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Communication Networks

Computer-
Overlay networks have emerged as a powerful and highly flexib

method for delivering content. We study how to optimize tigio-
put of large transfers across richly connected, adaptieelay net-
works, focusing on the potential of collaborative transfeetween
peers to supplement ongoing downloads. First, we make te ca
for an erasure-resilient encoding of the content. Usingdilgéal

fountain encoding approach, end-hosts can efficientlynstroct Overlay, peer-to-peer, content delivery, digital fountagrasure

the original content of size from a subset oinyn symbols drawn correcting code, min-wise summary, Bloom filter, recomtitin,
from a large universe of encoded symbols. Such an approach af g|1aporation.

fords reliability and a substantial degree of applicatievel flex-
ibility, as it seamlessly accommodates connection mignatind 1
parallel transfers while providing resilience to packetsloHow-

ever, since the sets of encoded symbols acquired by pedrgydur

General Terms
Algorithms, Measurement, Performance
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Introduction

Consider the problem of distributing a large new file across a

downloads may overlap substantially, care must be takendble
them to collaborate effectively. Our main contribution isalec-
tion of useful algorithmic tools for efficient estimatiommmariza-
tion, and approximate reconciliation of sets of symbolsiveen
pairs of collaborating peers, all of which keep message texitp

and computation to a minimum. Through simulations and exper

ments on a prototype implementation, we demonstrate tHerper

content delivery network of several thousand geograplyichs-
tributed machines. Transferring the file with individualinteto-
point connections from a single source incurs two perforcedimn-
itations. First, the bandwidth consumption of such an apginds
wasteful. Second, the rate of each individual transfemistéid by
the characteristics of the end-to-end path between thesand
that destination. The problem of excessive bandwidth aoipsion

mance benefits of our informed content delivery mechanismis a
how they complement existing overlay network architecture

can be solved by a reliable multicast-based approach. Withi-m
cast, only a single copy of each packet payload transmityeithdo
server traverses each link in the multicast tree en routbecsét
of clients. Providing reliability poses additional chaliges, but one

*John Byers, Jeffrey Considine and Stanislav Rost were sup- D L ;
ported in part by NSF grants ANI-0093296 and ANI-9986397. elegant and scalable. sqlutlon is the Q|g|tal fountain apgtno[S],
Michael Mitzenmacher was supported in part by NSF grants whereby the content is first encoded via an erasure-reséierod-

CCR-9983832. CCR-0118701. CCR-0121154. and an Alfred P ing [18, 24, 17], then transmitted to clients. In additiomptoviding
Sloan Research Fellowship ' ’ " resilience to packet loss, this approach also accommodaigs

chronous client arrivals and, if layered multicast is alsmpyed,
heterogeneous client transfer rates.

Permission to make digital or hard copies of all or part of Although multicast-based dissemination offers nearroatiscal-
this work for personal or classroom use is granted withoet fe ing properties in bandwidth and server load, IP multicaffessi
provided that copies are not made or distributed for profit or from limited deployment. This lack of deployment has ledte de-
commercial advantage and that copies bear this notice amd th velopment ofend-systemapproaches [10, 13, 9], along with a wide
full citation on the first page. To copy otherwise, to repsiblito variety of related schemes relevant to peer-to-peer codtdivery
post on servers or to redistribute to lists, requires primectic architectures [25, 27, 29, 30, 32]. Many of these architestover-
permission and/or a fee. come the deployment hurdle faced by IP multicast by reqgina
SIGCOMM'02 August 19-23, 2002, Pittsburgh, Pennsylvania, changes to routers nor additional router functionalitgtéad, these
USA. architectures construaverlaytopologies, comprising collections
Copyright 2002 ACM 1-58113-570-X/02/0008...$5.00 of unicast connections between end-systems, in which edgh e



S

(@)
A (DB
D@ O
C D E

B>AC (%
A>BE (v)
C»B,D,E@
DE>C (»
s>c @
s>DE @

(a) Initial delivery tree.

(b) Parallel downloads.

(c) Collaborative transfers.

(d)

Figure 1:Possibilities for content delivery.Shaded content within a node in the topology representsdhkimg set of that node. Connections
in (b) supplement (a); connections in (c) supplement (3)+«burce S and peer F have the content in its entirety. A, B bage different,
but overlapping halves of the full content. C, D, E each hzsf& of the content.

(or connection) in the overlay is mapped onto a path in theesnd
lying physical network by IP routing.

End-system multicast differs from IP multicast in a numbfeiua-
damental aspects. First, overlay-based approaches deamatraul-
ticast tree; indeed, they may map multiple virtual conrexgionto
the same network links. Second, unlike IP multicast treesrlay
topologies may flexibly adapt to changing network condgidfor
example, applications using overlay networks may rerocdarad
congested or unstable areas of the Internet [2, 28]. Finatig-
systems are now explicitly required to cooperate. This pexént

is crucial and forms the essence of the motivation for ourkwor
given that end-systems are required to collaborate in aysrdoes
it necessarily follow that they should operate like routaersd sim-
ply forward packets? We argue that this is not the case, aad th
end-systems in overlays have the opportunity to improvéoper
mance provided they have the ability to actively collaberat an
informed manner.

We now return to the second limitation with traditional seev
models based on tree topologies: the transfer rate to atdtien
such a topology is bounded by the available bandwidth of tdte b
tleneck link on the path from the server. In contrast, owerlat-
works can overcome this limitation. In systems with amplada
width, transfer rates across overlay networks can subaligriien-
efit from additional cross-connections between end-systérthe
end-systems collaborate appropriately. Assuming thavengpair
of end-systems has not receivexiactly the sameontent, this ex-
tra bandwidth can be used to fill in, c¥concile the differences in
received content, thus reducing the total transfer time.

Our approach to addressing these limitations is illustratethe
content delivery scenario of Figure 1. In the initial scémate-
picted in Figure 1(a)S is the source and all other nodes in the
tree (nodesA through E) represent end-systems downloading a
large file via end-system multicast. Each node ha®gking setof
packets, the subset of packets it has received (for simplige as-
sume the content is not encoded in this example). Even ifibe o
lay management of the end-system multicast architectusared
the best possible embedding of the virtual graph onto theorét

graph (for some appropriate definition of best), there Iscsinsid-
erable room for improvement. A firstimprovement can be olatdi
by harnessing the power pérallel downloadg7], i.e. establishing
concurrent connections to multiple servers or peers withpiete
copies of the file (Figure 1(b)). More generally, additiosggnif-
icant performance benefits may be obtained by taking adganta
of “perpendicular” connections between nodes whose wgrkéts
are complementary, as pictured in Figure 1(c). Benefits tafbes
lishing concurrent connections to multiple peers have loegnon-
strated by popular peer-to-peer file sharing systems suklazea,
Grokster and Morpheus. The improvements in transfer rétas t
these programs obtain provide preliminary, informal ewicke of
availability of bandwidth for opportunistic downloads ween col-
laborating peers. The legend of 1(d) depicts the portiort®nfent
which can be beneficially exchanged via opportunistic fiensse-
tween pairs of end-systems in this scenario.

As discussed earlier, the tree and directed acyclic grgphidgies
of Figures 1(a) and 1(b) impede the full flow of content to dewn
stream receivers, as the rate of flow monotonically decsealomg
each end-system hop on paths away from the source. In chntras
the opportunistic connections of the graph of Figure 1(owafor
higher transfer rates, but simultaneously demand a morfutar
level of orchestration between end-systems to achievestraiss.
In particular, any pair of end-systems in a peer-to-peatiaiship
must be able to determine which packets lie in the set differef
their working sets, and subsequently make an informedfeaon$
those packets, i.e. they must reconcile the two working sets

When working sets are limited to small groups of contigudashs

of sequentially indexed packets, reconciliation is simpiece each
block can be succinctly specified by an index and a size. How-
ever, restricting working sets to such simple patternstiyréienits
flexibility to the frequent changes which arise in adaptivertay
networks, as we argue in Section 2. In that section, we ako- el
orate the numerous benefits of using encoded content. The mai
drawback of the added flexibility provided by the use of erasu
resilient content is that reconciliation becomes a mordl@hging
problem. To address this challenge, in Sections 3, 4 and prose
vide a set of tools for estimating, summarizing, and appnately



reconciling working sets of connected clients, all of whiaep
message complexity and computation to a minimum. In Se&jon
we demonstrate through simulations and experiments onta-pro
type implementation that these tools, coupled with the dimzp
approach, form a highly effective delivery method which eaib-
stantially reduce transfer times over existing methods pv@eide

a recap of our results and draw conclusions in Section 7.

2 Content Delivery Across Overlay Networks

We motivate our approach first by sketching fundamental-chal
lenges that must be addressed by any content delivery ectinie
and outlining the set of opportunities that an overlay apphoaf-
fords. Next, we argue the pros and cons of encoded content, th
cons primarily being a small amount of added complexity dvel t
pros being greatly improved flexibility and scalability. \Watline

the encoding building blocks we use and enumerate the benefit
they provide and the costs they incur.

2.1 Challenges and Opportunities

When operating in the context of the fluid environment of the |
ternet, there are a number of fundamental problems that &mon
delivery infrastructure must cope with, including:

e Asynchrony: Receivers may open and close connections or
leave and rejoin the infrastructure at arbitrary times.

e Heterogeneity: Connections vary in speed and loss rates.

e Transience: Routers, links and end-systems may fail and
their performance may fluctuate over time.

e Scalability: The service must scale to large receiver popula-
tions and large content.

Overlay networks should tolerate asynchrony and heteeiggen
and should adapt to transient behavior, all in a scalablenerafor
example, a robust overlay network should have the abiligdayp-
tively detect and avoid congested or temporarily unstable P]
areas of the network. Continuous reconfiguration of virtoabl-
ogy by overlay management strives to establish paths wétihnibst
desirable end-to-end characteristics. While optimal patiay be
difficult to identify, an overlay node can often identify patthat
are better than default Internet paths [2, 28]. Such reabighavior
of the virtual topology may frequently force the nodes toratect
to better-suited peers. But of course this adaptive behévém ex-
acerbates the fundamental problems enumerated above.

Another consequence of the fluidity of the environment ig¢ tha
content is likely to be disseminated non-uniformly acrosgrp.
For example, discrepancies between working sets may ause d
to uncorrelated losses, bandwidth differences, asynclusjoins,
and topology reconfigurations. More specifically, recesiveiith
higher transfer rates and receivers who initiate the domdhlear-
lier will simply have more content than their peers. As tlangfers
progress, and different end-systems peer with one anaetbeking
sets will become further divergent and fragmented. By cgisebr-
chestrating connections, one may be able to manage thedével
fragmentation, but only at the expense of restricting piidépeer-
ing arrangements, thereby limiting throughput.

Finally, we also want to take advantage of a significgugortunity
presented by overlay networks discussed in the introduictie

ability to download content across multiple connectiongarallel.

Or more generally, we wish to make beneficial use of any aviaila
connection present in an adaptive overlay, including eprahcon-
nections which may be short-lived, may be preempted, or ehos
performance may fluctuate over time. This opportunity mite
further challenge of delivering content which is not onlgfus, but
which is useful even when other connections are being eredloy
in parallel, and doing so with a minimum of set-up overhead an
message complexity.

2.2 Limitations of Stateful Solutions

Solutions to the problems and concerns of the precedingstiba

cannot be scalably achieved with techniques that requite &b be
stored at connection endpoints. For example, while isstiesro

nection migration, heterogeneity, and asynchrony ar¢abée, so-
lutions to each problem generally require significant perrection
state. The retained state makes such approaches highlglabisc
Moreover, bulky per-connection state can have significamptaict
on performance, since this state must be maintained in teeda
reconfiguration and reconnection.

Parallel downloading using stateful approaches is alsblgnoatic,
as discussed in [7]. The natural approach is to divide thgeari
the missing packets into disjoint sets in order to downlaéerent
ranges from different sources. With heterogeneous baribaidd
transient network conditions, effectively predicting ttearect dis-
tribution of ranges among sources is difficult, and hencgueat
renegotiation may be required. Also, there is a naturaldmmtk
that arises from the need to obtain “the last few packetahlénd-
system has negotiated with multiple sources to obtainicgusecket
ranges, and one source is slow in sending the last necesszwtp,
the end-system must either wait or pursue a fine-grainedjotihe
ation with other sources. Both of these problems are aliediay
the use of encoded content, as we describe below. While wetdo n
argue that parallel downloading with unencoded conterrzois-
sible (for example, see [26]), the use of encoding facégatimpler
and more effective parallel downloading.

One other complication is that in order to maximize the atbga
of obtaining useful content from multiple peers, it is atfuden-
eficial to have partially downloaded content distributed unevenly
across participating end-systems, so that there is caadildedis-
crepancy between working sets. As noted earlier, disc@esin
working sets will naturally arise due to factors such as areo
lated losses, bandwidth differences, asynchronous jaimstopol-
ogy reconfigurations. But stateful approaches in whichgystems
attempt to download contiguous blocks of unencoded pagkerts
against this goal, since end-systems effectively strivedce the
discrepancies between the packets they obtain. Againhanses
using encoded content, this problem is not a consideration.

2.3 Benefits of Encoded Content

An alternative to using stateful solutions as describedrali®the
use of the digital fountain paradigm [8] running over an liatge
transport protocol. The digital fountain approach wasiogtly de-
signed for point-to-multipoint transmission of large fimser lossy
channels. In this application, scalability and resilietwpacket loss

is achieved by using agrasure correcting codg.7, 18, 24] to pro-
duce an unbounded stream of encoding symbols derived frem th



source file. The encoding stream has the guarantee thatieenmcice
virtually certain to be able to recover the original sourée fiiom
any subset of distinct symbols in the encoding stream equaleo th
size of the original file. In practice, this strong decodinantee

is relaxed in order to provide efficient encoding and decgpdmes.
Some implementations are capable of efficiently reconstrgithe

file having received only a few percent more than the number of
symbols in the original file [17, 16, 8], and we assume suchhan i
plementation is used. A digital fountain approach provialesim-
ber of important benefits which are useful in a number of aunte
delivery scenarios [8, 7, 16].

e Continuous Encoding: Senders with a complete copy of a
file may continuously produce encoded symbols from the con-
tent.

e Time-Invariance: New encoding symbols are produced in-
dependently from symbols produced in the past.

e Tolerance: Digital fountain streams are useful to all receivers
regardless of the times of their connections or disconoesti
and their rates of sampling the stream.

e Additivity: Fountain flows generated by senders with differ-
ent sources of randomness are uncorrelated, so paralle-dow
loads from multiple servers with complete copies of the con-
tent require no orchestration.

While the full benefits of encoded content described aboydyap
primarily to a source with a copy of the entire file, some beésefin
be achieved by end-systems with partial content, by re-gingdhe
content as described in Section 5.4. The flexibility proditg the
use of encoding frees the receiver from receiving all of a&dis-
tinct symbols and enables fulktatelessonnection migrations, in
which no state need be transferred among hosts and no dgngfin
quests for retransmission need be resolved. It also allogvaddes
of the overlay topology to connect to as many senders as seges
and obtain distinct encoding symbols from each, providezseh
senders are in possession of the entire file.

There is one significant disadvantage from using encodettogn
aside from the small overhead associated with encoding ecabd
ing operations. In a scenario where encoding symbols arerdra
from alarge, unordereduniverse, end-systems that hold only part
of the content must take care to arrange transmission ofiLiaédr-
mation between each other. The digital fountain approacidlea
this problem in the case where an end-system has decoded-the e
tire content of the file; once this happens, the end-systengea-
erate new encoded content at will. It does not solve thislprob
when an end-system can only forward encoding packets, #iece
receiving end-system may already have obtained those zadie
avoid redundant transmissions in such scenarios, we tdesoech-
anisms for estimating and reconciling differences betweerking
sets and subsequently performing informed transfers.

2.4 Suitable Applications

Reliable delivery of large files leveraging erasure-resiiiencod-
ings is only one representative example of content delieesr
narios that can benefit from the approaches proposed inapisrp
More generally, any content delivery application whichisfas the
following conditions may stand to benefit.

e The architecture employs a rich overlay topology potelgtial
involving multiple connections per peer.

e Peers may only have a portion of the content, with potegtiall
complex correlation between the working sets of peers.

e Working sets of peers are drawn from a large universe of pos-
sible symbols.

Another natural application which satisfies these criterigideo-
on-demand. This application also involves reliable dejivef a
large file, but with additional complications due to timel&s con-
straints, buffering issues, etc. Our methods for informedtent
delivery can naturally be utilized in conjunction with ekig ap-
proaches for video-on-demand such as [19] to move from a pure
client-server model to an overlay-based model. While theéhods
of [19] also advocate the use of erasure-resilient codesnethods
for informed content delivery for video-on-demand applyetiter
or not codes are used. Similarly, informed content deliey be
used for near real-time delivery of live streams. For thiglization,
where reliability is not necessarily essential, collatioramay im-
prove best-effort performance. Finally, our approach maysed
for peer-to-peer applications relying on a shared virtusliren-
ment, such as distributed interactive simulation or nekedmulti-
player games. For these applications, peers may only be#tés
in reconstructing a small subspace of what can be a very-Ergle
environment. Here, in addition to issues of scalable nanaing
indexing, summarization is also essential for facilitgteffective
collaboration between peers.

3 Reconciliation and Informed Delivery

The preceding sections have established expectationsféomed
collaboration: an adaptive overlay architecture desigioedscal-
able transmission of rich content. We abstract our solst@may
from the issues of optimizing the layout of the overlay overet
[10, 13, 2], as well as distributed naming and indexing [25,27];
our system supplements any set of solutions employed teeasldr
these issues.

The approaches to reconciliation which we wish to addreskael

in scope, and typically involve a pair or a small number of-end
systems. In the setting of wide-area content delivery, ngaxiss of
systems may desire to transfer content in an informed maRoer
simplicity, we will consider each such pair independeralthough
we point to the potential use of our techniques to performemor
complex, non-local orchestration.

Our goal is to provide the most cost-effective reconcitiatinech-
anisms, measuring cost both in computation and message com-
plexity. In the subsequent sections, we propose the fotigvaip-
proaches:

Coarse-grained reconciliation employs working sesketchesob-
tained by random sampling or min-wise sketches. Coarse ap-
proaches are not resource-intensive and allow us to estimat
the fraction of symbols common to the working sets of both
peers.

Speculative transfers involve a sender performing “educated
guesses” as to which symbols to generate and transfer. This
process can be fine-tuned using results of coarse-grained re
onciliation.



Fine-grained reconciliation employs compact, searchable work- think of these keys as unique, although they may not be; famex
ing set summaries such as Bloom filters or approximate rec- ple, if the elements are determined by a hash function sdagdce
onciliation trees. Fine-grained approaches are moreresou  key, two keys may generate the same element with small pilebab
intensive and allow a peer to determine the symbols in the ity. This may introduce small errors in estimating the canteent,
working set of another peer with a quantifiable degree of cer- but since we generally care only about the approximate nadmi
tainty. of the containment, this will not have a significant impactth/é4-

bit keys, a 1KB packet can hold roughly 128 keys, which erable

The techniques we describe provide a range of options and arereasonable estimates for the techniques we describe IyFina

useful in different scenarios, primarily depending on tegources  assume that the integer keys are distributed over the keyesp-

available at the end-systems, the correlation between Bm&-W  formly at random, since the key space can always be transfbrm

ing sets at the end-systems, and the requirements of mecisi py applying a (pseudo)random hash function.
The sketches can be thought of as an end-system’s calling car

they provide some useful high-level information, are exieé/
lightweight, can be computed efficiently, can be incremigntap-
dated at an end-system, and fit into a single 1KB packet. @ener
ing the searchable summaries requires a bit more efforteviiney
can still be computed efficiently and incrementally updatedy
require a modest amount of space at the end-system and a/ggab
of content will typically require a summary on the order of BM
in size. Finally, recoded content optimizes transfers iy, or
personalizing, the content across a particular peer-6o-pennec-
tion based on information presented in sketches. We destirdse
methods and their performance tradeoffs in the followirgises.

The first approach we consider is straightforward randonptiag
simply selectk elements of the working set at random (with re-
placement) and transport those to the peer. (We may alsotsend
size of the working set, although this is not essential.) fgp

A sendsB a random samplé{, from S4. The probability that
each element itk 4 is also inS is 42521, and hence®4p5z!

is an unbiased estimate of the containment. Random samgifes ¢
be incrementally updated upon acquisition of new elemesitsgu
reservoir sampling [31]. Random sampling suffers the dexkb
that B must search for each element Af4 in its own list Si.
Although such searches can be implemented quickly using sta
dard data structures (interpolation search will takgo@log | Ss|)

4 Estimating Working Set Similarity average time per element), they_ requir_e some extra updatieg
head. One remedy, suggested in [5], is to sample only thase el
In this section, we present simple and quick methods fomesti ments whose keys are 0 moduidor an appropriately chose,
ing the resemblance of the working sets of pairs of nodes prio yielding samplesk4 and K. (Here we specifically assume that
establishing connections. Knowledge of the resemblaroa/sla the keys are random.) In this ca “‘;K‘B‘ is an unbiased esti-
receiver to determine the extent to which a prospective paer mate of the containment; moreover, all computations candme d
offer useful content. We also use the resemblance to opimiz directly on the small samples, instead of on the full workseds.
recoding strategy described in Section 5.4. Since it isresdehat However, this technique generates samples of variablestzieh
the data to compute the resemblance be obtained as quickysas  can be awkward, especially when the size of the working setesy
sible, our methods are designed to give accurate answersaovie dramatically across peers. Another concern about botrestthan-
a single 1KB packet of data is transferred between peers.iive e dom sampling methods is that they do not easily allow one fweer
phasize that there are different tradeoffs involved in ezche ap- check the resemblance between prospective peers. For Examp
proaches we describe; the best choice may depend on spe€ifics peerA is attempting to establish connections with peBrandC,
the application. it might be helpful to know the resemblance between the wgyki

We first establish the framework and notation. Let pe¢@nd B sets ofB andC.

have working set§ 4 andS s containing symbols from an encoding

of the file.
GTas205131]  wekinget
Definition 1 (Containment) The containmentof B in A is the ¢‘ ‘¢ ¢ ¢‘ ‘¢ ¢ ¢‘
i [1SanNSg|
quantltyw. TR =(4x+2) mod U] Summary of peer A
|30]58[62[14] 46 38] 62] [14] |
Definition 2 (Resemblance) Theresemblancef A and B is the L W o le] n E
. |SanSg| T, =(17x+7) mod U1 — m n
quantity 1552y
l62]53] 6] 58] 18]32]22] (5] (5]
These definitions are due to Broder [5] and were appli : N E E
pplied terdet

mine the similarity of documents in search engines [1]. Torgain- : ' Summary of peer B
ment represents the fraction of elemeBtthat are useless (already T, =(13x+12) mod 1U|

known) to A. If this quantity is close to zero, the containment is . Resemblance ~ 3

. , 39] 2 [15]51]43[1]31] L] 5
small, andB rates to be a useful source of information for We
point out that containment is not symmetric while reseméxésais. Permutations Summary || Estimation by comparison
Also, given|S4| and|Sg|, an estimate for one can easily be used
to calculate an estimate for the other. Figure 2: Example of minwise summarization and estimatiaeo

We suppose that each element of a working set is identifiechby a Semblance (Key universe size is 64, example permutaticetifurs
integer key; sending an element entails sending its key. \ille w shown).



Another clever sampling technique from [5] avoids the dragks
of the first two approaches. This approach, which we emplaly, c
culates working set resemblance basedrn-wise sketchegol-
lowing [5, 6]; the method is depicted in Figure 2. Let repre-
sent a random permutation on the key univdise-or a setS =
{s1,82,...,8a}, letm;(S) = {m;(s1),m;(s2),...,m;(sn)}, and
let min 7, (S) = ming 7;(s;). Then for two working set§ 4 and
Sp containing symbols of the fil&, we haver = minr;(S4) =
min 7;(Sg) if and only if w_;l(ac) € San Sg. Thatis, the min-
imum element after permuting the two séts and Sgp matches
only when the inverse of that element lies in both sets. In¢hse,
we also haver = minw;(Sa U Sg). If 7; is a random permu-
tation, then each element B4 U Sg is equally likely to become
the minimum element ofr;(Sa4 U Sg). Hence we conclude that
min 7;(S4) = min;(Sp) with probabilityr = {34021, Note
that this probability is the resemblance 4fand B. Now to es-
timate the resemblance, pedr computesmin 7;(S4) for some
fixed number of permutations; (as shown on Figure 2), and simi-

larly for B andSg. The peers must agree on these permutations in

advance; we assume they are fixed universally off-line.

For B to estimate}i;‘DgE}, A sendsB a vector containingd’s

minima, v(A). B then compares(A) to v(B), counts the num-
ber of positions where the two are equal, and divides by ttad to
number of permutations, as depicted in Figure 2. The resudni
unbiased estimate of the resemblansince each position is equal
with probabilityr.

In practice, truly random permutations cannot be used, asttr-
age requirements are impractical. Instead, we may use sipgpt
mutations, such as;(z) = az + b (mod |U|) for randomly
chosem andb and wherlJ is prime, without affecting overall per-
formance significantly [4, 6].

The min-wise sketches above allow similarity comparisonsry
any two sketches for any two peers. Moreover, these sketares
be combined in natural ways. For example, the sketch for ianu
of S4 and Sz is easily found by taking the coordinate-wise min-
imum of v(A) andv(B). Estimating the resemblance of a third
peer’s working sef¢ with the combined working se4 U Sp can
therefore be done with(A),v(B), andv(C). Min-wise sketches
can also be incrementally updated upon acquisition of nevier,
with constant overhead per receipt of each new element.

5 Reconciling Differences

As shown in the previous section, a single packet can all@s®
estimate the resemblance in their working sets. If the idiffee is
sufficient to allow useful exchange of data, the peers may ot

to determine what data to exchange. We provide methods ifor th
problem that generally require transmission of only a hahdf
packets. There are a number of related performance coatimies
that we develop below.

The problem we consider is a set difference problem. Spattific
suppose peed has a working sef 4 and peer B has a working set
Sg, both sets being drawn from a univetgevith |U| = u. PeerA
sends peer B some messdgewith the goal of peer B determining
as many elements in the s&t — S as possible.

The set difference problem has been widely studied in conmmun
cation complexity. The focus, however, has generally beede

termining the exact differenc€g — S4. With encoded content, a
peer does not generally need to acquire all of the symbolkién t
difference. For example, two peers may each have 3/4 of tme sy
bols necessary to reconstruct the file with no overlap betleem.
Hence we do not need exact reconciliation of the set difiegpap-
proximations will suffice. One of our contributions is thissight
that approximatereconciliation of the set differences is sufficient
and allows us to determine a large portionf — Sa with very
little communication overhead.

In this section, we describe how to quickly determine apjmaxe

differences using Bloom filters [3]. We also introduce a neaed
structure, which we call an approximate reconciliatioretrAp-

proximate reconciliation trees are especially useful wiien set
difference is small but still potentially worthwhile.

There are several performance considerations in desighiese
data structures:

e Transmission size of the message (data structure).
e Computation time.

e Accuracy of the approximation (defined below).

Definition 3 (Accuracy) A method for set reconciliation has accu-
racy a if it can identify a given discrepancy between the sets of two
peers with probabilitya.

Traditional approaches which we will describe briefly in tB@t5.1
provide perfect accuracy (i.e. accuracy equalljobut are pro-
hibitive in either computation time or transmission sizédn fil-
ters and approximate reconciliation trees trade off aaguagainst
transmission size and computation time and will be desdribe
Sections 5.2 and 5.3.

5.1 Exact Approaches

To compute differences exactly, pedr can obviously send the
entire working setS4, but this require€(|Sa|logu) bits to be
transmitted. A natural alternative is to use hashing. Seppbe

set elements are hashed using a random hash function inte a un
verseU' = [0,h). PeerA then hashes each element and sends
the set of hashes instead of the actual workingSetNow only
O(|Sa|logh) bits are transmitted. Strictly speaking, this process
may not yield the exact difference: there is some probatitiat an
elementr € Sg \ Sa will have the same hash value as an element
y of Sa, in which case peeB will mistakenly believer € Sa.

The miss probability can be made inversely polynomigdl9a | by
settingh = poly(|Sal), in which case®(|Sa|log|Sal) bits are
sent.

Another approach is to use set discrepancy methods of [Riel
discrepancyl = |Sg — Sa| + |Sa — Sg| is known, then peeA
can send a data collection of size o6lyd log u) bits, or if hashing
is done as pre-processing, of size oflydlog h) bits. However,
if d is not known, a reasonable upper bounddmust be deter-
mined through multiple rounds of communication. In the $qlec
case where&ss C Sg, this information is used to find coefficients
of a characteristic polynomial which is factored to recaer dif-
ferences. Otherwise, a rational polynomial is interpalatad fac-
tored to recover the difference. In either case, the amdumbrk is



©(d®). This protocol was later improved in [21] to run in expected
O(d) time at the cost of requiring more rounds of communication.
For our application, multiple rounds of communication areler
sirable, since the duration of each round is at least onedrum
time.

5.2 A Bloom Filter Approach

In our applications, it is sufficient for peé to be able to finanost
or even jussomeof the elements inSg — Sa|. We describe how
to use Bloom filters in this case.

We first review the Bloom filter data structure [3]. More ditaind
other applications can be found in [12]. A Bloom filter is used
representa s&t = {s1, s2,. .., $n} Of n elements from a universe
U of sizeu, and consists of an array of bits, initially all setto 0. A
Bloom filter usesk independent random hash functidns . . ., hx
with range{0, . ..,m — 1}. For each element € S, the bitsh; (s)
are setto 1 fol < i < k. To check if an element is in S, we
check whether alh;(z) are set to 1. If not, then clearly is not

a member ofS. If all h;(z) are set to 1, we assume thats in

S, although we are wrong with some probability. Hence a Bloom
filter may yield afalse positivewhere it suggests that an element
z isin S even though it is not. The probability of a false positjfve
depends on the number of bits used per itegfn and the number

of hash functiong according to the following equatiorf: = (1 —
efkn/m)k_

For an approximate reconciliation solution, peesends a Bloom
filter F'4 of S4; peerB would then check for each element® in

F4. When a false positive occurs, pe@rassumes that peet has

a symbol that it does not have, and so pBdgils to send a symbol
that would have been useful. However, the Bloom filter dods no
cause peeB to ever mistakenly send pedra symbol that is not
useful. As we have argued, if the set difference is largefatiere

to send some useful symbols is not a significant problem.

The number of bits per element can be kept small while stillac
ing high accuracy. For example, using just four bits per eletand
three hash functions yields an accuracy86f3%; using eight bits
per element and five hash functions yields an accura®i &%.
Using four bits per element, we can create filters for 10,08®ls
using just 40,000 bits, which can fit into five 1 KB packets.thar
improvements can be had by using the recently introduced com
pressed Bloom filter, which reduces the number of bits traitesth
between peers at the cost of using more bits to store the Biittem
at the end-systems and requiring compression and decosigres
at the peers [23]. For simplicity, we use only standard Blditters

in the experiments in this paper. For computation tit0¢|Sa|)
preprocessing is required to set up the Bloom filter, &{¢iSs|)
work is required to find the set difference.

The requirement fo©(|S4|) preprocessing time ar@d(|S4|) bits

to be sent may seem excessive for laj§e|, especially when far
fewer than|S4| packets will be sent along a given connection.
There are several possibilities for scaling this approgctouarger
numbers of packets. For example, for latga | or |Sg|, peerA
can create a Bloom filter only for elements®f that are equal to
B modulo~y for some appropriaté and~. PeerB can then only use
the filter to determine elements B — S equal to3 modulo~y
(still a relatively large set of elements). The Bloom filt@paoach
can then be pipelined by incrementally providing additidiiters

for differing values of3 as needed.

5.3 Approximate Reconciliation Trees
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Figure 3: Example of creation and Bloom filtering of an approx
mate reconciliation treeM is O(poly |S4|); in this case M =
|Sal?> = 49, h is 64, and example permutation functions are as
shown.

Bloom filters are the preferred data structures when the iwgrk
sets of the two peers have small resemblance. However, etdagv
approach can be useful even when the resemblance is large, an
less than 1% of the symbols at peBrmight be useful to peeA

(this difference may still be hundreds of symbols). For tzise we
suggest a potentially faster approach, using a new datztstewwe
have developed called approximate reconciliation trees.

Our approximate reconciliation trees use Bloom filters gnaba

tree structure that is similar in spirit to Merkle trees, ehare used
in cryptographic settings to minimize the amount of datagrait-

ted for verification [20]. We limit ourselves here to an iduztory

description focused on our applications here; other ugafper-

ties and applications will be detailed in a subsequent paper

Our tree structure is most easily understood by considehiadol-
lowing construction. Peed (implicitly) constructs a binary tree of
depthlogu. The root corresponds to the whole working $et.

The children correspond to the subsetsSof in each half ofU;

that is, the left child isS4 N [0,2/2 — 1] and the right child is

Sa Nu/2,u — 1]. The rest of the tree is similar; theh child at
depthk corresponds to the sty N [(j — 1) - u/2%, 5 - u/2" — 1].
Similarly, peerB constructs a similar tree for elementsdp. Now
suppose nodes in the tree can be compared in constant tihe, an
peerA sends its tree to ped3. If the root of peerdA matches the
root of peerB, then there are no differences between the sets. Oth-
erwise, there is a discrepancy. Pé&ethen recursively considers the
children of the root. It € Sg — Sa, eventually peeB determines



that the leaf corresponding toin its tree is not in the tree for peer
A. Hence peeB can find anyx € Sg — S4. The total work for
peerB tofind all of Sg — S is O(dlog u), since each discrepancy
may cause pedB to trace a path of deptlog u.

The above tree ha®(u) nodes and dept®(log u), which is un-
suitable when the universe is large. However, almost athtues in
the tree correspond to the same sets. In fact there areia|)
non-trivial nodes. The tree can be collapsed by removingetie-
tween nodes that correspond to the same set, leavingi§a|)
nodes. Unfortunately, the worst-case depth may stifRbes 4 |). To
solve this problem we hash each element initially beforeritirsg
it into the virtual tree, as shown in Figure 3(a,b). The raofjthe
hash function should be at least p@l§4|) to avoid collisions. We
assume that this hash function appears random, so thatyaedn
of values, the resulting hash values appear random. Inaiis, the
depth of the collapsed tree can easily be shown t®Heg [S4|)
with high probability. This collapsed tree is what is actyahain-
tained by peersl and B.

As seen in Figure 3(b), each node can represent a ge{of el-
ements, which would make comparing nodes in constant tifre di
ficult. We solve this problem again with hashing, so that eseth
of elements corresponds to a value. The hash associate@adth
internal node of the tree is the XOR of the values of its cleiftgr
as shown in Figure 3(d). Unfortunately, the high order bitthe
first hash values of adjacent leaves in the tree are highheleted,
since this first hash determines placement in the tree. Tdrereve
hash each leaf element again into a univéiée= [1, h) to avoid
this correlation. It is these second hash values that am wken
computing the XOR of hashes in a bottom-up fashion up the tree

false positive probability.

Figure 4 shows the results of experiments using approximegte
onciliation trees. These experiments used set)pf00 elements
with 100 differences. For larger sets, keeping the bits per element
constant will cause the error rate to increase slowly dubedree
traversals - we note that onl§(loglog¢) bits per element are
needed to avoid this fof elements. Figure 4(a) demonstrates both
the tradeoff involved when changing the number of bits usethie
internal nodes and leaves while keeping the total constzhttze
benefits of using more levels of correction. The figure shdvas t
using more correction levels and protecting the leaf haslhisa
large number of bits per element significantly improves ttae-f
tion of differences found. For example, at= 5, internal nodes
are well protected against false positives, so the besbpaéance

is achieved when nearly 6 of the 8 available bits per element a
allocated to the leaf filters.

Table 4(b) shows the accuracy for various numbers of bitefzer
ment and levels of correction using the optimal distributd bits
between the filters for leaves and interior nodes. The acgug
roughly 62% when using bits per element and over 90% with 8
bits per element.

Finally, the main tradeoffs between optimized Bloom filtensl ap-
proximate reconciliation trees are presented in Figurg ¥(ith 8

bits per element, both data structures have over 90% aggumaic
the search time on the Bloom filter scales linearly with thee @if
the set, not the set difference.

5.4 Recoded Content

Checking if two nodes are equal can be done in constant time by The final technique we describerecoding a technique which can

checking the associated values, with a small chance of a fals-
itive due to the hashing. As with Bloom filters, false postvmay
cause peeB to miss some nodes in the set differerthe — Sa.

The advantage of the tree over a Bloom filter is that it allowrs f
faster search of elements in the difference, when the difiee is
small; the time igD(dlog |SB|) using the tree instead @¥(|Ss|)

for the Bloom filter. To avoid some space overhead in sendmng a
explicit representation of the tree, we instead summahieéashes
of the tree in a Bloom filter. For ped? to see if a node is matched
by an appropriate node from pedr peerB can simply check the
Bloom filter for the corresponding hash. This use of a Blooreffil
introduces false positives but allows a small constant rerrabbits
per element to be used while maintaining reasonable acgcurac

A false positive from the Bloom filter prematurely cuts offeth
search for elements in the differen®g — S4 along a path in
the tree. If the false positive rate is high, the searchiggrithm
may never follow a path completely to the leaf. We can amelio-
rate this weakness by not terminating a search at the firsthmat
between nodes. Instead, we add a correction levedrrespond-
ing to the number of consecutive matches allowed withoutipig
the search, i.e. setting= 0 terminates the search at the first match
found, while setting = 1 terminates the search only when matches
are identified both at an internal node and a child of that pade

so on. If the correction level is greater thérthen any node in the
bottomd levels of the tree is at greater risk of leading to a false pos-
itive. To cope with this problem, we use separate Bloom §lfer
internal hashes and leaf hashes, giving finer control oweoverall

be applied only when encoded content is employed (sketaes a
approximate reconciliation methods can be employed whethe
not erasure correcting codes are used). Recoding is bekedpp
when collaborating peers are known to have correlated wgrkets
but do not yet know what elements are shared, i.e. in corijumct
with coarse-grained reconciliation. One obvious posigjbis for
peers to send random encoding symbols, but this leads tge lar
amount of useless data being transmitted in many circurossan
For example, if the containment @& in A is 0.8, then sending a
random symbol will be useless 80% of the time. On the othedhan
as we explain more clearly below, sending a combinatiomgusi
XOR) of 9 distinct output symbols is useless with probapitinly
0.8° ~ 14%. To describe recoding, we begin by providing rele-
vant details for erasure correcting codes in Section 5\elthen
introduce recoding functionality in Section 5.4.2.

5.4.1 Sparse Parity Check Codes

To describe the recoding techniques we employ, we must fiost p
vide some additional details and terminology of sparsdyatieck
codes now advocated for error-correction and erasureieesd,
and used in constructions which approximate an idealizgiadii
fountain. Detailed performance evaluation of these codeset-
working applications is detailed in [8]. A piece of conteatdi-
vided into a collection of fixed-length blocks, .. ., z,, each of
size suitable for packetization. For convenience, we reféhese
as input symbols. An encoder produces a potentially unbedind
sequence of output symbols, or encoding packatsy:, . .. from
the set of input symbols. With parity-check codes, each gjnsh



Provably good degree distributions have been developedaand
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Correction Bits per Element
2 4 0 8 5.4.2 Recoding Method
0 0.0000 | 0.0087 | 0.0997 | 0.2540 4.2 Recoding Methods
1 0.0063| 0.1615| 0.3950 | 0.6246 A recoded symbol is simply the bitwise XOR of a set of encoded
2 0.0530 | 0.3492| 0.6243| 0.8109 symbols. Like a regular encoded symbol, a recoded symbot mus
3 0.1323| 0.4800| 0.7424 | 0.8679 be accompanied by a specification of the symbols blendeceto cr
4 0.2029 | 0.5538| 0.7966 | 0.9061 ate it. To specify the input symbols combined, a recoded symb
5 0.2677 | 0.6165| 0.8239 | 0.9234 must also list identifiers for the encoded symbols from wiitievas
produced. As with normal sparse parity check codes, ireegig-
(b) Accuracy of approximate reconciliation trees gree distributions work well, although we advocate use okefi
degree limit primarily to keep the listing of identifiers shdEn-
- coding and decoding are performed in a fashion analogouseto t
Data Structure|| Size in bits | Accuracy Speed substitution rule. For example, a peer with output symbelsys
Bloom filters 8/Sal 98% O(|Sal) andy:; can generate recoded symbejs= y13, 22 = y5 @ ys and
AR.T.(c=5) 8|S4| 92% O(dlog [Sal) 23 = ys @ y13. A peer that receives;, z; andzs can immediately

recovery,s. Then by substituting:s into z3, the peer can recover
ys, and similarly can recoveys from z,. As the output symbols are
recovered, the normal decoding process proceeds. Thelldi@ma
from input symbols to recoded symbols and back in an example
where a server is directly connected to two peers and the é&osp
are engaged in an additional collaboration is illustrateBigure 5.

(c) Comparison of data structures at 8 bits per element

Figure 4: Approximate Reconciliation Statistics

To get a feel for the probabilities involved, we consider pineba-
simply the bitwise XOR of a specific subset of the input syrsbol  jjity that a recoded symbol is immediately useful. Assureen
A decoder attempts to recover the content from the encodimg s is generating recoded symbols from fiiefor peer4 and by virtue
bols. For a given symbol, we refer to the number of input sy$1bo ¢ 5 transmitted sketch, knows the containment 540551 The

. . S ‘
used to produce the symbol as degree i.e. ys = z3 @ x4 has probability that a recoded symbol of degréémmediately yields
degree 2. The time to produce an encoding symbols from a set of _gcdsﬁw)(u—ci\ssw) o o
input symbols is proportional to the degree of the symbol|awte- a new encoded symbol is<= 57 ) . This is maximized
. . . d
coding from a sequence of symbols takes time proportiontigo ford = [~ ] (Note that as recoded symbols are received, con-

total degree of the symbols in the sequence, using the fuffrsi tainment naturally increases and the target degree ireseasord-

rule defined in [17). Encoding and decoding tlmes are a fonatf ingly.) Using this formula fod maximizes the probability of imme-
theavgragedegree; when the average degree is constant, we say thediate benefit but is actually not optimal, since a recodedbs}rof

code is sparse. this degree runs a large risk of being useless. Thus we isedhie
Well-designed sparse parity check codes typically reqeicevery of d as a lower limit on the actual degree generated, and generate
of a few percent (less than 5%) of symbols beyénithe minimum degrees between this value and the maximum allowable degree
needed for decoding. Thi#ecoding overheadf a code is defined clusively. Recoded symbols which are not immediately Usafel

to beey if (1 + €4)¢ encoding symbols are needed on average to often eventually useful with the aid of recoded (or encodsaf)-
recover the original content. bols which arrive later. By increasing the degree at the absh-



experiments comparing approximate reconciliation treeBldbom
% filters will be detailed in a subsequent paper.

{ 6.2 Collaboration Methods

We compare the following three methods of orchestratingabel
oration in our experiments, described both in increasirdgioof
complexity and performance. While our methods may be coatbin
in other ways, these scenarios illustrate the basic trélettie de-
tails of the scenarios are as follows.

NO) A

@) (b) (©

Figure 6: Scenarios considered in our experiments. (a)}@gaeer
reconciliation, (b) Peer-to-peer collaboration augmemnt down-
load, (c) Download from multiple peers in parallel.

Uninformed Collaboration The sending peer randomly picks an
available symbol to send. This simple strategy is used by
Swarmcast [30] and works best when working sets are un-

mediate benefit, the probability of completely redundantisgls is correlated.

substantially reduced. Speculative Collaboration The sending peer uses a min-wise
summary from the receiving peer to estimate the containment
and heuristically tune the degree distribution of recodeu-s
bols which it encodes and sends. The containment estimated
from the min-wise summary and the number of symbols re-
quested are used to pick a pre-generated distribution tuned
as described earlier. Fractions used in picking pre-gésera
distributions were rounded down to multiples®5 except
when the desired fraction would be zero. This choice of distr
bution does not take into account correlation with othedsen
ing peers but will be at least as efficient as uninformed bella
oration (arguably a special case) and frequently more so.

Reconciled Collaboration The sending peer uses either a Bloom
filter or an approximate reconciliation tree from the reoev
peer to filter out duplicate symbols and sends a random per-
mutation of them without repetition. The Bloom filter and ap-
proximate reconciliation trees are made large enough te con

6 Experimental Results

Our experiments focus on showing the overhead and potential
speedups of using our methods in peer-to-peer reconoitias
well as in the setting of downloads augmented by collabezati
transfers. We first show the feasibility of reconciling withpeer
with partial content, by demonstrating the overhead in ivéog
symbols from such a sender. Next, we evaluate the use of ende
with partial content, alone or supplementing full sendarg| show
the potential for speedups from parallel collaborativagfars. The
simple scenarios we present are designed to be illustatigdigh-
light the primary benefits of our methods; the performance im
provements we demonstrate can be extrapolated onto moggeom
scenarios.

6.1 Simulation Parameters

All of our experiments focus on collaborative transfers 628MB
file. We assume that the origin server divides this file int@%8 in-

tain all of the output symbols at the end of the process since
they will be updated incrementally as output symbols are re-
covered. Random permutations of the transmitted encoding

pu’[ Symb0|s Of 1400 bytes eachl and subsequenﬂy encomehi SymbOlS are used to minimize the likelihood that two digtinc
into a large set of output symbols. We associate each ougpt s sending peers send identical encoding symbols to the receiv
bol with an identifier representing the set of input symbaedito Ing peer.

produce it; our simulations used 64-bit identifiers. Thedgular de-
gree distribution used in the codes was generated usingstiesir
based on the discussion in Section 5.4 and described in Thig.
degree distribution had an average degree of 11 for the edco
symbols and average decoding overhea?.8%. The experiments
used the simplifying assumption of a constant decodingtmat . .
€q = 2.5%. Fc?r fri,acc?ding, Wepgenerated degree distribut?ons in the 6.3 Scenarios and Evaluation

same fashion with a maximum degree of 50. Rather than generat |n the scenarios we examine, we vary three components; thu se
recoding degree distributions on the fly, we instead geedrdtem connections in the overlay formed between sources and,phers

off-line and parameterized by containment and the pergentd distribution of content among collaborating peers, andstaek of
available symbols desired by the receiving peer, both irements the scenario, defined as follows.

of 0.05. We note that using more sophisticated techniques for gen-
erating degree distributions and reducing decoding oeetiseich

as those described in [17, 16] will improve our results adirayly. U Sx| . . .
Min-wise summaries employed 180 permutations, yielding &i8- is —X<¥ — whereSx is the working set of peeX and/ is the
tries of 64 bits each for a total of 1440 bytes per summaryeFin total number of input symbols.

grained reconciliation used Bloom filters with 6 hash fuoies and

8(1 + eq) bits per input symbol, for a total of 96 KB per filter. By this definition, in a scenario of slack there ares{ distinct out-
Overhead measurements presented in this section usingstes f  put symbols in the working sets of peerstn Clearly, when the
approximate reconciliation tree methods are visuallystidguish- slack is less than + eq, the set of peery” will be unable to re-
able from those using Bloom filters and are not included. Addal cover the file even if they use an exact reconciliation atpomi

Techniques from speculative collaboration can be combini¢tl
the methods for reconciled collaboration to optimize perfance

d over lossy channels or when transfers from peers with higbty
related working sets are employed in parallel.

Definition 4 (Slack) Theslacks associated with a set of peeYs

10
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Figure 7: Overhead of peer-to-peer reconciliation.

since the decoding overhead alone s When the slack is larger
thanl + €4, and if peers are using a reconciliation algorithm with
accuracya, then they can expect to be able to retrieve the file if
(1 4+ €4) < sa. Our methods provide the most significant benefits
over naive methods when there is only a small amount of skk;
noted earlier, approximate reconciliation is not espéciifficult
when the slack is large. We use slack values.of 1.2, and1.3 for
comparison between compact scenarios with little avasladtiun-
dancy and looser scenarios. When varying slack has lifiéeedn

the results, only the results for a slack valud df are shown.

For simplicity, we assume that each connection has the same

amount of available bandwidth; our methods apply irrespeaif
this assumption. The receiving pedrfor whom we measure the
overhead always starts with5¢ output symbols from the server.
The output symbols known to the sending peers are deterrbiyed
the slack of the scenario and the containment defined in@edti
this will be discussed in detail for each particular scembglow.

To evaluate each technique, we measure the overall overdfead
each strategy where an overhead afieans thatl + €)¢ symbols
need to be received on average to recover a fileioput symbols.

In case of a server sending encoded content without aid fieensp
with partial content, the overhead is merely the decodiregtowrad,
i.e. e = €4. In other scenarios, there may be additiorealeption
overheadarising from duplicate or useless received encoding sym-
bols orrecoding overheadrom useless recoded symbols. The x-
axis of each plot is the range of containment of the sendirgspe
by the receiving peer. Each data point is the averag# aimula-
tions.

6.3.1 Peer-to-Peer Reconciliation

The simplest scenario to consider is composed of two pedts wi
partial content where one peer sends symbols to the othisrsté-
nario is illustrated in Figure 6(a), and is designed to thate the
feasibility of our approach even in the worst case when sswith

a complete copy of the file are no longer available and retianci
tion and recovery is barely possible.

For receiving peerd, sending peeBB, with a file consisting o¥
input symbols and slack

ts 1Sa| + |S5| — [Sa N Sal.
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Figure 8: Overhead of peer-augmented downloads, sldack =

By the definition of containment, = %
ls —1Sa
— C

These two equations therefore uniquely determigl, |Ss| and
|SaNSg| as afunction of the slack and the containment. [TheU

Sg| symbols are then distributed as follows$.a N Sg| symbols
are distributed to bot and B, |Sa| — [Sa N Sg| symbols are
distributed toA, and the remainder are distributedio

Before continuing, we note that one additional constraimdeded

to keep the scenarios realistic, namely, neitdemor B alone
should be able to recover the file (otherwise, no transfezéessary
or B can generate fresh symbols). That|$4, S| < (1 + €q),
wheree, is the decoding overhead. This gives an upper bound on
feasible values of for a given slacks, explaining the variation be-
tween values on the x-axes of our plots.

Figure 7 shows the results of our experiments for this séenar
In each experiment, uninformed collaboration performsriycand
degrades significantly as containment increases. Thidt rissin-
tuitive and can be precisely analyzed using analysis sintoléhat
of the well known Coupon Collector’'s problem [14]. Esselhfja
the rate of useless symbols transmitted increases withuher
of symbols shared between peers. The degree of sharingsese
both as the initial containment increases and as the tnapsfe
gresses.
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Figure 9: Overhead collaborating with multiple peers ingliat.

Speculative collaboration is more efficient than uninfodroellab-
oration, but the overhead still increases slowly with comteent.

In comparison, the overhead of reconciled collaborationirisi-
ally indistinguishable from plain encoded transfers frorseaver
and does not increase with containment. The extra overhigad-o
onciled collaboration is purely from the cost of recontiba (i.e.
transmitting a Bloom filter or approximate reconciliatioed) so it

is less than a percent when sending 8 bits for every symb@0(14
bytes).

6.3.2 Peer-Augmented Downloads

The next scenario we consider consists of a download fromvaise
with complete content, supplemented by a perpendiculastea
from a peer as illustrated in Figure 6(b). In contrast to thevipus
scenario, this scenario demonstrates the utility of aolaiiti band-
width in parallel with an ongoing download from a server. Astie
case of peer-to-peer reconciliation, the distributionyohbols be-
tween peers at the beginning of the scenario is precisedyméted
by the slack and containment.

The results of this scenario are shown in Figure 8 and ardasimi
regardless of the slack. The overhead of uninformed coltom

is considerably lower than in the scenarios of Figure 7, grilyp
because a larger fraction of the content is sent directlyfndgh
symbols from the server. Using our methods, speculativaloota-
tion performs similarly to uninformed collaboration ingtgcenario,
as the recoding methods used are not highly optimized — some i
provements are possible with additional effort. In all cagecon-
ciled collaboration still has overhead just slightly higliean that
of only receiving symbols directly from the server, but thent-
fer time is substantially reduced when the additional cetioe is
employed.

For this scenario, it is natural to consider the speedupishab-
tained by augmenting the download with an additional cotioec
Defining the speedup to be the ratio between the transfentiimg
a single sender with full content (and incurring no decodingr-
head) and the transfer time we achieve, we have:

number of senders

speedup= 1+ overhead '’
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since all connections are assumed to have equal bandwidtaran
fully utilized. Therefore, a reconciled transfer with 030@verhead
achieves a speedup of 1.95, while an uninformed transfér@a0

overhead achieves a more modest speedup of 1.67 over aavanill
download.

6.3.3 Collaborating with Multiple Peers in Parallel

Finally, we consider a peer collaborating concurrentlyhwibur
peers, all with partial content, as illustrated in Figure)6(This
scenario demonstrates that given appropriate reconailiaigo-
rithms, one can leverage bandwidth from peers with partiatent
with only a slight increase in overhead.

When encoding symbols are allocated across multiple pslkaick
and containment no longer uniquely determine the initiatribu-
tion of symbols. We employ the following allocation methdds
before, the receiver initially has exactlys£ symbols. One of these
symbols is known to a sending peer with probabititirhe remain-
ing symbols are known to a sending peer with probabgityuch
that ——r = G277 Any of these symbols not known to
any sending peers is discarded and replaced. This resudtscim
peer having an expectads¢ symbols at the beginning of the ex-
periment

The results of this scenario are shown in Figure 9. As one dvoul
expect, uninformed collaboration performs extremely podfor
low values of containment, speculative collaboration @erfs the
same as uninformed collaboration, but dramatically impsoas
containment increases. We again recall that the degrewhdisdn
was tuned to the according to the containment. In contragtee
vious experiments, reconciled collaboration has muchdrigher-
head than before. This arises from correlation across pheifieers.
For example, sending peefsand E may identify shared symbai

as being inSp — S4 andSg — Sa, respectively, and then both send
z to receiving peed. When a symbol is received multiple times, it
directly contributes to the overhead. For similar reastiresperfor-
mance of speculative collaboration is also degraded, agtioeling
algorithm is optimized only for transfers between pairs eérs.

Given the relatively poor performance of reconciled cadliation
when there is sharing between sending peers, we now corbiler



Total Bandwidth Overhead ——
Downstream Bandwidth Overhead - xoooe

Bandwidth Overhead

0 h f X X
0 20 40 60 80 100
Update frequency

(a) Tradeoffs between bandwidth and update frequency.

Uninformed ——
Speculative -
Reconciled -

1.5

Overhead

0.5

0.2 0.3

Initial Containment

0 0.1

(b) Overhead with updated summarigis=£ 10).

Figure 10: Overhead of collaborating with multiple peerpamallel and updating periodically. Slacki=l.

effects of periodically updating the summaries, in corttashe
previous experiments, which performed fine-grained reitiation
only once, at the beginning of the scenario. We repeat therexp
iments for this scenario with the containment constrairedetro
(the worst case for reconciled collaboration) and modutlaeefre-
quency of reconciliation. Figure 10(a) shows the resultdisf ex-
periment. In this graph, the update frequerfcyneans that an up-
date is performed after receivirlg f symbols, i.e. a frequency of
20 implies that updates are triggered after every 5% of tlvendo
load progresses. The bottom curve reflects the extra battdwfd
traffic to the receiving peer. The top curve adds the bandwidh-
sumed by updates, thus accounting for the total amount oé ext
communication inboth directions. For example, ag increases,
the bandwidth spent on reconciliation updates becomegfisiymt,
and ultimately would dominate the bandwidth of the actuahsr
fer. When optimizing total bandwidth consumption, we findtth
reasonable reconciliation frequency is roughly— 20 depending
on the slack of the scenario, meaning that there is an upétate a
every0.05¢ — 0.10¢ symbols that are transferred.

Figure 10(b) shows the results of using these updates irctras
ios of Figure 9, i.e. speculative collaboration updatestirewise
summary and reconciled collaboration updates the Bloowrdilt
An update frequency of 10 is used and both speculative amh+ec
ciled collaboration show dramatic improvement.

7 Conclusions

Overlay networks offer a powerful alternative to traditdmech-
anisms for content delivery, especially in terms of flexipilscal-
ability and deployability. In order to derive the full beriefof the
approach, some care is needed to provide methods for represe
ing and transmitting the content in a manner that is as flexabid
scalable as the underlying capabilities of the delivery ehod/e
argue that straightforward approaches at first appeartisfiedut
ultimately suffer from similar scaling and coordinatioroptems
that have undermined other multipoint service models forteot
delivery.
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In contrast, we argue that a digital fountain approach todimg
the content affords a great deal of flexibility to end-systquer-
forming large transfers. The main drawback of the approacthat
the large space of possible symbols in the system meansdhat c
ordination across end-systems is also needed here, ingbésto
filter useful content from redundant content. Our main dbotr
tions furnish efficient, concise representations whichcdkéhe rel-
evant state at an end-system in a handful of packets and tbhen p
vide appropriate algorithmic tools to perform well undey anir-
cumstances. With these methods in hand, informed and ieffect
collaboration between end-systems can be achieved, Wik thle
benefits of using an encoded content representation.
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