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ABSTRACT
We describe a new scalable application-layer multicast protocol, specif-
ically designed for low-bandwidth, data streaming applications with
large receiver sets. Our scheme is based upon a hierarchical cluster-
ing of the application-layer multicast peers and can support a num-
ber of different data delivery trees with desirable properties.

We present extensive simulations of both our protocol and the
Narada application-layer multicast protocol over Internet-like topolo-
gies. Our results show that for groups of size 32 or more, our proto-
col has lower link stress (by about 25%), improved or similar end-
to-end latencies and similar failure recovery properties. More im-
portantly, it is able to achieve these results by using orders of mag-
nitude lower control traffic.

Finally, we present results from our wide-area testbed in which
we experimented with 32-100 member groups distributed over 8 dif-
ferent sites. In our experiments, average group members established
and maintained low-latency paths and incurred a maximum packet
loss rate of less than 1% as members randomly joined and left the
multicast group. The average control overhead during our experi-
ments was less than 1 Kbps for groups of size 100.

Categories and Subject Descriptors
C.2.2 [Computer-CommunicationNetworks]: Network Protocols;
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.4 [Computer Systems Organization]: Performance of Sys-
tems

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Application layer multicast, Overlay networks, Peer-to-peer systems,
Hierarchy, Scalability

1. INTRODUCTION
Multicasting is an efficient way for packet delivery in one-many

data transfer applications. Additionally, it decouples the size of the
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receiver set from the amount of state kept at any single node, in-
cluding the data source. Therefore, multicasting is an useful prim-
itive for scaling multi-party applications. However, deployment of
network-layer multicast [10] has not widely adopted by most com-
mercial ISPs, and thus large parts of the Internet are still incapable
of native multicast more than a decade after the protocols were de-
veloped. Application-Layer Multicast protocols [9, 11, 6, 13, 14,
24, 17] do not change the network infrastructure, instead they im-
plement multicast forwarding functionality exclusively at end-hosts.
Such application-layer multicast protocols and are increasingly be-
ing used to implement efficient commercial content-distribution net-
works.

In this paper, we present a new application-layer multicast proto-
col which has been developed in the context of the NICE project at
the University of Maryland 1. NICE is a recursive acronym which
stands for NICE is the Internet Cooperative Environment. In this
paper, we refer to the NICE application-layer multicast protocol as
simply the NICE protocol. This protocol is specifically designed
to support applications with very large receiver sets. Such applica-
tions include news and sports ticker services such as Infogate (See
http://www.infogate.com) and ESPN Bottomline (See http://www.espn.com);
real-time stock quotes and updates, e.g. the Yahoo! Market tracker,
and popular Internet Radio sites. All of these applications are char-
acterized by very large (potentially tens of thousands) receiver sets
and relatively low bandwidth soft real-time data streams that can
withstand some loss. We refer to this class of large receiver set, low
bandwidth real-time data applications as data stream applications.
Data stream applications present an unique challenge for application-
layer multicast protocols: the large receiver sets usually increase
the control overhead while the relatively low-bandwidth data makes
amortizing this control overhead difficult. NICE can be used to im-
plement very large data stream applications since it has a provably
small (constant) control overhead and produces low latency distri-
bution trees. It is possible to implement high-bandwidth applica-
tions using NICE as well; however, in this paper, we concentrate
exclusively on low bandwidth data streams with large receiver sets.

1.1 Application-Layer Multicast
The basic idea of application-layer multicast is shown in Figure 1.

Unlike native multicast where data packets are replicated at routers
inside the network, in application-layer multicast data packets are
replicated at end hosts. Logically, the end-hosts form an overlay
network, and the goal of application-layer multicast is to construct
and maintain an efficient overlay for data transmission. Since application-
layer multicast protocols must send the identical packets over the
same link, they are less efficient than native multicast. Two intu-
itive measures of “goodness” for application layer multicast over-
�
See http://www.cs.umd.edu/projects/nice
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Figure 1: Network-layer and application layer multicast.
Square nodes are routers, and circular nodes are end-hosts. The
dotted lines represent peers on the overlay.

lays, namely stress and stretch, were defined in [9]). The stress met-
ric is defined per-link and counts the number of identical packets
sent by a protocol over each underlying link in the network. The
stretch metric is defined per-member and is the ratio of path-length
from the source to the member along the overlay to the length of
the direct unicast path. Consider an application-layer multicast pro-
tocol in which the data source unicasts the data to each receiver.
Clearly, this “multi-unicast” protocol minimizes stretch, but does so
at a cost of �����	� stress at links near the source ( � is the number
of group members). It also requires �����	� control overhead at some
single point. However, this protocol is robust in the sense that any
number of group member failures do not affect the other members
in the group.

In general, application-layer multicast protocols can be evaluated
along three dimensions:


 Quality of the data delivery path: The quality of the tree is
measured using metrics such as stress, stretch, and node de-
grees.


 Robustness of the overlay: Since end-hosts are potentially less
stable than routers, it is important for application-layer mul-
ticast protocols to mitigate the effect of receiver failures. The
robustness of application-layer multicast protocols is measured
by quantifying the extent of the disruption in data delivery
when different members fail, and the time it takes for the pro-
tocol to restore delivery to the other members. We present the
first comparison of this aspect of application-layer multicast
protocols.


 Control overhead: For efficient use of network resources, the
control overhead at the members should be low. This is an
important cost metric to study the scalability of the scheme
to large member groups.

1.2 NICE Trees
Our goals for NICE were to develop an efficient, scalable, and

distributed tree-building protocol which did not require any under-
lying topology information. Specifically, the NICE protocol reduces
the worst-case state and control overhead at any member to ����������	� ,
maintains a constant degree bound for the group members and ap-
proach the ����������	� stretch bound possible with a topology-aware
centralized algorithm. Additionally, we also show that an average
member maintains state for a constant number of other members,
and incurs constant control overhead for topology creation and main-
tenance.

In the NICE application-layer multicast scheme, we create a hierarchically-
connected control topology. The data delivery path is implicitly de-
fined in the way the hierarchy is structured and no additional route
computations are required.

Along with the analysis of the various bounds, we also present a
simulation-based performance evaluation of NICE. In our simula-
tions, we compare NICE to the Narada application-layer multicast
protocol [9]. Narada was first proposed as an efficient application-
layer multicast protocol for small group sizes. Extensions to it have
subsequently been proposed [8] to tailor its applicability to high-
bandwidth media-streaming applications for these groups, and have
been studied using both simulations and implementation. Lastly, we
present results from a wide-area implementation in which we quan-
tify the NICE run-time overheads and convergence properties for
various group sizes.

1.3 Roadmap
The rest of the paper is structured as follows: In Section 2, we

describe our general approach, explain how different delivery trees
are built over NICE and present theoretical bounds about the NICE
protocol. In Section 3, we present the operational details of the pro-
tocol. We present our performance evaluation methodology in Sec-
tion 4, and present detailed analysis of the NICE protocol through
simulations in Section 5 and a wide-area implementation in Sec-
tion 6. We elaborate on related work in Section 7, and conclude in
Section 8.

2. SOLUTION OVERVIEW
The NICE protocol arranges the set of end hosts into a hierarchy;

the basic operation of the protocol is to create and maintain the hi-
erarchy. The hierarchy implicitly defines the multicast overlay data
paths, as described later in this section. The member hierarchy is
crucial for scalability, since most members are in the bottom of the
hierarchy and only maintain state about a constant number of other
members. The members at the very top of the hierarchy maintain
(soft) state about ����������	� other members. Logically, each mem-
ber keeps detailed state about other members that are near in the
hierarchy, and only has limited knowledge about other members in
the group. The hierarchical structure is also important for localizing
the effect of member failures.

The NICE hierarchy described in this paper is similar to the mem-
ber hierarchy used in [3] for scalable multicast group re-keying. How-
ever, the hierarchy in [3], is layered over a multicast-capable net-
work and is constructed using network multicast services (e.g. scoped
expanding ring searches). We build the necessary hierarchy on a
unicast infrastructure to provide a multicast-capable network.

In this paper, we use end-to-end latency as the distance metric
between hosts. While constructing the NICE hierarchy, members
that are “close” with respect to the distance metric are mapped to
the same part of the hierarchy: this allows us to produce trees with
low stretch.

In the rest of this section, we describe how the NICE hierarchy
is defined, what invariants it must maintain, and describe how it is
used to establish scalable control and data paths.

2.1 Hierarchical Arrangement of Members
The NICE hierarchy is created by assigning members to differ-

ent levels (or layers) as illustrated in Figure 2. Layers are numbered
sequentially with the lowest layer of the hierarchy being layer zero
(denoted by ��� ). Hosts in each layer are partitioned into a set of
clusters. Each cluster is of size between � and ������� , where � is a
constant, and consists of a set of hosts that are close to each other 2.
Further, each cluster has a cluster leader. The protocol distributedly�

The cluster size upper bound can be chosen to be ����� � , for any
�"!$# . If #��%�&� was chosen as the upper bound, then a split op-
eration divides a cluster that reaches a size of #�� into two clusters
of size � . A subsequent loss of member from either of this cluster
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Figure 2: Hierarchical arrangement of hosts in NICE. The lay-
ers are logical entities overlaid on the same underlying physical
network.

chooses the (graph-theoretic) center of the cluster to be its leader,
i.e. the cluster leader has the minimum maximum distance to all
other hosts in the cluster. This choice of the cluster leader is im-
portant in guaranteeing that a new joining member is quickly able
to find its appropriate position in the hierarchy using a very small
number of queries to other members.

Hosts are mapped to layers using the following scheme: All hosts
are part of the lowest layer, ��� . The clustering protocol at �,� parti-
tions these hosts into a set of clusters. The cluster leaders of all the
clusters in layer � ( join layer � (�- � . This is shown with an exam-
ple in Figure 2, using �/.0� . The layer � � clusters are [ABCD],
[EFGH] and [JKLM]3. In this example, we assume that 1 , 2 and3

are the centers of their respective clusters of their � � clusters,
and are chosen to be the leaders. They form layer � � and are clus-
tered to create the single cluster, [CFM], in layer � � . 2 is the center
of this cluster, and hence its leader. Therefore 2 belongs to layer � �
as well.

The NICE clusters and layers are created using a distributed algo-
rithm described in the next section. The following properties hold
for the distribution of hosts in the different layers:

 A host belongs to only a single cluster at any layer.


 If a host is present in some cluster in layer � ( , it must occur
in one cluster in each of the layers, ����4657565849� (�: � . In fact, it
is the cluster-leader in each of these lower layers.


 If a host is not present in layer, � ( , it cannot be present in any
layer �8; , where <>=@? .

 Each cluster has its size bounded between � and �����A� . The

leader is the graph-theoretic center of the cluster.

will violate the size lower bound and immediately invoke a cluster
merge operation.B

We denote a cluster comprising of hosts C	49D,4FEG4656565 byH CID)EA5J565LK .


 There are at most ����NMO� layers, and the highest layer has
only a single member.

We also define the term super-cluster for any host, C . Assume
that host, C , belongs to layers ���P4656565Q49� (R: � and no other layer,
and let [..XYZ..] be the cluster it belongs it in its highest layer (i.e.
layer � (�: � ) with D its leader in that cluster. Then, the super-cluster
of C is defined as the cluster, in the next higher layer (i.e. � ( ), to
which its leader D belongs. It follows that there is only one super-
cluster defined for every host (except the host that belongs to the
top-most layer, which does not have a super-cluster), and the super-
cluster is in the layer immediately above the highest layer that S
belongs to. For example, in Figure 2, cluster [CFM] in Layer 1 is the
super-cluster for hosts * , ' , and T . In NICE each host maintains
state about all the clusters it belongs to (one in each layer to which
it belongs) and about its super-cluster.

2.2 Control and Data Paths
The host hierarchy can be used to define different overlay struc-

tures for control messages and data delivery paths. The neighbors
on the control topology exchange periodic soft state refreshes and
do not generate high volumes of traffic. Clearly, it is useful to have
a structure with higher connectivity for the control messages, since
this will cause the protocol to converge quicker.

In Figure 3, we illustrate the choices of control and data paths us-
ing clusters of size 4. The edges in the figure indicate the peerings
between group members on the overlay topology. Each set of four
hosts arranged in a 4-clique in Panel 0 are the clusters in layer ��� .
Hosts * � 49* � 49* � and 1 � are the cluster leaders of these four � �
clusters. and form the single cluster in layer � � . Host 1U� is the
leader of this cluster in layer � � . In the rest of the paper, we use
Cl;P�VCI� to denote the cluster in layer �W; to which member C be-
longs. It is defined if and only if C belongs to layer �8; .

The control topology for the NICE protocol is illustrated in Fig-
ure 3, Panel 0. Consider a member, C , that belongs only to layers
� � 4J56565Q49�O( . Its peers on the control topology are the other members
of the clusters to which C belongs in each of these layers, i.e. mem-
bers of clusters 1)X � �VCI�Y4656575Z4F1)X[(\�VCI� . Using the example (Figure 3,
Panel 0), member '+� belongs to only layer �,� , and therefore, its
control path peers are the other members in its � � cluster, i.e. ' � 4\' �
and *�� . In contrast, member *G� belongs to layers ��� and � � and
therefore, its control path peers are all the other members of its �,�
cluster (i.e. ' � 4\' � and ' � ) and � � cluster (i.e. * � 49* � and 1 � ).
In this control topology, each member of a cluster, therefore, ex-
changes soft state refreshes with all the remaining members of the
cluster. This allows all cluster members to quickly identify changes
in the cluster membership, and in turn, enables faster restoration of
a set of desirable invariants (described in Section 2.4), which might



Procedure : MulticastDataForward( ]Z4�^ )� ]`_ layers � � 475656584F�U( in clusters Cl � ��]a�Y4656565Q4 Cl (\��]a�,�
for < in

Hcb 4656565d49?[K
if ��^fe_ Cl;���]a� )

ForwardDataToSet � Cl; ��]a�8� � ]Q�J�
end if

end for

Figure 4: Data forwarding operation at a host, ] , that itself re-
ceived the data from host ^ .

be violated by these changes.
The delivery path for multicast data distribution needs to be loop-

free, otherwise, duplicate packet detection and suppression mecha-
nisms need to be implemented. Therefore, in the NICE protocol we
choose the data delivery path to be a tree. More specifically, given
a data source, the data delivery path is a source-specific tree, and
is implicitly defined from the control topology. Each member ex-
ecutes an instance of the Procedure MulticastDataForward given
in Figure 4, to decide the set of members to which it needs to for-
ward the data. Panels 1, 2 and 3 of Figure 3 illustrate the consequent
source-specific trees when the sources are at members '+��4\')g and
1 � respectively. We call this the basic data path.

To summarize, in each cluster of each layer, the control topology
is a clique, and the data topology is a star. It is possible to choose
other structures, e.g. in each cluster, a ring for control path, and a
balanced binary tree for data path.

2.3 Analysis
Each cluster in the hierarchy has between � and ���U�h� members.

Then for the control topology, a host that belongs only to layer � �
peers with �����i� other hosts for exchange of control messages. In
general, a host that belongs to layer �U( and no other higher layer,
peers with �����N� other hosts in each of the layers ���j4756565Q49� ( . There-
fore, the control overhead for this member is �����k5 ?V� . Hence, the
cluster-leader of the highest layer cluster (Host 1 � in Figure 3), peers
with a total of �����l������	� neighbors. This is the worst case control
overhead at a member.

It follows using amortized cost analysis that the control overhead
at an average member is a constant. The number of members that
occur in layer � ( and no other higher layer is bounded by �����>e�� ( � .
Therefore, the amortized control overhead at an average member is

m �
�
n o\pQqr
(�s �
�
� ( �k5 ?Q.t�����N�Quv���

������
� �Zu@��� �� ��wx�����N�

with asymptotically increasing � . Thus, the control overhead is
�����N� for the average member, and �����,������	� in the worst case.
The same holds analogously for stress at members on the basic data
path 4. Also, the number of application-level hops on the basic data
path between any pair of members is ��������+�	� .

While an �����,������	� peers on the data path is an acceptable upper-
bound, we have defined enhancements that further reduce the upper-
bound of the number of peers of a member to a constant. The stress
at each member on this enhanced data path (created using local trans-
formations of the basic data path) is thus reduced to a constant, while
the number of application-level hops between any pair of members
still remain bounded by ����������	� . We outline this enhancement to
the basic data path in the Appendix.
y
Note that the stress metric at members is equivalent to the degree

of the members on the data delivery tree.

2.4 Invariants
All the properties described in the analysis hold as long as the hi-

erarchy is maintained. Thus, the objective of NICE protocol is to
scalably maintain the host hierarchy as new members join and exist-
ing members depart. Specifically the protocol described in the next
section maintains the following set of invariants:


 At every layer, hosts are partitioned into clusters of size be-
tween � and ����� � .

 All hosts belong to an �,� cluster, and each host belongs to

only a single cluster at any layer


 The cluster leaders are the centers of their respective clusters
and form the immediate higher layer.

3. PROTOCOL DESCRIPTION
In this section we describe the NICE protocol using a high-level

description. Detailed description of the protocol (including packet
formats and pseudocode) can be found in [4].

We assume the existence of a special host that all members know
of a-priori. Using nomenclature developed in [9], we call this host
the Rendezvous Point (RP). Each host that intends to join the application-
layer multicast group contacts the RP to initiate the join process.
For ease of exposition, we assume that the RP is always the leader
of the single cluster in the highest layer of the hierarchy. It interacts
with other cluster members in this layer on the control path, and is
bypassed on the data path. (Clearly, it is possible for the RP to not
be part of the hierarchy, and for the leader of the highest layer cluster
to maintain a connection to the RP, but we do not belabor that com-
plexity further). For an application such as streaming media deliv-
ery, the RP could be a distinguished host in the domain of the data
source.

The NICE protocol itself has three main components: initial clus-
ter assignment as a new host joins, periodic cluster maintenance and
refinement, and recovery from leader failures. We discuss these in
turn.

3.1 New Host Joins
When a new host joins the multicast group, it must be mapped

to some cluster in layer ��� . We illustrate the join procedure in Fig-
ure 5. Assume that host ' �L� wants to join the multicast group. First,
it contacts the RP with its join query (Panel 0). The RP responds
with the hosts that are present in the highest layer of the hierarchy.
The joining host then contacts all members in the highest layer (Panel
1) to identify the member closest to itself. In the example, the high-
est layer � � has just one member, 1 � , which by default is the closest
member to ' �L� amongst layer � � members. Host 1U� informs ' �L�
of the three other members ( * � 49* � and * � ) in its � � cluster. ' �L�
then contacts each of these members with the join query to identify
the closest member among them (Panel 2), and iteratively uses this
procedure to find its � � cluster.

It is important to note that any host, S , which belongs to any
layer �O( is the center of its �O(�: � cluster, and recursively, is an ap-
proximation of the center among all members in all �,� clusters that
are below this part of the layered hierarchy. Hence, querying each
layer in succession from the top of the hierarchy to layer ��� results
in a progressive refinement by the joining host to find the most ap-
propriate layer � � cluster to join that is close to the joining member.
The outline of this operation are presented in pseudocode as Proce-
dure BasicJoinLayer in Figure 6.

3.1.1 Join Latency
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Procedure : BasicJoinLayer( ]Z4�? )
Cl;{z Query ��|�}~4Y�+��������V� ��<�=&?V�

Find � s.t. d ?V�6�Y��]Z4F�P� m d ?��6�9��]Z49�a�Y49�Q49�t_ Cl;
Cl;6: � ���P�Az Query ���i4�<��/���
Decrement < , Cl; z Cl;7: � ���P��P�����������V�

Join cluster Cl;

Figure 6: Basic join operation for member ] , to join layer �U( .
?�. b for a new member. If ?�= b , then ] is already part of
layer �O(�: � . Query ���i4�<��A��� seeks the membership information
of Cl;7: � ���P� from member � . Query ��|�}~4\�+� seeks the member-
ship information of the topmost layer of the hierarchy, from the
|+} .

The joining process involves a message overhead of �����U������	�
query-response pairs. The join-latency depends on the delays in-
curred in this exchanges, which is typically about ����������	� round-
trip times. In our protocol, we aggressively locate possible “good”
peers for a joining member, and the overhead for locating the ap-
propriate attachments for any joining member is relatively large

To reduce the delay between a member joining the multicast group,
and its receipt of the first data packet on the overlay, we allow join-
ing members to temporarily peer, on the data path, with the leader
of the cluster of the current layer it is querying. For example, in
Figure 5, when ' �L� is querying the hosts * � 49* � and * � for the
closest point of attachment, it temporarily peers with 1 � (leader of
the layer � � cluster) on the data path. This allows the joining host to
start receiving multicast data on the group within a single round-trip
latency of its join.

3.1.2 Joining Higher Layers
An important invariant in the hierarchical arrangement of hosts

is that the leader of a cluster be the center of the cluster. Therefore,
as members join and leave clusters, the cluster-leader may occasion-
ally change. Consider a change in leadership of a cluster, 1 , in layer
�8; . The current leader of 1 removes itself from all layers �W;F- � and
higher to which it is attached. A new leader is chosen for each of
these affected clusters. For example, a new leader, ] , of 1 in layer
�8; is chosen which is now required to join its nearest �8;9- � cluster.
This is its current super-cluster (which by definition is the cluster in
layer �W;F- � to which the outgoing leader of 1 was joined to), i.e. the
new leader replaces the outgoing leader in the super-cluster. How-
ever, if the super-cluster information is stale and currently invalid,
then the new leader, ] , invokes the join procedure to join the near-

est � ;F- � cluster. It calls BasicJoinLayer ��]Z4[<+u&�J� and the routine
terminates when the appropriate layer �W;F- � cluster is found. Also
note that the BasicJoinLayer requires interaction of the member ]
with the RP. The RP, therefore, aids in repairing the hierarchy from
occasional overlay partitions, i.e. if the entire super-cluster infor-
mation becomes stale in between the periodic HeartBeat messages
that are exchanged between cluster members. If the RP fails, for
correct operation of our protocol, we require that it be capable of
recovery within a reasonable amount of time.

3.2 Cluster Maintenance and Refinement
Each member S of a cluster 1 , sends a HeartBeat message ev-

ery ] seconds to each of its cluster peers (neighbors on the control
topology). The message contains the distance estimate of S to each
other member of 1 . It is possible for S to have inaccurate or no
estimate of the distance to some other members, e.g. immediately
after it joins the cluster.

The cluster-leader includes the complete updated cluster mem-
bership in its HeartBeat messages to all other members. This allows
existing members to set up appropriate peer relationships with new
cluster members on the control path. For each cluster in level � ( ,
the cluster-leader also periodically sends the its immediate higher
layer cluster membership (which is the super-cluster for all the other
members of the cluster) to that � ( cluster.

All of the cluster member state is sent via unreliable messages
and is kept by each cluster member as soft-state, refreshed by the
periodic HeartBeat messages. A member S is declared no longer
part of a cluster independently by all other members in the cluster
if they do not receive a message from S for a configurable number
of HeartBeat message intervals.

3.2.1 Cluster Split and Merge
A cluster-leader periodically checks the size of its cluster, and ap-

propriately splits or merges the cluster when it detects a size bound
violation. However, if a cluster that just exceeds the cluster size up-
per bound ����� � is split, it creates two equal-sized clusters.

The cluster leader initiates this cluster split operation. Given a set
of hosts and the pairwise distances between them, the cluster split
operation partitions them into subsets that meet the size bounds, such
that the maximum radius (in a graph-theoretic sense) of the new set
of clusters is minimized. This is similar to the � -center problem
(known to be NP-Hard) but with an additional size constraint. We
use an approximation strategy — the leader splits the current clus-
ter into two equal-sized clusters, such that the maximum of the radii
among the two clusters is minimized. It also chooses the centers of
the two partitions to be the leaders of the new clusters and transfers
leadership to the new leaders through LeaderTransfer messages. If
these new clusters still violate the size upper bound, they are split
by the new leaders using identical operations.



If the size of a cluster, Cl (L�9�Q� (in layer �O( ) with leader � , falls
below�/� , the leader � , initiates a cluster merge operation. Note, �
itself belongs to a layer �U(�- � cluster, Cl ([- � �9�Q� . � chooses its clos-
est cluster-peer, � , in Cl (�- �L�\�6� . � is also the leader of a layer �U(
cluster, Cl (����I� . � initiates the merge operation of 1~( with Cl (L���I�
by sending a ClusterMergeRequest message to � . � updates the
members of Cl ( �9�Q� with this merge information. � similarly up-
dates the members of Cl (\���A� . Following the merge, � removes it-
self from layer � (�- � (i.e. from cluster Cl (�- � �9�Q� .
3.2.2 Refining Cluster Attachments

When a member is joining a layer, it may not always be able to
locate the closest cluster in that layer (e.g. due to lost join query
or join response, etc.) and instead attaches to some other cluster in
that layer. Therefore, each member, S , in any layer (say � ( ) period-
ically probes all members in its super-cluster (they are the leaders of
layer �O( clusters), to identify the closest member (say � ) to itself in
the super-cluster. If � is not the leader of the �U( cluster to which S
belongs then such an inaccurate attachment is detected. In this case,
S leaves its current layer � ( cluster and joins the layer � ( cluster
of which � is the leader.

3.3 Host Departure and Leader Selection
When a host S leaves the multicast group, it sends a Remove

message to all clusters to which it is joined. This is a graceful-leave.
However, if S fails without being able to send out this message all
cluster peers of S detects this departure through non-receipt of the
periodic HeartBeat message from S . If S was a leader of a clus-
ter, this triggers a new leader selection in the cluster. Each remain-
ing member, � , of the cluster independently select a new leader of
the cluster, depending on who � estimates to be the center among
these members. Multiple leaders are re-conciled into a single leader
of the cluster through exchange of regular HeartBeat messages us-
ing an appropriate flag (LeaderTransfer) each time two candidate
leaders detect this multiplicity. We present further details of these
operations in [4].

It is possible for members to have an inconsistent view of the
cluster membership, and for transient cycles to develop on the data
path. These cycles are eliminated once the protocol restores the hi-
erarchy invariants and reconciles the cluster view for all members.

4. EXPERIMENTAL METHODOLOGY
We have analyzed the performance of the NICE protocol using

detailed simulations and a wide-area implementation. In the simu-
lation environment, we compare the performance of NICE to three
other schemes: multi-unicast, native IP-multicast using the Core Based
Tree protocol [2], and the Narada application-layer multicast pro-
tocol (as given in [9]). In the Internet experiments, we benchmark
the performance metrics against direct unicast paths to the member
hosts.

Clearly, native IP multicast trees will have the least (unit) stress,
since each link forwards only a single copy of each data packet. Uni-
cast paths have the lowest latency 5 and so we consider them to be of
unit stretch. They provide us a reference against which to compare
the application-layer multicast protocols.

4.1 Data Model
In all these experiments, we model the scenario of a data stream

source multicasting to the group. We chose a single end-host, uni-
formly at random, to be the data source generating a constant bit rate�

There are some recent studies [20, 1] to show that this may not al-
ways be the case; however, we use the native unicast latency as the
reference to compare the performance of the other schemes.

data. Each packet in the data sequence, effectively, samples the data
path on the overlay topology at that time instant, and the entire data
packet sequence captures the evolution of the data path over time.

4.2 Performance Metrics
We compare the performance of the different schemes along the

following dimensions:


 Quality of data path: This is measured by three different met-
rics — tree degree distribution, stress on links and routers and
stretch of data paths to the group members.


 Recovery from host failure: As hosts join and leave the mul-
ticast group, the underlying data delivery path adapts accord-
ingly to reflect these changes. In our experiments, we mod-
eled member departures from the group as ungraceful depar-
tures, i.e. members fail instantly and are unable to send ap-
propriate leave messages to their existing peers on the topol-
ogy. Therefore, in transience, particularly after host failures,
path to some hosts may be unavailable. It is also possible for
multiple paths to exist to a single host and for cycles to de-
velop temporarily.

To study these effects, we measured the fraction of hosts that
correctly receive the data packets sent from the source as the
group membership changed. We also recorded the number
of duplicates at each host. In all of our simulations, for both
the application-layer multicast protocols, the number of du-
plicates was insignificant and zero in most cases.


 Control traffic overhead: We report the mean, variance and
the distribution of the control bandwidth overheads at both
routers and end hosts.

5. SIMULATION EXPERIMENTS
We have implemented a packet-level simulator for the four dif-

ferent protocols. Our network topologies were generated using the
Transit-Stub graph model, using the GT-ITM topology generator [5].
All topologies in these simulations had � b 4 b�b�b routers with an av-
erage node degree between � and � . End-hosts were attached to a
set of routers, chosen uniformly at random, from among the stub-
domain nodes. The number of such hosts in the multicast group
were varied between � and # b �P� for different experiments. In our
simulations, we only modeled loss-less links; thus, there is no data
loss due to congestion, and no notion of background traffic or jit-
ter. However, data is lost whenever the application-layer multicast
protocol fails to provide a path from the source to a receiver, and du-
plicates are received whenever there is more than one path. Thus,
our simulations study the dynamics of the multicast protocol and its
effects on data distribution; in our implementation, the performance
is also affected by other factors such as additional link latencies due
to congestion and drops due to cross-traffic congestion.

For comparison, we have implemented the entire Narada protocol
from the description given in [9]. We present detailed description of
our implementation of the Narada protocol, including the impact of
different choices of parameters, in [4].

5.1 Simulation Results
We have simulated a wide-range of topologies, group sizes, mem-

ber join-leave patterns, and protocol parameters. For NICE, we set
the cluster size parameter, � , to 3 in all of the experiments presented
here. Broadly, our findings can be summarized as follows:


 NICE trees have data paths that have stretch comparable to
Narada.
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 The stress on links and routers are lower in NICE, especially
as the multicast group size increases.


 The failure recovery of both the schemes are comparable.


 NICE protocol demonstrates that it is possible to provide these
performance with orders of magnitude lower control overhead
for groups of size ={��# .

We begin with results from a representative experiment that cap-
tures all the of different aspects comparing the various protocols.

5.1.1 Simulation Representative Scenario
This experiment has two different phases: a join phase and a leave

phase. In the join phase a set of 128 members6 join the multicast
group uniformly at random between the simulated time

b
and # b�b

seconds. These hosts are allowed to stabilize into an appropriate
overlay topology till simulation time 1000 seconds. The leave phase
starts at time 1000 seconds: 16 hosts leave the multicast group over
a short duration of � b seconds. This is repeated four more times,
at 100 second intervals. The remaining 48 members continue to be
part of the multicast group till the end of simulation. All member
departures are modeled as host failures since they have the most
damaging effect on data paths. We experimented with different num-
bers of member departures, from a single member to 16 members
leaving over the ten second window. Sixteen departures from a group
of size 128 within a short time window is a drastic scenario, but it
helps illustrate the failure recovery modes of the different protocols
better. Member departures in smaller sizes cause correspondingly
lower disruption on the data paths.

We experimented with different periodic refresh rates for Narada.
For a higher refresh rate the recovery from host failures is quicker,
but at a cost of higher control traffic overhead. For Narada, we used
different values for route update frequencies and periods for probing
other mesh members to add or drop links on the overlay. In our re-
sults, we report results from using route update frequencies of once
every 5 seconds (labeled Narada-5), and once every 30 seconds (la-
beled Narada-30). The 30 second update period corresponds to the
what was used in [9]; we ran with the 5 second update period since
the heartbeat period in NICE was set to 5 seconds. Note that we
could run with a much smaller heartbeat period in NICE without
�
We show results for the 128 member case because that is the group

size used in the experiments reported in [9]; NICE performs increas-
ingly better with larger group sizes.

significantly increasing control overhead since the control messages
are limited within clusters and do not traverse the entire group. We
also varied the mesh probe period in Narada and observed data path
instability effect discussed above. In these results, we set the Narada
mesh probe period to 20 seconds.

Data Path Quality
In Figures 7 and 8, we show the average link stress and the aver-
age path lengths for the different protocols as the data tree evolves
during the member join phase. Note that the figure shows the actual
path lengths to the end-hosts; the stretch is the ratio of average path
length of the members of a protocol to the average path length of
the members in the multi-unicast protocol.

As explained earlier, the join procedure in NICE aggressively finds
good points of attachment for the members in the overlay topology,
and the NICE tree converges quicker to a stable value (within 350
seconds of simulated time). In contrast, the Narada protocols grad-
ually improve the mesh quality, and consequently so does the data
path over a longer duration. Its average data path length converges
to a stable value of about 23 hops between 500 and 600 seconds
of the simulated time. The corresponding stretch is about 2.18. In
Narada path lengths improve over time due to addition of “good”
links on the mesh. At the same time, the stress on the tree gradu-
ally increases since the Narada decides to add or drop overlay links
based purely on the stretch metric.

The cluster-based data dissemination in NICE reduces average
link stress, and in general, for large groups NICE converges to trees
with about 25% lower average stress. In this experiment, the NICE
tree had lower stretch than the Narada tree; however, in other ex-
periments the Narada tree had a slightly lower stretch value. In gen-
eral, comparing the results from multiple experiments over different
group sizes, (See Section 5.1.2), we concluded that the data path
lengths to receivers were similar for both protocols.

In Figures 9 and 10, we plot a cumulative distribution of the stress
and path length metrics for the entire member set (128 members) at a
time after the data paths have converged to a stable operating point.

The distribution of stress on links for the multi-unicast scheme
has a significantly large tail (e.g. links close to the source has a
stress of 127). This should be contrasted with better stress distribu-
tion for both NICE and Narada. Narada uses fewer number of links
on the topology than NICE, since it is comparably more aggressive
in adding overlay links with shorter lengths to the mesh topology.
However, due to this emphasis on shorter path lengths, the stress
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distribution of the links has a heavier-tail than NICE. More than 25%
of the links have a stress of four and higher in Narada, compared to� 5% in NICE. The distribution of the path lengths for the two pro-
tocols are comparable.

Failure Recovery and Control Overheads
To investigate the effect of host failures, we present results from the
second part of our scenario: starting at simulated time 1000 sec-
onds, a set of 16 members leave the group over a 10 second period.
We repeat this procedure four more times and no members leave af-
ter simulated time 1400 seconds when the group is reduced to 48
members. When members leave, both protocols “heal” the data dis-
tribution tree and continue to send data on the partially connected
topology. In Figure 11, we show the fraction of members that cor-
rectly receive the data packets over this duration. Both Narada-5
and NICE have similar performance, and on average, both proto-
cols restore the data path to all (remaining) receivers within 30 sec-
onds. We also ran the same experiment with the 30 second refresh
period for Narada. The lower refresh period caused significant dis-
ruptions on the tree with periods of over 100 seconds when more
than 60% of the tree did not receive any data. Lastly, we note that
the data distribution tree used for NICE is the least connected topol-
ogy possible; we expect failure recovery results to be much better
if structures with alternate paths are built atop NICE.

In Figure 12, we show the byte-overheads for control traffic at
the access links of the end-hosts. Each dot in the plot represents the
sum of the control traffic (in Kbps) sent or received by each member
in the group, averaged over 10 second intervals. Thus for each 10
second time slot, there are two dots in the plot for each (remaining)
host in the multicast group corresponding to the control overheads
for Narada and NICE. The curves in the plot are the average con-
trol overhead for each protocol. As can be expected, for groups of
size 128, NICE has an order of magnitude lower average overhead,
e.g. at simulation time 1000 seconds, the average control overhead
for NICE is 0.97 Kbps versus 62.05 Kbps for Narada. At the same
time instant, Narada-30 (not shown in the figure) had an average
control overhead of 13.43 Kbps. Note that the NICE control traf-
fic includes all protocol messages, including messages for cluster
formation, cluster splits, merges, layer promotions, and leader elec-
tions.

5.1.2 Aggregate Results
We present a set of aggregate results as the group size is varied.

The purpose of this experiment is to understand the scalability of
the different application-layer multicast protocols. The entire set of
members join in the first 200 seconds, and then we run the simula-
tion for 1800 seconds to allow the topologies to stabilize. In Table 1,
we compare the stress on network routers and links, the overlay path
lengths to group members and the average control traffic overheads
at the network routers. For each metric, we present the both mean
and the standard deviation. Note, that the Narada protocol involves
an aggregate control overhead of ����� � � , where � is the size of the
group. Therefore, in our simulation setup, we were unable to simu-
late Narada with groups of size 1024 or larger since the completion
time for these simulations were on the order of a day for a single run
of one experiment on a 550 MHz Pentium III machine with 4 GB of
RAM.

Narada and NICE tend to converge to trees with similar path lengths.
The stress metric for both network links and routers, however, is
consistently lower for NICE when the group size is large (64 and
greater). It is interesting to observe the standard deviation of stress
as it changes with increasing group size for the two protocols. The
standard deviation for stress increased for Narada for increasing group
sizes. In contrast, the standard deviation of stress for NICE remains
relatively constant; the topology-based clustering in NICE distributes
the data path more evenly among the different links on the underly-
ing links regardless of group size.

The control overhead numbers in the table are different than the
ones in Figure 12; the column in the table is the average control
traffic per network router as opposed to control traffic at an end-
host. Since the control traffic gets aggregated inside the network,
the overhead at routers is significantly higher than the overhead at
an end-host. For these router overheads, we report the values of the
Narada-30 version in which the route update frequency set to 30
seconds. Recall that this protocol, Narada-30 performs relatively
poorly when members leave, but is much more efficient (specifi-
cally 5 times less overhead with groups of size 128) than the Narada-
5 version. The refresh messages in NICE were still sent at 5 second
intervals.

6. WIDE-AREA IMPLEMENTATION
We have implemented the complete NICE protocol and experi-

mented with our implementation over a one-month period, with 32
to 100 member groups distributed across 8 different sites. Our ex-
perimental topology is shown in Figure 13. The number of mem-
bers at each site was varied between 2 and 30 for different experi-
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Group Router Stress Link Stress Path Length Bandwidth Overheads (Kbps)
Size Narada-5 NICE Narada-5 NICE Narada-5 NICE Narada-30 NICE

8 1.55 (1.30) 3.51 (3.30) 1.19 (0.39) 3.24 (2.90) 25.14 (9.49) 12.14 (2.29) 0.61 (0.55) 1.54 (1.34)
16 1.84 (1.28) 2.34 (2.16) 1.34 (0.76) 1.86 (1.39) 19.00 (7.01) 20.33 (6.75) 2.94 (2.81) 0.87 (0.81)
32 2.13 (2.17) 2.42 (2.60) 1.54 (1.03) 1.90 (1.82) 20.42 (6.00) 17.23 (5.25) 9.23 (8.95) 1.03 (0.95)
64 2.68 (3.09) 2.23 (2.25) 1.74 (1.53) 1.63 (1.39) 22.76 (5.71) 20.62 (7.40) 26.20 (28.86) 1.20 (1.15)
128 3.04 (4.03) 2.36 (2.73) 2.06 (2.64) 1.63 (1.56) 21.55 (6.03) 21.61 (7.75) 65.62 (92.08) 1.19 (1.29)
256 3.63 (7.52) 2.31 (3.18) 2.16 (3.02) 1.63 (1.63) 23.42 (6.17) 24.67 (7.45) 96.18 (194.00) 1.39 (1.76)
512 4.09 (10.74) 2.34 (3.49) 2.57 (5.02) 1.62 (1.54) 24.74 (6.00) 22.63 (6.78) 199.96 (55.06) 1.93 (3.35)

1024 - 2.59 (4.45) - 1.77 (1.77) - 25.83 (6.13) - 2.81 (7.22)
1560 - 2.83 (5.11) - 1.88 (1.90) - 24.99 (6.96) - 3.28 (9.58)
2048 - 2.92 (5.62) - 1.93 (1.99) - 24.08 (5.36) - 5.18 (18.55)

Table 1: Data path quality and control overheads for varying multicast group sizes (simulation)

ments. For example, for the 32 member experiment reported in this
section, we had 2 members each in sites B, G and H, 4 each at A,
E and F, 6 in C and 8 in D. Unfortunately, experiments with much
larger groups were not feasible on our testbed. However, our im-
plementation results for protocol overheads closely match our sim-
ulation experiments, and we believe our simulations provide a rea-
sonable indication of how the NICE implementation would behave
with larger group sizes.

6.1 Implementation Specifics
We have conducted experiments with data sources at different sites.

In this paper,we present a representative set of the experiments where
the data stream source is located at site C in Figure 13. In the fig-
ure, we also indicate the typical direct unicast latency (in millisec-
onds) from the site C, to all the other sites. These are estimated one-
way latencies obtained using a sequence of application layer (UDP)
probes. Data streams were sent from the source host at site C, to all
other hosts, using the NICE overlay topology. For our implementa-
tion, we experimented with different HeartBeat rates; in the results
presented in this section, we set the HeartBeat message period to 10
seconds.

In our implementation, we had to estimate the end-to-end latency
between hosts for various protocol operations, including member
joins, leadership changes, etc. We estimated the latency between
two end-hosts using a low-overhead estimator that sent a sequence
of application-layer (UDP) probes. We controlled the number of
probes adaptively using observed variance in the latency estimates.
Further, instead of using the raw latency estimates as the distance

metric, we used a simple binning scheme to map the raw latencies
to a small set of equivalence classes. Specifically, two latency esti-
mates were considered equivalent if they mapped to the same equiv-
alence class, and this resulted in faster convergence of the overlay
topology. The specific latency ranges for each class were 0-1 ms,
1-5 ms, 5-10 ms, 10-20 ms, 20-40 ms, 40-100 ms, 100-200 ms and
greater than 200 ms.

To compute the stretch for end-hosts in the Internet experiments,
we used the ratio of the latency from between the source and a host
along the overlay to the direct unicast latency to that host. In the
wide-area implementation, when a host ' receives a data packet
forwarded by member * along the overlay tree, ' immediately sends
back a overlay-hop acknowledgment back to * . * logs the round-
trip latency between its initial transmission of the data packet to '
and the receipt of the acknowledgment from ' . After the entire ex-
periment is done, we sum the overlay round-trip latencies for each
data packet by referring back the logs at each host. We estimate the
one-way overlay latency as half of this round trip latency. We ob-
tain the unicast latencies immediately after the experiment termi-
nates. This is clearly not ideal for long running experiments; un-
fortunately, the concurrent computation of the unicast latencies per-
turbed the experimental data and we had to resort to computing the
unicast latencies after the experiment completed.

6.2 Implementation Scenarios
The Internet experiment scenarios have two phases: a join phase

and a rapid membership change phase. In the join phase, a set of
member hosts randomly join the group from the different sites. The
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hosts are then allowed to stabilize into an appropriate overlay de-
livery tree. After this period, the rapid membership change phase
starts, where host members randomly join and leave the group. The
average member lifetime in the group, in this phase was set to 30
seconds. Like in the simulation studies, all member departures are
ungraceful and allow us to study the worst case protocol behavior.
Finally, we let the remaining set of members to organize into a sta-
ble data delivery tree. We present results for three different groups
of size of 32, 64, and 96 members.

Data Path Quality
In Figure 14, we show the cumulative distribution of the stress met-
ric at the group members after the overlay stabilizes at the end of
the join phase. For all group sizes, typical members have unit stress
(74% to 83% of the members in these experiments). The stress for
the remaining members vary between 3 and 9. These members are
precisely the cluster leaders in the different layers (recall that the
cluster size lower and upper bounds for these experiments is 3 and 9,
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respectively). The stress for these members can be reduced further
by using the high-bandwidth data path enhancements, described in
the Appendix. For larger groups, the number of members with higher
stress (i.e. between 3 and 9 in these experiments) is more, since
the number of clusters (and hence, the number of cluster leaders)
is more. However, as expected, this increase is only logarithmic in
the group size.

In Figure 15, we plot the cumulative distribution of the stretch
metric. Instead of plotting the stretch value for each single host, we
group them by the sites at which there are located. For all the mem-
ber hosts at a given site, we plot the mean and the 95% confidence
intervals. Apart from the sites C, D, and E, all the sites have near
unit stretch. However, note that the source of the data streams in
these experiments were located in site C and hosts in the sites C,
D, and E had very low latency paths from the source host. The ac-
tual end-to-end latencies along the overlay paths to all the sites are
shown in Figure 16. For the sites C, D and E these latencies were 3.5
ms, 3.5 ms and 3.0 ms respectively. Therefore, the primary contri-
bution to these latencies are packet processing and overlay forward-
ing on the end-hosts themselves.

In Table 2, we present the mean and the maximum stretch for the
different members, that had direct unicast latency of at least 2 ms
from the source (i.e. sites A, B, G and H), for all the different sizes.
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The mean stretch for all these sites are low, in some cases we do see
relatively large worst case stretches (e.g. 4.63 stretch for the worst
case for a member in a group of size 96).

Failure Recovery
In this section, we describe the effects of group membership changes
on the data delivery tree. To do this, we observe how successful the
overlay is in delivering data during changes to the overlay topology.
We measured the number of correctly received packets by different
(remaining) members during the rapid membership change phase of
the experiment, which begins after the initial member set has stabi-
lized into the appropriate overlay topology. This phase lasts for 15
minutes. Members join and leave the grou at random such that the
average lifetime of a member in the group is 30 seconds.

In Figure 17 we plot over time the fraction of members that suc-
cessfully received the different data packets. A total of 30 group
membership changes happened over the duration. In Figure 18 we
plot the cumulative distribution of packet losses seen by the differ-
ent members over the entire 15 minute duration. The maximum num-
ber of packet losses seen by a member was 50 out of 900 (i.e. about

Group Stress Stretch Control overheads (Kbps)
Size Mean Max. Mean Max. Mean Max.
32 1.85 8.0 1.08 1.61 0.84 2.34
64 1.73 8.0 1.14 1.67 0.77 2.70
96 1.86 9.0 1.04 4.63 0.73 2.65

Table 2: Average and maximum values of of the different met-
rics for different group sizes(testbed)

5.6%), and 30% of the members did not encounter any packet losses.
Even under this rapid changes to the group membership, the largest
continuous duration of packet losses for any single host was 34 sec-
onds, while typical members experienced a maximum continuous
data loss for only two seconds — this was true for all but 4 of the
members. These failure recovery statistics are good enough for use
in most data stream applications deployed over the Internet. Note
that in this experiment, only three individual packets (out of 900)
suffered heavy losses: data packets at times 76 s, 620 s, and 819 s
were not received by 51, 36 and 31 members respectively.

Control Overheads
Finally, we present the control traffic overheads (in Kbps) in Table 2
for the different group sizes. The overheads include control packets
that were sent as well as received. We show the average and maxi-
mum control overhead at any member. We observed that the control
traffic at most members lies between 0.2 Kbps to 2.0 Kbps for the
different group sizes. In fact, about 80% of the members require less
than 0.9 Kbps of control traffic for topology management. More in-
terestingly, the average control overheads and the distributions do
not change significantly as the group size is varied. The worst case
control overhead is also fairly low (less than 3 Kbps).

7. RELATED WORK
A number of other projects have explored implementing multi-

cast at the application layer. They can be classified into two broad
categories: mesh-first (Narada [9], Gossamer [6]) and tree-first pro-
tocols (Yoid [11], ALMI [14], Host-Multicast [22]). Yoid and Host-
Multicast defines a distributed tree building protocol between the
end-hosts, while ALMI uses a centralized algorithm to create a min-
imum spanning tree rooted at a designated single source of multi-
cast data distribution. The Overcast protocol [13] organizes a set of
proxies (called Overcast nodes) into a distribution tree rooted at a
central source for single source multicast. A distributed tree-building
protocol is used to create this source specific tree, in a manner sim-
ilar to Yoid. RMX [7] provides support for reliable multicast data
delivery to end-hosts using a set of similar proxies, called Reliable
Multicast proXies. Application end-hosts are configured to affiliate
themselves with the nearest RMX. The architecture assumes the ex-
istence of an overlay construction protocol, using which these prox-
ies organize themselves into an appropriate data delivery path. TCP
is used to provide reliable communication between each pair of peer
proxies on the overlay.

Some other recent projects (Chord [21], Content Addressable Net-
works (CAN) [16], Tapestry [23] and Pastry [18]) have also addressed
the scalability issue in creating application layer overlays, and are
therefore, closely related to our work. CAN defines a virtual £ -dimensional
Cartesian coordinate space, and each overlay host “owns” a part of
this space. In [17], the authors have leveraged the scalable structure
of CAN to define an application layer multicast scheme, in which
hosts maintain ����£P� state and the path lengths are ����£P� �Y¤\¥ � appli-
cation level hops, where � is the number of hosts in the network.
Pastry [18] is a self-organizing overlay network of nodes, where



logical peer relationships on the overlay are based on matching pre-
fixes of the node identifiers. Scribe [19] is a large-scale event no-
tification infrastructure that leverages the Pastry system to create
groups and build efficient application layer multicast paths to the
group members for dissemination of events. Being based on Pas-
try, it has similar overlay properties, namely ��#�¦Z�I�J������ �9§ � state
at members, and �������� �9§ �	� application level hops between mem-
bers 7. Bayeux [24] in another architecture for application layer mul-
ticast, where the end-hosts are organized into a hierarchy as defined
by the Tapestry overlay location and routing system [23]. A level
of the hierarchy is defined by a set of hosts that share a common
suffix in their host IDs. Such a technique was proposed by Plax-
ton et.al. [15] for locating and routing to named objects in a net-
work. Therefore, hosts in Bayeux maintain ����¨i���� ¦ �	� state and
end-to-end overlay paths have �������� ¦ �	� application level hops.
As discussed in Section 2.3, our proposed NICE protocol incurs an
amortized �����i� state at members and the end-to-end paths between
members have �������� M �	� application level hops. Like Pastry and
Tapestry, NICE also chooses overlay peers based on network local-
ity which leads to low stretch end-to-end paths.

8. CONCLUSIONS
In this paper, we have presented a new protocol for application-

layer multicast. Our main contribution is an extremely low over-
head hierarchical control structure over which different data distri-
bution paths can be built. Our results show that it is possible to build
and maintain application-layer multicast trees with very little over-
head. While the focus of this paper has been low-bandwidth data
stream applications, our scheme is generalizable to different appli-
cations by appropriately choosing data paths and metrics used to
construct the overlays. We believe that the results of this paper are
a significant first step towards constructing large wide-area applica-
tions over application-layer multicast.
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APPENDIX

A. DATA PATH ENHANCEMENTSFOR HIGH
BANDWIDTH APPLICATIONS
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Figure 19: Data path enhancements using delegation.

The basic data path in NICE imposes more data forwarding re-
sponsibility onto the cluster leaders. As a consequence, members
that are joined to higher layers are cluster leaders in all the lower lay-
ers that they are joined to. Therefore, they are required to forward
higher volume of data than those members that are joined to only
the lower layers. This data forwarding path, is therefore, not suited
for high bandwidth applications (e.g. video distribution). We define
an enhancement to this basic data path by allowing the cluster lead-
ers to delegate data forwarding responsibility to some of its clus-
ter members in a deterministic manner. In this paper, we only ex-
plain data path delegation, assuming that data is originating from the
leader of the highest cluster in the topology. However, the same del-
egation mechanism is equally applicable for data originating from
any member (with minor modifications).

Consider a host ] that belongs to layers, � � 4J56575Z4F�U( and no other
higher layer. The corresponding clusters in these layers are: Cl ����]a�Y475656584
Cl (\��]a� . In the basic data path (described in Section 2.2), ] receives
the data from the leader, ^ , of cluster Cl ( ��]©� , i.e. its topmost layer.
It is also responsible for forwarding data to all the members in the
clusters Cl � ��]©�Y4656565Q4 Cl (R: � ��]a� , i.e. the clusters in the remaining
layers.

In the enhanced data path, ] forwards data to only the other mem-
bers of Cl �P��]a� , i.e. its cluster in the lowest layer ( �,� ). Addition-
ally, it delegates the responsibility of forwarding data to members
in Cl; ��]a� to members in Cl;6: � ��]a� , for all � m < m ?8�&� . Since
the cluster sizes are bounded between � and ���>�v� , each member
of Cl;7: � ��]a� gets a delegated forwarding responsibility to at most
three members in Cl;���]a� . Only the cluster leader can delegate for-
warding responsibility to another member of its cluster. A member
that belongs to multiple layers belongs to only a single cluster in
each layer and is the leader of the respective clusters in all but one
layer. It is not a leader in its topmost cluster. Therefore, each mem-
ber can be delegated forwarding responsibilities for at most 3 new
peers. The member, ] receives data from a member, ª to which ^
(the leader of its topmost cluster, Cl (F��]©� ) has delegated the forward-
ing responsibility.

This data path transformation is illustrated with an example in
Figure 19. Consider the basic data path with host 1 � as the source
(Panel 3). Host 1U� is the leader of both its �,� and � � clusters. There-
fore, in the basic data path, it is required to forward data to the other
members both its clusters ( ' B 4\' y and ' � in layer ��� , and *G��49* �
and * � in layer � � ). In the enhanced data path (Panel 4), it dele-
gates the other members of its �,� cluster to forward data to the other
members of its � � cluster. In particular, it sets up the new data path
peers as: «V' B w¬* �J , «V' y w®* �  , and «V' � w®* �  . Members
which are not leaders of their � � clusters, i.e. *���47* � and * � now
receive data not from the cluster leader (i.e. 1 � ), and instead receive
data from the members delegated by 1U� as described.

Any member, in the enhanced data path, forwards data to all mem-
bers of only one of its clusters (i.e. its �,� cluster), and additionally

may be delegated to forward data to two other members. This the
total number of data path peers for any member in this enhanced
data path is bounded by ��� , a constant that depends on the cluster
size. However, the number of application-level hops between any
pair of members on the overlay is still bounded by ����������	� .


