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Abstract—IP flows have heavy-tailed packet and byte size
distributions. This make them poor candidates for uniform
sampling—i.e. selecting 1 in N flows—since omission or in-
clusion of a large flow can have a large effect on estimated
total traffic. Flows selected in this manner are thus unsuit-
able for use in usage sensitive billing. We propose instead
using a size-dependent sampling scheme which gives prior-
ity to the larger contributions to customer usage. This turns
the heavy tails to our advantage; we can obtain accurate es-
timates of customer usage from a relatively small number of
important samples.

The sampling scheme allows us to control error when
charging is sensitive to estimated usage only above a given
base level. A refinement allows us to strictly limit the chance
that a customers estimated usage will exceed their actual us-
age. Furthermore, we show that a secondary goal, that of
controlling the rate at which samples are produced, can be
fulfilled provided the billing cycle is sufficiently long. All
these claims are supported by experiments on flow traces
gathered from a commercial network.

I. INTRODUCTION
A. Background

Network service providers are increasingly employing
usage measurements as a component in customer charges;
see e.g. [11], [19]. One driver stems from the coarse gran-
ularity in the available sizes of access ports into the net-
work. For example, in the sequence OC3to OC12 to OC48
to OC192, each port has a factor 4 greater capacity than the
next smallest. Consider a customer charged only accord-
ing to the access port size. If their demand is at the upper
end of the capacity of its current port, the customer will
experience a sharp increase in charges on moving to the
next size up. Moreover, much of the additional resources
will not be used, at least initially. Usage based charging
can avoid such sharp increases by charging users for the
bandwidth resources that they consume. Another driver

for usage based charging comes from the fact that in IP
networks, bandwidth beyond the access point is, mostly,
a shared resource. Users who are aware of the charges
incurred by bandwidth usage have a greater incentive to
moderate that usage. Thus charging can act as a feedback
mechanism that discourages users from attempting to fill
the network with their own traffic to the detriment of oth-
ers; see e.g. [12]. Finally, differentiated service quality
will require correspondingly differentiated charges. In par-
ticular, it is expected that premium services will be charged
on a per use basis, even if best effort services remain on a
flat (i.e. usage insensitive) fee. We remark that in one
current proposal [13], customer awareness of the differ-
entiated charges is to be the sole mechanism maintaining
differential service quality.

In this paper, we will be concerned with customer us-
age as determined from direct measurements of customer
traffic at routers or other network elements. Specifically,
we take usage to mean the total number packets or bytes in
those packets (or possibly some combination of these) that
are observed during some billing interval, these totals be-
ing differentiated at some accounting granularity, e.g., by
customer, service class, source and/or destination IP ad-
dress, application, or some combination of these.

Where and how should such measurements be per-
formed? One possibility is to maintain byte or packet
counters at a customer’s access port(s). Such counters are
currently very coarsely grained, giving aggregate counts
in each direction across an interface over periods of a
few minutes. However, even separate counters differen-
tiated by service quality would not suffice for all charging
schemes. This is because service quality may not be the
sole determinant of customer charges. These could also
depend, for example, on the remote (i.e. non-customer) IP
address involved; see e.g. [11]. This illustrates a broader
point, namely, that the determinants of a charging scheme
may be both numerous and also relatively dynamic. This
may preclude using counts arising from a set of traffic
filters, due to the requirement to have potentially a large
number of such filters, and the administrative cost of con-
figuring or reconfiguring such filters.

A complementary approach is to measure (or at least



summarize) all traffic, then transmit the measurements to
a back-office system for interpretation according to the
charging policy. In principle this could be done by gath-
ering packet headers, or by forming flow statistics. An IP
flow is a sequence of IP packets that shared a common
property, as source or destination IP address or port num-
ber or combinations thereof. A flow may be terminated
by a timeout criterion, so that the interpacket time within
the flow does not exceed some threshold, or a protocol-
based criterion, e.g., by TCP FIN packet. Flow definition
schemes have been developed in research environments,
see e.g. [1], and continue to be the subject of standard-
ization efforts [10], [16]. Cisco NetFlow is an operating
system feature for the collection and export of flow statis-
tics. These include the identifying property of the flow, its
start and end time, the number of packets in the flow, and
the total number of bytes of all packets in the flow. Infor-
mation on some commercial examples of the use of flow
statistics for billing purposes can be found at [4]. Other
examples of flow definitions employed as part of network
management and accounting systems can be found in In-
mon’s sFlow [9], Qosient’s Argus [15], Riverstone’s LFAP
[17] and XACCT’s Crane [20].

B. The Motivation for Sampling

One limitation to comprehensive direct measurement of
traffic stems from the immense amounts of measurement
data generated. For example, a single OC48 at full utiliza-
tion could generate about 100GB of packet headers, or sev-
eral GB of (raw) flow statistics each hour. The demands on
computational resources at the measurement point, trans-
mission bandwidth for measured data, and back-end sys-
tems for storage and analysis of data, all increase costs for
the service provider.

A common approach to dealing with large data volumes
is to sample. In the context of network measurements, this
is not a new idea; see e.g. [6]. However, a common ob-
jection to sampling has been the potential for inaccuracy;
customers can be expected to be resistant to being over-
charged due to overestimation of the resources that they
use.

In this paper we employ a sampling mechanism that
specifically addresses concerns of sampling error. Total
customer usage is the sum of a number of components,
some large, some small. Sampling errors arise predomi-
nantly from omission of the larger components, whereas
accuracy is less sensitive to estimation of the smaller com-
ponents. For example, consider a simple sampling scheme
in which we estimate total bytes by sampling 1 in every
N flows, then add together N times the bytes reported by
each sampled flow. The underlying distribution of flow

bytes sizes has been found to follow a heavy tailed dis-
tribution [8]. In this case, the estimate can be extremely
sensitive to the omission or inclusion of the larger flows.
Generally, such an estimator can have high variance due to
the sampling procedure itself.

The work in this paper rests on the observation that the
heavy-tailed distribution of flow packet and byte sizes can
be turned to our advantage for sampling provided an ap-
propriate sampling algorithm is used. We replace uniform
sampling with size dependent sampling, in which an object
of size z is selected with some size dependent probability
p(z). The probability p(z) is 1 for large z. In the case of
flows, all sufficiently large flows will always be selected;
there is no sampling error for such flows. On the other
hand we take p(z) < 1 for smaller flows; this reduces the
number of samples, but the error involved is small since
the underlying flows are small. To estimate the total us-
age represented in the original set of flows, we sum up the
quantities z/p(z) over only the sampled flows. Applying
the renormalization factor 1/p(z) to the small flows com-
pensates for the fact that they might have been omitted. In
fact, it can be shown that this sum is an unbiased estimator
of the actual total usage (i.e. its average value over all pos-
sible random samplings is equal to the actual total usage).
We remark that the uniform sampling described in the pre-
vious paragraph is a special case of this scheme with p(x)
constant and equal to 1/N.

The size-dependent sampling scheme employed here
has recently been proposed in [7]. It enjoys a number of
useful properties. Firstly, the sampling probabilities p(zx)
can be chosen to satisfy a certain optimality criterion for
estimator variance; we describe this later. Secondly, a sim-
ple adaptive scheme allows dynamic tuning of p in order
to keep the total number of samples within a given bound.
Thus, in the context of flow measurement, the number of
flow statistics transmitted to the back end system can be
controlled. Thirdly, on binding the sampling parameters
(i.e. p(z)) to the data = in constructing the rescaled size
z/p(z), we obviate the need to keep independent track of
p, or even the original per flow usage z if only total us-
age estimation is required. Thus, p can vary at different
times, or across different regions of the network, or even
for different traffic classes, as needed, but estimation re-
mains unbiased. Fourth, sampling is composable in the
sense that the first three properties above are preserved un-
der successive resampling. Thus, one could progressively
resample at different points in the measurement system in
order to limit the volume of samples. Lastly, we observe
that although we have framed the discussion in terms of
flow sampling, it could apply equally well to packet sam-
pling. However, we expect the performance benefit over 1



in V sampling to be smaller in this case, since packet sizes
do not have a heavy-tailed distribution.

C. Contribution

In this paper we take an approach to usage-sensitive
charging that mirrors the foregoing approach to sampling.
The sampling scheme determines the size of the larger
flows with no error. Estimation error arises entirely from
sampling smaller flows. For billing purposes we wish to
measure the total usage for each billed entity (e.g. for each
customer at a given service level) over each billing cy-
cle. Larger totals have a smaller relative error due to sam-
pling, whereas estimation of total usage for the smallest
customers may be subject to greater relative error. There-
fore, we set a level L on the total usage, with a fixed charge
for all usage up to L, then a usage sensitive charge for
all usage above L. Thus we need only tune our sampling
scheme in order that estimation of usage above L be suffi-
ciently accurate.

In Section Il we describe a parameterized family of size
dependent probabilities p(z) for sampling, and describe
their statistical properties. Each member of the family is
specified by a single parameter, the sampling threshold z.
Flows of size x > z are always sampled, whereas smaller
flows are sampled with probability z/z. We demonstrate
their application to flow sampling using flow traces taken
from a commercial network. We review the statistical
properties of the flow packet and byte size distributions,
and compare the accuracy of estimation of our proposed
sampling approach with that of uniform 1 in N sampling.
Our approach has strikingly greater accuracy.

In Section 11l we show how to choose the sampling
threshold z in order to uniformly control the variance of
estimates of total usage above a given level L. This in turn
allows us to control the sampling variance of charges in
pricing schemes that are sensitive to usage only above the
level L. This control is based on a bound on the sampling
variance that is robust in that it is independent of the distri-
bution of the underlying per flow usage. Two variations of
the scheme are discussed. In the first, we use the bound on
the variance in order to systematically adjust the estimated
usage downward so as to reduce the possibility of erro-
neous overcharging to due sampling errors. However, this
is achieved at the cost of rendering unbillable a small but
consistent portion of customers’ usage The second vari-
ation shows how the amount of unbillable usage can be
reduced by appropriately lowering the sampling threshold
z. In Section IV we investigate the efficacy of all of these
approaches by examining their performance on the flow
traces mentioned above.

In Section V we propose some refinements of the esti-

mation of sample variance that was used to determine the
appropriate sampling threshold z. Specifically, we derive
an unbiased estimator for the sampling variance of the to-
tal usage from a given customer, an estimate which can be
calculated from the sampled usage alone. This would al-
low reduction of the number of samples needed for a given
estimation accuracy. These properties and some trade-offs
are further discussed.

In Section VI we establish an independent condition on
the sampling threshold z in order that the mean rate at
which samples are generated can be kept within a given
level. This is motivated by the desire to control the use of
processing, transmission and storage resources in the mea-
surement subsystem itself. We establish conditions under
which such a goal is compatible with the goal of control-
ling sampling error for billing. We argue, with some sup-
port from the statistics of the flow traces, that these goals
can be made compatible provided that the billing cycle is
sufficiently long.

We summarize the technical results of the paper in Sec-
tion VII and conclude in Section VIII.

I1. S1zE-DEPENDENT SAMPLING
A. Objectives

The basis of the sampling scheme is that sufficiently
large objects are always sampled, while smaller objects are
sampled with progressively smaller probability. Let’s con-
centrate on the specific example of flows. Suppose a set of
flows labeled by i = 1,2, ..., n have summaries generated
by through measurement in the network during some time
period. Let z; be the usage attribute of interest from the
flow 4, e.g., the number of packets in the flow, or the total
number of bytes in the flow, or any other positive quantity
of interest. Recall each packet in a flow possesses a com-
mon attribute, such as IP address (or net), port number, or
Type of Service (ToS) field. We refer to each combina-
tion of interest of such attributes as a “color”; ¢; will be
the color of flow ¢. In the context of billing, a color might
correspond to a customer address, or this plus a remote
network, and possibly a ToS specification. The mapping
that associates a particular customer with a set of packet
attributes may be relatively complex; we assume this to be
performed by the subsystem that collects and interprets the
measurements. Our object here is to estimate the totals for
for each color c of interest, i.e., X(c) = > ) cicp.ci—c Ti-
We shall abbreviate the last sum by 3/ z;.

A.l Size-dependent Sampling.

For each positive number z we defined the sampling
probability function p,(z) = min{l,z/z}. The role of z



Fig. 1. SAMPLING PROBABILITY FUNCTIONS: p,(z) =
min{l,z/z}. Flows of size less < z are sampled with
probability z/z. Flows of size greater z > z are always
sampled.

will be explained a little later; for the moment let us fix it at
some value. In our sampling scheme, a flow with size z is
sampled with probability p,(x). The parameter z acts as a
threshold: flows of size z or above are always sampled: see
Figure 1. More formally, let (w;)?_, be independent ran-
dom variables, with w; taking the values 1 with probability
pz(z;) and 0 otherwise. Thus w; indicates whether flow 4
is to be sampled (w; = 1) or not (w; = 0). Each sampled
value z; is to be renormalized by division by p(z;). The
estimate X (c) of the X (c) is the random quantity

X= >

1<i<n:¢c;=c

wiz; /P, (2;) 1)

A.2 Statistical Properties.

__We now turn to the statistical properties of the estimator
X (c). In what follows we consider the underlying quan-
tities x; for be fixed for a given set of flows. The only
randomness that enters is through the sampling operation
itself, i.e., through the random quantities w;. For example,
the variance of X (c) is

Var)?(c) = Var(Z'c wiz; [p,(x;)) (2)
e (@i/ps(w))?Var(w;)  (3)
= Zi, z; max{z — z;, 0}. (4)

The last step follows from the fact that each w; has vari-
ance p(z;)(1 —p(z;)). Note that flows ¢ with z; > z make
no contribution to Var(X(c)) since they are always sam-
pled.

The statistical properties of the estimate X (¢), and the
role of the parameter z are given in the following result,

from [7]. Let N(c) denote the (random) number of objects
of color ¢ that are sampled, i.e., N(c) = Y. w;.

Theorem 1: [7] For each fixed set of sizes (z;);;:
(i) X (c) is an unbiased estimator of X (c), i.e., EX (c¢) =
X(c).
(if) p, is optimal amongst the set all possible of sam-
pling probability functions p in the sense that Var)?(c) +
22EN (c) is minimized when p = p,.
Due to Theorem 1(ii) we will refer to size-dependent sam-
pling, that uses a sampling probability p, for some z > 0,
as optimal sampling.

A.3 Trading Off Sample Volume and Variance.

So far we have interpreted z as a size threshold above
which flows are always sampled. Note that the larger the
value of z, the less likely we are to sample a given flow,
and the greater the variance associated with sampling it.
Theorem 1 furnishes us with a related interpretation, in
which we think of z as the relative weight we attach to
having small estimator variance vs. having a small number
of samples. If z is small, then VarX(c) + 22EN(c) is
more easily minimized by making Var)?(c) small, which
in turns happens if we tend to sample more of the flows.
Conversely, if z is large, then Var)?(c) + 22EN (c) is more
easily minimized by making EN (¢) small, which in turns
happens if we tend to sample less of the flows.

A.4 Computational Issues.

It is worth remarking that there is an efficient implemen-
tation of the sampling strategy that is hardly more complex
than deterministic 1 in N sampling; see [7].

B. Application to Flow Sampling
B.1 Flow Data Sources.

We illustrate the power of the optimal sampling method,
including a comparison with deterministic 1 in N sam-
pling, by applying it to IP flows. In this paper we use flow
data drawn from two sources. First, we used raw NetFlow
traces gathered from a router in an aggregation network
serving domestic cable Internet users. The traces were
gathered during one week in June 2001, and encompassed
traffic generated by several thousand distinct IP address
on the customer side. The second set of flows was gen-
erated from an IP header trace gathered during one week
from an aggregation network serving modem banks access
by dialup customers. Several hundred distinct customer IP
addresses were present in this trace on the customer side.
The IP header traces were used to generate flows based on
the unique source and destination IP address and port num-
bers, and a 30 second timeout (i.e. this was the maximum
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time allowed between successive packets with matching
addresses and ports). In both datasets, there is not neces-
sarily a one-to-one mapping between IP addresses and in-
dividual customers, due to the potential for the dynamic re-
assignment of IP addresses. For the purposes of this study,
we confine ourselves to the problem of estimating traffic
volumes generated by each customer side IP address (thus,
these form the set of “colors”), regardless of whether it is
actually used by more than one customer during the mea-
surement period. We believe that the statistical effective-
ness of the method would be essentially unchanged for per
customer data, at least when applied to measurements over
sufficiently long timescales.

B.2 Flow-size Distributions

Heavy-tailed distributions of the numbers of packets and
bytes of IP flows has been previously noted; see e.g. [8].
Figure 2 displays the complementary cumulative distribu-
tion function (CCDF)—i.e. the proportion of flows with
bytes greater than a given level—of the flow sizes present
for one of the traces studied in the current paper. Observe
the approximate linearity on the log-log scale, indicative of
a heavy tailed distribution. The distribution of total bytes
per customer-side IP address over a given period shares the
heavy tailed property: see Figure 3.

B.3 Measures of Accuracy.

Our principle statistic for comparing estimated usage
X with its actual value is the absolute relative error 1 —
X /X|. We shall be interested in the distribution of this
relative error over the range of colors of interest, and its
dependence on the size X of the quantity to be estimated.
For several experiments we shall wish to summarize this
relative error over the range of colors of interests. One
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measure is the Weighted Mean Relative Error (WMRE)

WMRE - 2eX(0) — X()

>, X(0) ©)

(Note that )~ without the  is just the a usual sum over all
¢, rather than over objects with a specific color ¢). The
WMRE averages the per-color absolute relative errors
|1—)?(c)/X(c)| with a weight X (c)/ Y. X (c) in propor-
tion to the quantity to be estimates. Thus is gives greater
weigh to relative errors for large volume colors than for
those with small volumes.

B.4 Comparing Optimal with 1 in v Sampling.

Figure 4 compares the WMRE for 1 in N sampling and
optimal sampling. For 1 in N sampling, N is called the
sampling period. For optimal sampling, the reciprocal of
the average probability that a flow is sampled probability
the effective sampling period. For optimal sampling, the
thresholds z took the values from 102 (for smaller sam-
pling periods) up to 10° (for larger sampling periods).

Observe the strikingly better accuracy—i.e. smaller
WMRE—of optimal sampling as compared with 1 in N
sampling, over 4 orders of magnitude of the sampling pe-
riod. As an example, with an effective sampling period of
100, the WMRE for optimal sampling is about only 1%,
while for 1 in N sampling it is around 50%. The irregular-
ity of the upper line reflects the sensitivity of the estimates
from 1 in V sampling to random inclusion or exclusion of
the largest flows during sampling. These features demon-
strate the potential for inaccuracy arising from naive sam-
pling from heavy-tailed distributions.
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B.5 Accuracy and Trace Size.

Figure 5 displays WMRE vs. sampling period for a trace
of 107 flows, as compared with subportions containing 10°
and 10 flows. The relative error decreases as the trace
length increases, since the byte total for a given IP address
is composed of a greater number of contributions. This is
an important observation, since, as we shall see, it may be
desirable to place lower bounds on z in order to fulfill other
objectives, such as limiting the rate at which samples are
generated. The behavior in Figure 5 suggests that it will
still be possible to fulfill simultaneously the goals of low
relative error and low rate of sample production, provided
that the length of the period of observation (e.g. the billing
period) is sufficiently long.

I11. PRICING AND THE CONTROL OF SAMPLE
VARIANCE

We are now going to use the sampling approach from
the last section for charging. Fair charging requires that
the deviation between the traffic charged to a customer and
the actual traffic is kept to a minimum. The scheme from
the last section is essentially the doing best possible, in the
sense that variance of X is minimized for a given threshold
z. However, the relative estimation error can be relatively
large for colors with small amounts of traffic. As an ex-
treme example, suppose the traffic associated with color ¢
contributes total actual usage X (¢) < z. Each such flow
must therefore have size less than z, and will hence make
a contribution to the estimated usage X (c) that is either 0
(if the flow is not sampled), or z (if it is). Hence )?(c) will
be either 0, or at least z.

10%5 flows —+——
10**6 flows -
10%*7 flows %
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w
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=
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(effective) sampling period
Fig. 5. WEIGHTED MEAN RELATIVE ERROR VS. EFFEC-

TIVE SAMPLING PERIOD: for traces of 10°, 108 and 107
flows. Note increasing accuracy—i.e. smaller WMRE—
with larger traces.

A. Estimation and Small Volumes.

As a simple solution to the problem of estimating the
small traffic volumes, we suggest that traffic of a given
color is charged a fixed fee, plus a usage-sensitive charge
only for traffic volumes that exceed a certain level L. (L
could depend on the color in gquestion, although we shall
suppress this possible dependence for clarity of notation).
The idea is to tune the sampling algorithms so that any us-
age X (c) that exceeds L can be reliably estimated. Usage
X (c) that falls below L does not need to be reliably es-
timated, since the associated charge is usage-insensitive,
i.e., independent of X (c) < L.

Generally, then, we can consider traffic to be charged
according to some function f.(X(c)) which depends on
f(c) only through the quantity max{)?(c),L}, ie, itis
independent of any usage below L. The subscript of f. in-
dicates that the charge could depend on the color ¢, e.g.,
through the type of service, or foreign IP address. As sim-
ple example would be do charge using

fc()?(c)) =aqa,+ b, max{f(c), L}. (6)

Here, a. is a fixed charge, than can encompass, e.g., port
charges and administrative charges, whereas b, is a per
byte charge on traffic transmitted during the billing cycle,
with a minimum usage L. (6) can also express pricing
models in which there is is a fixed administrative charge
for small customers, whose usage doesn’t warrant accu-
rate measurement. Note that both a. and b, are allowed
to depend on the color ¢ in question. We will assume that
both are non-negative quantities.



B. Reliable Estimation of Traffic Volumes.

Reliable estimation of the volumes X (c) is arranged for
by choosing the sampling threshold z appropriately high
for level L in question. The larger the level L and the larger
the deviation of X (c) from X (c) that we can tolerate, the
higher a threshold z we can allow. To find the required z
we first bound the variance of X (c) above, and show that
the bound is achieved in the worst case.

Lemma 1: VarX (c) < zX(c) with VarX (c) — 2X(c)
asall z; — 0.

Proof of Lemma 1: From (2), VarX (c) = ¥/, z; max{z—
7,0} < 3 @iz = 2X (c). If all z; < 2, then VarX (c) =
zX () — ! 22, which converges to zX (c) as all z; — 0.
]

Note the bound on Lemma 1 depends only on z and the
total X (c), not on the detailed distribution of the z;.

Suppose now that we want to control the variance of all
estimates X (c) greater than the level L. We express this
as a condition on the standard error, i.e., the ratio of stan-

dard deviation (X (c)) = 1/VarX(c) to the mean X (c).

Roughly speaking, we want the typical estimation error to
be no more than about ¢ times X, for some target £ > 0.
We express this as the standard error condition:

o(X(c)) <eX(c) if X(c)>L @)

For example, with e = 0.05 we require the standard devi-
ation to be no more than 5% of the mean.

A more detailed interpretation is as follows. Suppose
that the X (c) are derived from a large number of flows
of independent sizes. Then )?(c) is roughly normally dis-
tributed. (7) means that the probability of overestimating
)?(c) > L by an amount 6X (c¢)—i.e., by §/e standard
deviations—is no more than ¢(—d/¢), where ¢ is the stan-
dard normal distribution function. Thus, with ¢ = 0.05,
the probability of overestimating X (¢) by more than 10%
is found—since 10% = 2 x 5%—as ¢(—2) = 2.23%.

The main result of this section established a condition
for z under which (7) will hold, and which similarly allows
us to control the standard error of the charge (6).

Theorem 2: (i) In order to guarantee that the standard
error condition (7) holds for any collection (x;), we require
that z < e2L.

(i) Assume z < e2L. Then o(max{X(c),L}) <
e max{X (c), L} and hence we can bound above the stan-
dard deviation for the charge f. in (6) as

o(fo(X(0))) < efe(X(e))- (8)

Proof of Theorem 2: (i) From Lemma 1, the stan-
dard deviation obeys the tight upper bound o(X(c)) <

zX(c). So keeping (X (c)) below eX(c) requires
that \/2X (c) < €X(c), and hence z < £2X(c) for all
X(c) > L,ie., z <e’L.

(i) Var(max{X(c),L}) < Var(X(c)) < 2X(c) <
e2LX(c) < e*max{X(c),L}? where the second in-
equality uses Lemma 1. Hence Var(fc()?(c))) <
e?b; max{X (c), L}* < e2f3(X(c)). n

Note that in the event that e = ¢, and L = L, depend on
color, we would require z < min, e%Lc. The error bounds
of Theorem 2 inherit from Lemma 1 the property of inde-
pendence of the detailed distribution of the z;; accuracy
does not depend on specific assumptions on the sizes of
traffic flows.

C. Tighter Control of Potential Overcharging.

The above approach sets limits on the chance that the
deviation of the estimated usage above the actual usage
exceeds a given amount. A refinement allows us to set a
limit on the chance that overcharging occurs. This should
be more attractive from the customer’s point of view since
the chance of them being overbilled at all can be small.
Conversely, the service provider has to accept a small per-
sistent underbilling in order to accommodate the potential
sampling error. We remark that related approaches have
been taken in other industries, e.g., food manufacturers un-
derstate the weight of packaged items in order that fluctu-
ations in the manufacturing process will rarely lead to the
actual weight falling below the stated weight [18].

We exploit again that the distribution of )?(c) can be
well approximated by a normal distribution when it is de-
rived from a large number of constituent samples. Then
the probability of a deviation of X (c) of at least s standard
deviations above the expected value X (c) is

Pr[X(z) > X(c) + so(X(c))] = ¢(—s)  (9)
Suppose then, that the service provider makes a conserva-
tive estimate of the volume of traffic in color ¢ as

X'(c) = X(c) — s\/2X (c).

Here s is a parameter to be chosen: it is the number of
standard deviations away from X (c) above which we con-
sider over-estimation sufficiently rare. The probability that
X'(c) overestimates the actual traffic, i.e., Pr[X'(c) >
X (c)], is approximately ¢(—s), by Lemma 1.

For example, with s = 3, ¢(—s) is about 0.13%,
i.e. about 1 in 740 traffic volumes will be overestimated.
We propose that the service provider charge according
to X'(c) rather than X(c), i.e., the customer is billed
fc()?’(c)). Thus the chance that the customer is overbilled
at all is again, in general, ¢(—s).

(10)
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Fig. 6. ESTIMATED/ACTUAL TOTAL BYTES vS. ACTUAL

BYTE TOTAL: Less than 0.1% of all samples with volumes
greater than L = z/? = 107 have ratio X /X exceed target
1+ e withe = 0.1 (i.e. fall in the upper right quadrant).

D. Tighter Control of Unbillable Usage.

For the service provider, the difference f(c) — )?’(c) =

sy/zf(c) represents unbillable usage. In the charging
scheme (6), this leads to underbilling by a fraction roughly
sy/z/X(c). Given the minimum billed volume L, the
fraction of underbilling is no more than s+/z/L. (This
could conceivably be systematically compensated for in
the charging rate b.). Thus in order to limit the fraction
of usage that is unbillable to no more than about n, we
require sz < 772L. Observe that, assuming s > 1, this
represents at least as stringent a condition on z as that in
Theorem 2, for the same proportionate error (i.e. if e = 7).
In the example of s = 3, underbilling by a fraction of no
more than n = 10% then requires picking z and L such
that z is less than about Z/1000.

IV. EXPERIMENTAL EVALUATION OF SAMPLING
PERFORMANCE

We applied our sampling scheme to flow traces in or-
der to determine its effectiveness, and to demonstrate the
interplay between the sampling parameters, and the con-
trol they exert over sample variance, overcharging, unbil-
lable usage, and sample volumes. Here we report the de-
tailed behavior for one trace; the behavior for the others
was similar. The trace used for this experiment comprised
107 flows distributed over 1,663 distinct customer-side 1P
addresses; these constituted the “colors” whose usage we
wished to estimate. In this study we focus on usage as
measured in bytes.

12
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10°7 108 109 10710
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Fig. 7. ESTIMATED/ACTUAL TOTAL BYTES VS. ACTUAL
BYTE TOTAL: using estimate X' compensating with s = 1
standard deviations. Excursions of X'/X above 1 + ¢ for
X > L have been eliminated entirely.

A. Variance and Control of Overcharging

Figure 6 is a scatter plot obtained by plotting for each
color ¢ (i.e. each IP address), the ratio )?(c)/X(c) of esti-
mated to actual usage, against the actual usage X (c). With
a target error ¢, we aim to keep )?/X below 1 + ¢ to avoid
overcharging beyond a proportion e. The sampling thresh-
old z was 103, and the target error ¢ was 0.1 (i.e. 10%); we
indicate 1 + ¢ by a horizontal line in the figure. We also
place a dotted horizontal line at height 1; points below this
line incur no overcharging. According to Theorem 2, we
require a level L of at least €2z = 107, indicated by the ver-
tical line in the Figure. Note that )?/X approaches 1 for
large X; sampling is more accurate for larger total bytes
X. This reflects that larger totals are typically composed
of larger components (which are more accurately sampled)
or more components (giving better averaging).

In order to meet the target accuracy, we require as
few points as possible to fall in the upper right quadrant
bounded by the horizontal 1 + ¢ and vertical L lines.
Only 0.13% of all samples fall into this category. How-
ever, following Section I11-C, such exceedence of the tar-
get can be reduced upon replacing the estimate X by
X' =X - s\/E, from (10), compensating with some
number s of standard deviations. (Recall X = X' when
s = 0). In the example, exceedence of the target is actu-
ally eliminated on setting s = 1; see Figure 7. Note that

the correction s\/z_)? , as a proportion of X , decreases to
zero for large X. Thus the estimation accuracy is largely
unaffected for large X on increasing s above zero.

The proportion of totals X' > L that exceed X at all is
reduced from about 50% at s=0, to 3% for s = 1. They
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Fig. 8. ESTIMATED/ACTUAL TOTAL BYTES vS. ACTUAL

BYTE TOTAL: using estimate X' compensating with s = 2
standard deviations. All excursions of X'/X above 1 have
been eliminated: there is no overcharging, but unbillable us-
age has increased significantly.

are eliminated entirely on setting s = 2; see Figure 8: all
points lie below the dotted horizontal line at height 1. Thus
by increasing s we can eliminate overcharging of X > L
entirely; the potential downside is that the frequency and
amount of unbillable usage increases.

We summarize these results in Table I. The important
property to note is that by increasing s we reduce the num-
ber of customers whose traffic is overestimated, but in-
crease the amount of unbillable traffic. Choosing the in-
termediate value s = 1 represents a compromise between
these two effects.

The heavy tailed nature of the distribution of per color
usage is striking. In this sample, some 94% of the total
bytes were attributable to customer-side IP addresses with
total bytes greater than L, although it took only about 10%
of the addresses to generate these bytes.

unbillable | overcharged
s usage customers
0 -1% 50%
1 3.1% 3%
2 6.2% 0
TABLE |

TRADE-OFF BETWEEN OVERCHARGING AND UNBILLABLE
TRAFFIC ASNUMBER s OF COMPENSATING STANDARD
DEVIATIONS IS INCREASED IN X'
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Fig. 9. ESTIMATED/ACTUAL TOTAL BYTES vS. ACTUAL

BYTE TOTAL: using estimate X' compensating with s = 2
standard deviations, with reduced sampling threshold z. Ob-
serve reduction in unbillable usage as compared with Fig-
ure8.

B. Control of Unbillable Usage

The elimination of overcharging from sampling vari-
ance, achieved by passing from s = 0 (i.e. estimating
with )?) to s = 1, brings its own pitfalls as described in
Section I11-D, namely, making a proportion of the actual
usage unbillable. Let S(L) = > . x> X(c) denote
the total actual bytes from customer addresses that gen-
erated at least I bytes, with S(L) and §'(L) defined in a
similar way. For s = 0, the ratio §(L)/S(L) is 1.001,
representing a slight (0.1%) overcharging on average. For
s = 1, the ratio §'(L)/S(L) moves down to 0.969, i.e., a
3% unbillable usage; for s = 2, §'(L)/S(L) = 0.938, i.e.,
6% unbillable usage. According to Section IlI-D, the un-
derbilling can be ameliorated, at fixed L, by reducing the
sampling threshold z. Suppose we now chose z = 2L/,
with s = 2 but now 1 = 0.0447 < ¢ = 0.1. In the above
example, the sampling threshold z moves down from 10°
to 10%. Then §’(L)/S(L) moves up to 0.980 reducing the
amount of unbillable usage by roughly a factor 3. We show
the effect in Figure 9. As expected, sampling variance,
as exhibited by the vertical spread, is also reduced. Note
that the reduction in unbillable usage comes at a cost: the
number of samples taken is increased by reducing z. De-
creasing z from 10° to 10* increases the sample volume
by roughly a factor of 5.

C. Summary of Experimental Results

These experiments demonstrate how choosing sampling
z = el is effective in keeping relative error due to sam-
pling variance (for total bytes at least L) less than about
€. The infrequent occurrence of errors larger than e could



be eliminated entirely by adjusting the estimate X down-
wards by subtracting some number of standard deviations

s\/z_f. A side effect of this was the introduction of a
small but consistent amount of unbillable usage. This be
reduced by lowering the sampling threshold z, at a cost of
increasing the volume of samples taken.

V. REFINEMENT OF VARIANCE ESTIMATION

The key idea of the previous section was that by choos-
ing the sampling threshold z sufficiently small, one could
control both overcharging and the amount of unbillable
usage, by using an estimate (in fact, an upper bound) on
the standard deviation o(X) of the estimated usage. In
this section we show how this bound can be refined some-
what, if additional information from the sampling process
is available. The main utility is that with a better estimate
of the variance, we can use a higher value of z and hence
take fewer samples.

A. Detailed Variance Estimation

One of the attractions of the bound VarX < zX(c) is its
simplicity: no knowledge of the individual contributions to
the sum X (c) is required. The bound it tight, in the sense
that it is achieved in the worst case of a large number of
small flows. Correspondingly, when X (c¢) is composed of
a small number of large flows, the bound can significantly
overestimate the variance. Specifically, recall from (2) the
expression VarX = > rimax{z — z;,0}. Ifall z; >
0, this expression is zero, reflecting that all such x; are
automatically sampled. This effect is evidently at work in
Figure 6; the estimates of the largest usage totals appear
exact, and X (c)/X (c) is well below 1 + ¢ for many of the
larger usage totals.

We now show how to obtain an unbiased estimate of
VarX based only on those x; that are sampled. The aim
here is to find some function v(z;) of the sampled z;, such
that the expected value EV of the sum over sampled flows
V= >, wiv(z;) is equal to the actual variance Var)?(c).
(Recall w; is the random quantity indicating whether or
not flow 7 is sampled (w; = 1) or not (w; = 0)).

Lemma 2: [7] 14 z;,0} obeys

EV = VarX.
Proof of Lemma 2: The only random quantities in v
are the w;, and they have expectation Ew; = p,(z;) =
min{1,z;/z}. Thus the only non-zero contributions to
EV = > i pz(wi)z max{z — x;,0} come from terms with
z; < z. These contributions take the form z; max{z —
xi,()j[, i.e.,, the same as the non-zero contributions to
VarX.m

> wizmax{z —

B. Using the Detailed Variance Estimator

We now look at the costs and traderffs involved with us-
ing the detailed variance estimator V' instead of the upper
bound from Lemma 1.

Information. ¥/ requires knowing of the z; from sampled
flows. The RHS of the bound o(X) < zX can be esti-
mated as z)/f, i.e., it requires only the sum of the renor-
malized values z; /p,(x;), i.e., the original per flow usages
are not required. The need not be an issue if ¥ can be
computed at the same point as X.

Sample Volume. In order to fulfill the standard error condi-
tion (7) we chose z so that ¥V < €2X. Since EV < zX,
the required threshold z should be larger, on average, than
the value €L specified in Theorem 2. As discussed in
Section 11-A.3, larger thresholds z yield smaller sampling
rates. To summarize, tighter control on the sampling vari-
ance allows a given level of confidence with a smaller
number of samples.

Data Dependence. Since V now depends more sensitively
on the distribution of the z;, the value of the sampling
threshold z may need to be dynamically adjusted if the
underlying distribution of flow sizes changes. It is worth
remarking that Lemma 2 generalizes to the case that the
sampling threshold z can vary across flows, i.e., on replac-
ing z by z; in each term involving z;. Thus dynamic ad-
justment of z would not alter our ability to form an unbi-
ased estimate of the variance.

VI. RECONCILING SAMPLING VARIANCE AND

VOLUME GOALS

This paper has dealt primarily with the control of sam-
pling variance in order to facilitate accurate charging.
However, there are other potential goals for the measure-
ment subsystem to be considered. In particular, it may be
desirable to limit the rate at which samples are produced,
in order to control the resulting load on the router gen-
erating the samples, the measurement collector, and the
communications network that is use to transmit samples
between the generator and the collector.

A. Controlling Sample Volume

Suppose that flows present themselves for sampling at a
rate p, and that the per flow usage has a distribution func-
tion F, i.e., F'(z) is the proportion of flows with usage less
than or equal to z. With a sampling threshold z, samples
are produced at a an average rate r = p [ F(dz)p,(z).
Suppose there is a target maximum rate of samples r* < p.
Then we require the sampling threshold z to be such that
p [ F(dz)p,(z) < r*. Using the fact that p,(z) is a de-
creasing function in z, it can be shown that this requires



z > z*, where z* is the unique solution z to the equation
p [ F(dz)p,(x) = r*. We remark that an extension of
this approach to dynamically control the sample volume—
under fluctuations and systematic changes in the offered
rate of flows to be sampled—has been formulated in [7].

B. Variance and the Billing Timescale

Now let z denote the maximum sampling threshold al-
lowed in order to control sampling variance, e.g., z <
2o = 2L from Theorem 2. Clearly the goals of controlling
sample volume and variance are compatible provided that
z* < zg, for then any sampling threshold z in the interval
[2*, z0] has the property of being sufficiently small to yield
small sampling variance, and sufficiently large to restrict
the average sampling rate no greater than the desired rate
¥,

It turns out that the condition z* < 2z can be re-
alized, at least in principle. To see this, observe that
the thresholds zy and z* control phenomena at different
timescales. z* controls the average rate at which samples
are taken. On the other hand, zq controls the sampling vari-
ance of the estimates X (c) of total usage over the billing
timescale, potentially over days, weeks, or even months.
The usage level L-under which accurate measurements
are not needed—can be chosen to increase with the billing
timescale. For example, we might choose L to correspond
to a particular quantile of the distribution of total usage,
so that only a given proportion of the total network usage
is generated by customers whose usage does not exceed
L during the billing cycle. Increasing the length of the
billing cycle will increase the corresponding quantile L,
and hence also zp since, as we saw in Section Ill, zg is
proportional to L. Support for this approach is provided
by Figure 5, which shows how the relative error in esti-
mation decreases and the duration of collection of the flow
trace increases.

VII.

Before concluding, we summarize the main technical
results from this paper:
(i) Usage Estimation. A flow of size x is sampled with
probability p,(z) = min{1,z/z}. If sampled, a renor-
malized usage = /p(x) is reported. z is called the sampling
threshold: flows with usage x > =z are always sampled.
The sum X of z/p(z) over sampled flows is an unbiased
estimator of the total usage, i.e., the sum X of = over all
flows.
(i) Sampling Error and Pricing. For a given usage level
L, choosing z < €2 L guarantees that the standard error

o(X )/X of the total usage is less than ¢ when X > L.
The price f(X ) =a+ bmax{X L} represents a fixed

SUMMARY OF SAMPLING MECHANISM

charge for all usage up to L, and a usage sensitive charge
thereafter. f ()? ) has standard error no more than e as com-
pared with the corresponding price f(X) if the usage had
been known exactly: o(f(X)) < ef(X).

(iii) Control of Overchargmg The adjusted estimate

X' = X — sV 2X exceeds X with probability approxi-
mately ¢(— ), where ¢ is the standard normal distribution
function. The chance and amount of overcharging can thus
be reduced by increasing s above zero.

(iv) Control of Unbillable Usage. The cost of controlling
the extremes of overcharging is to render a fraction of the
total usage unbillable. Choosing z < 1%L /s then restricts
this fraction to be less than about 7.

(v) Control of Sample Volume. To keep the rate of sam-
ple production less that a target r* requires z > z* where
z* is the root z of the equation r* = p [ F(dz)p,(z). Here
p > r* is the rate at which flows are produced, and F' is
the distribution of their sizes.

(vi) SimultaneousControl of SampleVarianceand Vol-
ume. Let zy denote a threshold chosen to limit sample
variance in (ii),(iii) or (iv) above. The average rate of sam-
ple production can be kept below r* if z; > 2z*. This
can be arranged for provided the billing timescale is suffi-
ciently long.

VIII.

This paper was motivated by the desire to perform ac-
curate usage sensitive billing from sampled flow statistics.
We assume that it is not possible for a router to keep coun-
ters on all traffic flows of interest, either because they are
to numerous, or because the set of flows of interest is itself
dynamic.

The heavy-tailed nature of flow size distributions, so
problematic for uniform 1 in N sampling, can be turned
to our advantage when we use size-dependent flow sam-
pling. This picks out the dominant contributions to us-
age. Combined with a charging scheme that is sensitive
to usage only above a certain level L, this allows accurate
charging of customers for their usage. The main techni-
cal results of this paper showed how to relate the sampling
threshold = to the level L for a given desired level of accu-
racy.

Size dependent sampling also allows control of the rate
at which samples are produced. Sampling rate control,
which is favored by higher z, appears at first to be op-
posed to the goal of variance control, which if favor by
higher z. However, we argued that these goals could be
rendered compatible provided the billing timescale is suf-
ficiently long. Under these conditions the goals of accu-
rate usage-sensitive billing from sampled flow records is
attainable.

CONCLUSIONS
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