the opti-
mal and steady-state in random topology, given in Table 2,
is about 18%. This shows that TCP normally operates sub-
optimally, there is clearly a lot of room for improvement. In
order to propose solutions that could bridge the gap between
the current and the maximum performance, in Section 4, we
identify in details the reasons for this suboptimal behavior.
To this end, we investigate the causes of TCP losses and
link-layer packet drops, which in turn provide a mechanism
for detecting the optimal operating point.

4 TCP Buffer Loss and Link-Layer Drops

The previous illustration of the variation of the window
size showed that TCP does not operate around the optimal
throughput point, in the steady state. This section brings
the reasons behind such suboptimal performance to light,
through a careful study of the TCP buffer loss behavior and
the link-layer dropping pattern, in multihop, 802.11-based,
wireless networks.

4.1 Link-layer drops dominate over buffer loss

The congestion control mechanism of TCP assumes that
all packet losses are due to congestion in the network. In-
deed, in the wired Internet, TCP packet loss is mainly
caused by congestion that is experienced by the network;
in this case, buffer overflow drops at the congested link can
readily serve as an indication of a congestion incident. In
what it follows, we examine whether the same assumption
regarding packet loss holds for the environment of ad hoc
wireless networks.

For this purpose, we run a series of simulations with
different TCP buffer sizes, all of which are larger than 20
packets. The results are quite surprising: packet drops due
to buffer overflow at each node arenever observed, and all

packet drops are due to link-layer contentions, in all sim-
ulated scenarios. Table 3 shows results for one such sce-
nario, and more specifically the buffer occupancy at each
node when the buffer size is set to 30. As it is clear from the
table, the average number of packets in the buffer is only
about 1�2 packets at each node, and the maximum never
exceeds 17 packets, at any time instant. In the same set-
ting, we observe that all TCP drops of 165 packets out of
the 12349 transmissions, during a lifetime of 300 seconds,
are due to link drops, and none is cause by buffer overflows.

The above result is somewhat intriguing, and requires
further explanation. How can the network experience
packet loss, whether that be buffer overflows or link drops,
if the average number of packets in the buffers is only 1�2?
Once again, due to space constraints, we refer to figure 1 in
section 2 to provide an insight on this phenomenon. Sup-
pose each node has only 1 packet in the buffer at time�,
and all the nodes contend for the shared channel, in order
to deliver their packets to their next-hop nodes. Further as-
sume that node D first starts transmitting its buffered packet
to E after a random backoff period, by initiating the RTS-
CTS-DATA-ACK handshake with node E. After hearing the
handshake between D and E, node B will defer until the
packet transmission is completed (recall that D is within the
carrier-sensing range of B, set to be the interference range
of 550 meters, inns-2). If, during this period, node A is un-
able to detect the ongoing transmission between D and E,
and initiates an RTS message to B, the latter will not reply.
If A receives no response from B after seven retransmis-
sions of this RTS request, it drops its head-of-line packet
in its buffer, according to the IEEE 802.11 standard. What
we just described is essentially a by-product of the Hidden
Terminal effect. This results in packet drops even when the
buffer occupancy is low (only 1 packet in this case). Thus,
buffer loss never happens in a multihop wireless network
with each node having a sufficient buffer size. In contrast,
wireline networks usually do not experience link drops, but
suffer only from buffer overflows.
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Node ID #1 #2 #3 #4 #5 #6 #7 #8 #9
Max. Buf 9 11 13 14 16 15 12 10 6
Avg. Buf 0.4 0.8 1 1.9 1.9 1 0.9 0.7 0.3

Table 3. TCP Buffer Occupancy (in packets): No
packet drop due to buffer overflow.

Using the same figure 1, we are also able to explain why
contention loss eventually saturates and stabilizes at a cer-
tain dropping point, as the load increases. As far as con-
tention drop is concerned, thenumber of non-empty buffers
is the key, while the absolute number of packets in the buffer
does not matter much. When all the buffers are non-empty,
the network reaches maximum contention. The value of
link drop probability is governed by the 802.11 MAC pro-
tocol, and not by the number of packets in each buffer – the
latter aspect is only related to TCP congestion control and
decides on how long the TCP flow will stay in the link loss
phase.

4.2 Distributed RED-like Link Drop Behavior

If link-layer contention loss offers the first sign of net-
work overload in many scenarios, the next concern is how
this loss occurs as the network overload builds up. Before
moving on to the results, a brief discussion on the meaning
of “network overload” in the wireless ad hoc context is nec-
essary. In the wireline counterpart, a busy link or a built-up
queue at the bottleneck pipe signifies a condition of network
overload. However, in a multihop wireless network, net-
work overload isno longer a bottleneck link property, but
a shared feature of multiple links. To make things worst, it
cannot be detected within a single hop alone. Informally, we
can define it as the state of the network where the incoming
traffic is more than the network can handle, while operating
at the point of maximum utilization; this is met when the
optimal spatial channel reuse is achieved. Having defined
this term that will be referred to later on, we proceed to the
following results, which show that link drop exhibits a be-
havior similar to RED [19] over the Internet, in the sense
that the drop is graceful as the network load increases.

Figure 5 (left) plots the link drop probability as a func-
tion of the TCP window size. We employ the TCP window
size in order to characterize the current network load. The
graph shows that contention drop probability gradually in-
creases as more packets find their way inside the network.
The figure clearly presents graceful link drops, with the in-
crease of the network load. To better understand the under-
lying mechanics of this link drop behavior, we also exper-
imented with a CBR flow using UDP. From the results of
contention loss probability shown in figure 5 (right), a sim-
ilar gradual link drop behavior is exhibited, in the presence

of increasing network load. The figure also depicts the sat-
uration of the contention drop probability, which happens
when the load augments beyond a certain threshold.

The above results indicate that each wireless link be-
haves similarly to RED up to some extent, having a grace-
ful drop behavior in the presence of network overload: it
increases its drop probability as the network load grows,
and finally saturates at some point. However, there are
several key differences between link-layer contention drops
and wired RED drops. The latter occur inside the buffer (of
the single bottleneck link), but the former happen over mul-
tiple contending links, of which they are a collective feature.
As illustrated in figure 6, RED drop probability is 0 when
its buffer is less than a threshold value�	
 ��, hits a maxi-
mum value when its buffer grows to��� ��, and becomes
1 when the buffer is filled up. However, link drops may hap-
pen before the link reaches its capacity due to randomness,
though its drop probability is very small. The link drop like-
lihood gets its largest value when the network load reaches
a threshold, and then remains saturated at this point.
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Figure 6. Comparison between link drop and RED

4.3 More Complex Topologies

We further run more simulations with multiple flows in
topologies of increased complexity, to test the validity of
the above observations. Due to space limitations, we do not
show the detailed results here, hence the following provides
only a concise summary of our findings.

Some among the tests include cross, grid, and random
topologies. In all simulated scenarios, buffer overflows are
rare if not observed at all, given that the buffer size at each
node is reasonably large. Link-layer contention-induced
losses happen well before buffer overflows (this is also true
for UDP, as shown in the middle graph of figure 5), and
contribute to all packet drops. In all cases, RED-like grace-
ful drop is observed as the network overload starts to build
up. If a node has more active neighbors, the maximum drop
probability increases, but it still follows the RED-like drop
pattern.
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Figure 5. RED-like Link Drop Behavior: Contention loss preceding buffer-overflow loss is an inherent feature of
shared wireless medium. Left: Contention loss and buffer-overflow loss; Middle: Contention loss as a function of the offered load. Right:
Throughput decreases after contention builds up.

4.4 An Analysis of RED-like Drop

We now provide a simple analysis to show why multihop
wireless links exhibit RED-like drop feature. For this pur-
pose, we consider a generic,
 -node uniformly distributed
random topology. For simplicity, assume that each of the

nodes has the same probability to become backlogged (i.e.,
has packets to deliver). We denote the total number ofback-
logged nodes in the network as� and all of them are ready
for transmission. We will show that as� increases, the link
drop probability will exhibit a RED like behavior.

The� backlogged nodes in the network will use RTS-
CTS-DATA-ACK handshake of 802.11 protocol in data
transmission. If� is very large, not each of the� nodes
is able to successfully transmit its data packet due to colli-
sions. Among� nodes, let us denote that�
�� nodes are
able to successfully initiate RTS request. This happens only
if each of these�
�� nodes detect clear channel through its
carrier sensing. Note that�
�� � � for large�. Due to
hidden terminal problem [12, 18, 11], not all of these�
��
nodes may successfully transmit their DATA packets. Let
us denote the number of nodes that are able to successfully
transmit the DATA packets as�
��. It is easy to see that
�
�� � �
��.

Using Markov-chain to modeling the retrying process of
the 802.11 protocol, we can derive each node’s packet loss
probability �� as follows (An outline of the derivation is
given in the appendix):

��
�� �
��	�
	

�	
�
�	 ��	�

��	�

���� �
�
�	

�
��

�
��

��

(1)

where� � � is the maximum retry count for RTS in 802.11
protocol when RTS-CTS handshake fails.

We now use (1) to explain why each node/link has a RED
like drop behavior as the network load increases. In the uni-
formly distributed
 node field, let us use� � denote the
maximum number of nodes that can transmit their DATA
packets concurrently without collision. At this value, the

network achieves maximum channel spatial reuse. Among

 nodes, we also denote the maximum number of nodes
that can initiate RTS messages, i.e., they perceive clear
channel through carrier sensing) as� �. In the following, we
will show that the link drop probability behaves like RED
with �� and�� as the two threshold values.

First we consider the case when the network is under-
loaded:

Proposition 4.1 Denote the maximum number of nodes
(that can concurrently transmit DATA in the given topology)
as ��. When the number of backlogged nodes � is smaller
than��, i.e., � � ��, then packet drop probability �� � �.

To see why the above is true, since� � ��, then all�
nodes can statistically transmit simultaneously. Therefore,
statistically�
�� � �
�� � �. Then according to
��,
the drop probability over each link is� � � �. This shows
that, as long as the network is underloaded, the link drop is
negligible.

Now let us consider the second case. When the number
of backlogged nodes� increases larger than� �, i.e., the
network is overloaded, the following holds:

Proposition 4.2 When the network is overloaded (i.e., the
number of backlogged nodes � is greater than � �), the link
drop probability �� increases as � increases.

We still use
�� to see why the above is true. In this case,
all � can successfully initiate RTS message but only��

nodes can transmit their DATA without collisions. That is,
�
�� � �� but �
�� � �. Then,�� � � � ��. It is
easy to see that��
�� is an increasing function of� since

���	�

	

� �. This shows that link drop probability increases
as the network load (as expressed by�) further increases.

Finally, we look at the third case. As the network load
further increases, then link drop probability starts to satu-
rate:

Proposition 4.3 Once network is heavily loaded in the
sense that � � ��, then the link drop probability �� re-
mains constant statistically.
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Figure 7. Link drop probability in a 7-hop chain
matches well with our analysis. We introduce 7 1hop
UDP/CBR flows over the chain. As we increase the source rate
uniformly for each source, we measure the backlog number����
and����. Given equation (1), we derived the value of packet drop
probability. The dots are the packet drop rate measured in real sim-
ulation, and the lines are the derived value. The X-Axis is the drop
probability, and the Y-Axis is the average backlog probability of all
nodes in the network.

In this case, among the� nodes, only� � out of �
��
nodes can initiate RTS, and only�� nodes can transmit
DATA packets without collision. Therefore,�
�� � � �

and�
�� � ��. Then��
�� remains constant statistically
according to
��.

In the above, we use a simple model to explain why mul-
tihop wireless links may exhibit RED-like drops. Though
the model seems crude and leaves out many details such
as the impact of backoff in the MAC protocol, it provides
a good approximation to real results. Figure 7 shows that
it matches very well with the simulations in a 7-hop chain
example.

5 Improving TCP Performance

The sound understanding of TCP throughput behavior,
and the fundamental reasons for packet dropping as illus-
trated in the preceding two sections of this work, shed light
on how to improve the TCP performance, over a multihop
wireless network. In what it follows, we propose and eval-
uate two simple, yet elegant solutions that are based on the
aforementioned observations, and enhance performance up
to 30%.

5.1 Techniques

The Distributed Link RED (LRED) algorithm The first
straightforward way for improving TCP’s performance is to
reduce the buffer size at each node. Unfortunately, this ap-
proach will exhibit the undesirable side effect of the buffer
not being able to absorb traffic periods characterized by
burstiness of TCP flows.

Therefore, we devise a Link RED (LRED) algorithm
that exploits the built-in dropping mechanism of the 802.11
MAC, from which the transportation layer performance can
benefit. The main idea behind LRED is to further tune wire-
less link’s drop probability, based on the observed likeli-
hood of link drops. While the wired RED provides a lin-
early increasing drop curve as the queue exceeds a mini-
mum size��� ��, LRED does so as the link drop proba-
bility exceeds a minimum threshold. As it was shown in
more details in section 4, link-layer packet drops provide an
indication of network overload; we take advantage of ex-
actly this observation, in order to control packet dropping
–or marking, as will be elaborated later, according to the
average number of MAC attempts.

In the LRED algorithm, sketched below in pseudocode,
the link layer maintains an average number of the retries
of recent packet transmissions. The head-of-line packet is
dropped/marked from the buffer with a probability that is
based on this average number. At each node, if the average
number of retries is small, say less than��� ��, which in
essence means that the node is seldom hidden, packets in
the buffer are not dropped/marked. If it gets larger, then the
dropping/marking probability is computed, and the mini-
mum of the calculated value and a maximum bound��� �
is used.

A nice feature provisioned by this algorithm, which we
mentioned above and also used in our simulations, is its
smooth integration with ECN-enabled TCP flows: instead
of blindly dropping the packets, we can simply mark them
at the link layer, and thus allow ECN-enhanced TCP flows
to adapt their offered load without losing any packets. TCP
performance is further improved, by paying the moderate
cost of a slightly more complex link-layer design.

To summarize, LRED is a simple, yet attractive mech-
anism that, by monitoring just a single parameter –the av-
erage number of retries in the packet transmissions at the
link-layer, accomplishes three goals: a) ameliorates the per-
formance of TCP, by increasing its throughput, b) provides
an early sign of network overload to the transport layer
protocols, which in turn can react accordingly, and c) im-
proves fairness among multiple competing flows, as it will
be shown in the evaluation of the next section.

Adaptive Pacing Our second technique seeks to enforce
an adaptive pacing approach at the link-layer. In parallel to
the LRED algorithm, which prevents the traffic from over-
loading the network, the goal of adaptive pacing it to im-
prove spatial channel reuse, by distributing the traffic in the
network in a more balanced way, while enhancing at the
same time the coordination of forwarding nodes along the
data path. As a welcome outcome, the network runs around
its optimal operating point. The design of this mechanism
works in concert with the distributed coordination function
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Algorithm 1 L-RED: LinkLayerSend(Packet�)
Require: ��� ����� is the average MAC retries for each

packet
1: if ��� ����� � ��� �� then
2: ���� ����
 �
3: ������ 
 �

4: else
5: ���� ���� � �����
� ������	�� ��

	�� ���	�� ��
���� ��

6: set������ OFF
7: end if
8: mark� with ���� ����
9: MacLayerSend(�, ������)

10: ����� = GetMacRetries()
11: ��� ����� � �

���� ����� � �
������

(DCF) of the 802.11 MAC standard.
In the current 802.11 protocol, a node is constrained

from contending for the channel by a random backoff pe-
riod, plus a single packet transmission time that is an-
nounced by its immediate downstream node. However, the
exposed receiver problem [14] still happens due to lack of
coordination between nodes that aretwo hops away from
each other. Adaptive pacing solves this problem, without
requiring nontrivial modifications to the 802.11, or a sec-
ond wireless channel [14]. The underlying idea is to let a
node further backoff an additional packet transmission time
when necessary, besides its current deferral period (i.e. the
random backoff, plus one packet transmission time). This
extra backoff interval helps in reducing contention drops
caused by exposed receivers, and extends the range of the
link-layer coordination from one hop to two hops, along the
packet forwarding path.

The algorithm, an outline of which is presented below in
pseudocode, works in collaboration with the previously de-
picted LRED algorithm, and is described as follows: first, it
is enabled from within the LRED algorithm, when a node,
after sending one packet, finds its average number of re-
tries to be less than a��� �� threshold. Then, this node
calculates its backoff time as usual, but if pacing was en-
abled, it also adds to that backoff period an interval equal to
the transmission time of the previous data packet (plus the
overhead), and triggers its timer.

To conclude, by requiring nodes to backoff for an ex-
tra packet sending period, after successfully transmitting a
packet, a better coordination among nodes is achieved, and
the behavior of an ideal scheduler that increases the end-to-
end network throughput is imitated.

5.2 Performance Evaluation

In this section, the efficiency of the two previously pro-
posed techniques is studied. We measure and compare

Algorithm 2 Adaptive Pacing
Require: extra Backoff � �

1: if received ACKthen
2: random Backoff 
 ran backoff(cong win) �DATA

transmission succeeded. Setup the backoff timer�
3: if ������ is ON then
4: extra Backoff = TX Time(DATA) + overhead
5: end if
6: backoff 
 random Backoff + extra Backoff
7: startbackoff timer
8: end if

the performance of TCP NewReno over the 802.11 stan-
dard and our enhanced link layer, on chain, cross and grid
topologies, as well as with single and multiple TCP flows.
Initially, the performance is analyzed separately for each
mechanism, and then an evaluation for the combined effect
of these solutions follows.

L-RED A 7-hop chain is used to evaluate whether the L-
RED algorithm is able to stabilize the TCP window around
the optimal operating point. Figure 8 plots the distribution
of time TCP spent in various window sizes. In our sim-
ulations, the maximum allowed window size is set to 32
packets. The graph confirms that the L-RED control is very
effective in keeping the TCP window size distribution close
to the optimal value of 3, while packet drops due to link-
layer contention almost disappear, as a result of reduced
load in the network. The figure also shows that by applying
L-RED, the window distribution becomes much “thinner”
compared with TCP NewReno over the unmodified 802.11.
This comes as a consequence of L-RED’s packet marking
mechanism upon detecting the onset of congestion. The lat-
ter is further explained in the right graph of figure 8, which
shows that LRED reduces the packet drops at the link layer.
As we observed in previous discussions, contention offers
the first sign of network congestion, and L-RED catches this
sign by monitoring the average number of retransmissions
for each packet.

Adaptive Pacing The 7-hop chain topology is again em-
ployed for measuring the effectiveness of the adaptive pac-
ing. As already mentioned, the goal of pacing is to im-
prove the spatial reuse of the channel, and force it to op-
erate around the network’s optimal operating point. Fig-
ure 9 shows the simulation results of TCP NewReno over
link layers with and without pacing. With adaptive pacing,
TCP is able to achieve as much as 10% improvement (fig-
ure 9, right) when the window fluctuates around the optimal
�
	� � �. The figure also shows that when pacing is applied,
the link layer packet drop decreases (figure 9, middle), and
RTT (figure 9, left) is kept small before and around the op-
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Figure 8. Window control stabilizes TCP window size around the optimal value. Left: Time distribution of instantaneous
window size becomes narrower and sharper; Right: Contention loss reduces compared with TCP NewReno.

timal window. However, by doing the pacing along, TCP
can still overload the network. In the following, we com-
bine these two techniques and evaluate how much perfor-
mance improvement TCP is gained, in terms of throughput
and fairness.

5.2.1 Overall performance evaluation

We now evaluate the overall performance achieved by com-
bining the techniques of our design, over three topologies:
chain, cross and grid.

Chain topology The results for chain topologies of vari-
ous lengths, both for a single flow and six flows, are plotted
in figure 10. In all cases, we observe that our LRED+pacing
enhanced link layer is able to boost TCP throughput up to
30%. Furthermore, our modifications force TCP to sta-
bilize at a window size close to the optimal value. For
chains longer than 15 hops, our techniques are again able
to achieve a gain of 10%�30% in throughput; and as it ap-
pears, the longer the chain, the better the throughput im-
provement. This is because our pacing mechanism helps
TCP to optimize spatial channel reuse, and the longer the
chain, the more it benefits from that reuse property.

Cross Topology Two flows over a 13-node cross topol-
ogy were simulated in this experiment. Table 4 presents the
throughput and fairness results for both flows. The fairness

results are computed using the fairness index�
�

�

���
���

�

��
�

�

���
��
�

, as
defined in [20]. Our design not only increases aggregate
throughput, but also improves fairness of both flows. On the
other hand, TCP NewReno over the unmodified link layer
results in large unfairness; this is mainly, due to the well
known capture characteristic of the IEEE 802.11 protocol
[7, 8].

Grid Topology Finally, for the grid case, we simulated 2,
4, 8 and 12 flows over a 13�13 grid topology (figure 4).
Aggregate throughput and fairness results are summarized

TCP NewReno LRED+
flow 1 244 Kbps 166 Kbps
flow 2 0 Kbps 153 Kbps

Aggregate 244 Kbps 319 Kbps
Fairness 0.5 0.9983

Table 4. Throughput and Fairness Comparison of
NewReno(NR) and NewReno+LRED+ PACING in
Cross Topology:Throughput and fairness improve over TCP
NewReno.

TCP NewReno TCP NewReno
over standard LL over LL+LRED+PACING

flow 1 532 Kbps 85512 Kbps
flow 2 126229 Kbps 90459 Kbps
flow 3 115554 Kbps 70334 Kbps
flow 4 1608 Kbps 47946 Kbps

Aggregate 242923 294251
Fairness 0.51 0.95

Table 5. Throughput and Fairness Comparisons of
NewReno and NewReno+LRED+PACING(LRED+)
of 4 flows in 13�13 Grid.

in table 6, while more details for the specific case of 4 flows,
2 for each direction, are provided in table 5. Once again, in
all cases, we are able to achieve about 5%�10% throughput
increase, while significantly improving the fairness index.

6 Discussions

This section further discusses two important issues of the
previous study.

Other TCP variants From the results shown in sections
3 and 4, it seems that TCP Vegas, which gauges the throug-
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Middle: Aggregate throughput of 6 flows; Right: Average window size closer to the optimal value

NR Aggregate NR Fairness LRED+ Aggregate LRED+ Fairness
2 flows 203K bps 0.502 252K bps 0.921
4 flows 241K bps 0.508 294K bps 0.952
8 flows 824K bps 0.524 963K bps 0.527
12 flows 690K bps 0.455 880K bps 0.56

Table 6. Aggregate throughput and fairness comparisons of NewReno(NR) and NewReno+LRED+PACING with 2, 4,
8 and 12 flows in the grid.
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put before increasing its congestion window size, may work
better. However, our experiments indicated that TCP Ve-
gas and TCP NewReno perform comparably in short hops
(� �). However, Vegas performs 10%�20% worse than
NewReno in longer hops (� �). The main reason is that Ve-
gas keeps its average window size very small (e.g., about 3
packets even in a 16-hop chain), which adversely affects its
throughput. Our findings lead to the conclusion that TCP
NewReno seems to be the best TCP variant that we could
use.

Implications of our results The built-in RED-like link
drop property can assist in controlling the network overload,
and this is particularly true for long-hop flows. However,
this drop behavior has much randomness in it and is also
hard to control. In our design part, we would like to reduce
it through the adaptive pacing mechanism, and use LRED
instead, which has a more predictable behavior.

7 Related Work

TCP over wireless cellular networks has been an active
research topic. [1] presents a summary of TCP optimiza-
tion over such networks, where thesingle-hop wireless link
is the first/last hop. The focus is to hide wireless channel
errors from TCP. If IEEE 802.11 protocol is used in cellu-
lar networks, channel-error induced losses would not be an
issue since seven retransmissions are adequate for loss re-
covery. The focus of this research is on multihop wireless
networks, which may incur link-contention-induced packet
drops that do not exist in the single-hop cellular networks.

There are several recent studies on TCP performance
over ad hoc networks. [2] investigates the effect of mobility-
induced link breakage on TCP performance. It studies the
impact of routing dynamics of DSR protocol and mobility
pattern upon TCP protocol. The authors further proposed
anexplicit link failure notification (ELFN) technique to help
TCP differentiate link failure-induced losses from conges-
tion losses. A more recent work [3] examines various per-
formance aspects of TCP-ELFN. Our research takes another
dimension: It studies static ad hoc networks, and solely fo-
cuses on the effect of multihop, shared wireless medium
upon TCP. In fact, we use pre-configured, manual routing
in our study to minimize the impact of routing dynamics.

[7, 8] study TCP ACK traffic effect on TCP performance
and severe unfairness and capture effect caused by the MAC
backoff mechanism. The work was conducted in the con-
text of two MAC protocols: CSMA and FAMA. TCP is ob-
served to have very small throughput when it traverses mul-
tiple wireless hops with a window size larger than 1 packet.
The authors call for introduction of link-layer ACKs to help
reduce packet drops. Our work showed that even though
link-layer ACKs are used in 802.11, TCP still suffers packet

drops due to link-layer contentions. In fact, all packet drops
are due to such contentions, and buffer never overflows. We
further show that TCP typically operates in a suboptimal
region that does not lead to best utilization of the shared
wireless channel.

There are several works that employ throughput control
to improve TCP congestion control in wired Internet [6, 5].
This is typically based on the observation that TCP through-
put flattens when the buffer on the bottleneck link builds up
and the network approaches congestion state, hence increas-
ing TCP window size will only lead to buffer overflows. Tri-
S [6] compares the currently measured throughput with the
value achieved when the window size is one packet smaller,
and TCP Vegas [5] compares the expected throughput and
the achieved throughput. The goal is to avoid buffer over-
flow events on the bottleneck link of the wired network. Our
focus is on multihop wireless networks. We use through-
put control to avoid injecting excessive packets into the net-
work. The goal is to reduce packet drops due to link con-
tentions (instead of buffer overflows) and increase spatial
channel reuse.

Early study [12] on Hidden Terminal problem showed
that the performance of CSMA in multihop packet radio
network suffers from hidden terminal interference, and the
performance could degrade to that of the pure ALOHA pro-
tocol. Solutions that use three or four way handshake proto-
cols have been proposed recently [13, 14, 15], which make
effort to clear up the channel at both sender and receiver
side before DATA can be sent. Some other solutions apply
code assignment approach in Frequency-hopping spread-
spectrum (FHSS) networks [17] or a receiver initiated col-
lision avoidance technique [16] to increase the efficiency
of multiple channel access. In our paper, we take a different
approach. We take the occurrence of hidden terminal packet
drops as an indication to the network overload. By tuning
the packet dropping behavior at the link layer, we seek to
improve the throughput of TCP by helping it identify its
optimal window.

8 Conclusion

Ad hoc networks hold great promise in pervasive com-
puting and wireless sensor networks. TCP seems to be the
natural choice for reliable data delivery over such multihop,
error-prone, shared-channel wireless networks. This work
systematically studies the impact of shared medium on TCP
performance. Our results showed that only when the buffer
is small, buffer overflow drops dominate. As the buffer fur-
ther increases, link-layer drops dominate. The link drop be-
haves like a RED gateway in terms of graceful drops in the
presence of network overload. However, the drop provided
by link layer is not sufficient. This motivates us to design
a link RED which compensates the dropping probability.
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Ongoing work seeks to further tune the LRED design pa-
rameter and test the design through more extensive tests.
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9 Appendix

9.1 A General Model For Packet Loss and Net-
work Load

A node is either in the backoff state when it remains
silent, or in the process of DATA sending attempt which
include RTS/CTS handshake and DATA transmission. Note
an initiation of RTS/CTS doesn’t guarantee an eventual suc-
cess DATA transfer. At the steady state, for a given time
slot, we define the probability that a node� initiates with
RTS for flow as�!� , and the probability that a success-
ful DATA transfer for flow as�� . Note they are average
value over a long term measurement.

From our previous discussions, a successful DATA trans-
fer of flow  requires the sender to initiate the flow first, in
addition, the flow is not hidden by any terminals in the Hid-
den Area. Let"� be the probability that a flow is hidden
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Figure 11. the diagram of the Markov Chain for cal-
culating the packet drop probability from the hidden probability.

at node� at the steady state, then�� � 
� 	 "� � � �!� .
Therefore, in steady state, we have

"� � �	
��

�!�
(2)

The steady state per-flow drop probability We consider
the discrete Markov model of retrying process in steady
state in Figure 11, where"� is the long term average hid-
den probability for each RTS initiation. The states represent
the number of times the sender has tried for a packet. Each
transition is triggered by RTS initiation. For each initiation,
the packet either goes throughput with probability� 	 " �

or fails with"� . We are interested in the probability of the
sender has� failed attempts��, that is the probability of
state�.

By considering state 0, we have��� � 
� 	 "� � �����
�
� �� � ��, and for each other state, it holds that�� �

���� �"� � �� � �
� � � �� �� � � � � � By the unity condi-

tion, we have

�� �
�	"�

�	"���
�

"�
�

Since�� is probability measure based on number of RTS
initiations, to convert it into time slot, we note that the ex-
pected time slots for each initiation is�#�!� . And the aver-
age packet loss probability$� for a given time slot in steady
state is

$� � �� � �!� �
�	"�

�	"���
�

"�
� � �!� (3)

The steady state aggregated drop probability We have
discussed the per-flow packet drop probability. Now we
consider the aggregated behavior of all flows within the net-
work. Our goal is to derive the probability that at least one
packet loss happen for all the� backlogged nodes in the
network,$
��. This probability allows us to connect the
link layer behavior with TCP window achieved which has
direct impact on the throughput achieved by TCP.

In the following, we first compute�!� and�� for each
backlogged node based on the global spatial reuse perspec-
tive. Then we apply (2) and (3) to derive the steady state ag-
gregated drop probability. To make the problem tractable,

we make the following assumptions. We assume that the
traffic are distributed within the network in a purely random
fashion. Specifically, for� backlogged senders in the net-
work, each node has an equal backlog probability of	

�� � ,
where
% 
 is the total number of nodes in the network. Fur-
ther, we assume that the nodes are randomly distributed in
the network, that is for a network covering an area of!, the
expected space each node occupies is!#
% 
 on average.

At the network level, the carrier sensing capacity,� �, is
defined as maximum number of concurrent RTS initiation
in the network without collision; and the data forwarding
capacity,��, as maximum number of concurrent successful
DATA transmissions. It’s easy to see that we always have
�� � ��.

Again, we consider the system in steady state. Given
the global backlog&, the average number of backlogged
sender is� � 
% 
�&, where
% 
 is total nodes in network,
and�& � �

�� �

��� �
�
� &�. Since we assume these senders dis-

tribute in the network evenly, the expected area covered by
each node is!#�. In steady state, at a given time slot,
in order for all these nodes to initiate with RTS, the min-
imum spacing required is!#� �. Therefore, on average,
�
�� � ��#� 	

��
�� nodes among total� senders can ini-

tiate concurrently. Among them,�
�� � ��
��#� ��	�
��

��
will succeed in concurrent DATA transmission. Therefore
for each flow the carrier sensing probability is readily
given �!� 
�� � ��	�

	
, and successful data forwarding

probability�� 
�� � ��	�
	

. from equation (2), we have

"� 
�� � � 	 ��	�
��	� for each flow. According to (3), per

flow loss probability is

$� 
�� �
�
��#�

�	 
�	 
�
��#�
������
�
�
�	

��
��

�
��

���
(4)

For all the backlogged flows, the aggregated loss probability
among all�
�� initiated node is given by

$
�� � �	 
�	 $� 
�����	� (5)

9.2 Optimal window size derivation for the grid
and cross topologies

Cross topology We derive the optimal window size
� �

�� � ����� � by using the cross topology of Figure 4 (left).
Note, as in the derivation of the optimal window size of a
chain topology in the paper, we use the interference range as
two times the transmission range. Thus two transmissions
should be 3 hops away from each other. In the cross topol-
ogy, each TCP flow traverses� hops and the total number
of nodes is��� �. Look at how packets traverse the 4-hop
neighborhood, consisting of nodes #1, #2, #3, #4, #5, #8,
#9, #10, #11. Due to shared-medium feature and the large
interference range, the eight links among these 9 nodes are
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Figure 12. A diagram for TCP optimal window derivation in
grid topology with 4 flows.

interfering with each other. None of them can be scheduled
at the same time. Therefore, each packet needs 8 slots to
traverse this 4-hop neighborhood. It follows the effective
bandwidth will be�� for each flow, where� is the raw link
capacity. The time
�� needed to traverse� hops in the
cross topology is computed as follows. Since the situation
outside the 4-hop region is identical to a chain topology,

�� � 
� 	 �� �

�
� � �

�
� 
� � �� �

�
. Then, the optimal

window size� �
�� �

�
� � 
�� � �

�
. This way, we derive the

window size (in packets) as� �
�� � ����� � by rounding up

the integer.

Grid topology If each flow traverse� hops in the grid
topology, we now derive the optimal window size� ����� � by
using Figure 12. Note that Flows 1 and 3 form a cross, thus
they need 8 slots to deliver a packet out of the intersection
area. Now add Flow 2 first. The worst-case estimate shows
that we need� � � � � slots to deliver a packet for each
flow over the intersections. However, since' � � and
� � ( can be scheduled with the first 8 slots with Flows
1 and 3, we only need 3 extra slots. Similarly, adding Flow
4 also needs 3 extra slots. Therefore,� � � � � � �� slots
are needed to deliver each packet out of the intersections.
Then the effective bandwidth is��� , given raw link capacity
�. We can also compute the time needed for a packet to
traverse� hops in the grid topology is
�� � 
�	 �� �

�
�

�� �
�
� 
���� �

�
. Finally, the optimal window size� �

�� �
�
�� � 
�� � �

�
� Hence, the optimal window� �

�� � ������ �.
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