The case for packet level FEC

February 5, 1996

Abstract

Packet level forward error correction can be implemented by transmit-
ting M redundancy packets after each set of N regular packets, so that
all packets can be reconstructed if at least N out of N 4+ M are received.
The idea is usually dismissed because the gain is not worth the addition-
nal transmission overhead and the increased computation load, but further
analysis shows that this dismissal may be questioned.

There are in fact at least three environment where the reduced error
rate proves very valuable. When multicasting data toward large groups,
even a small individual error rate per recipient may result in large retrans-
mission rates for the whole group and the use of redundancy will result
in dramatic efficiency gains. In the case of long transmission delays, the
use of redundancy helps maintaining the delivery delays within acceptable
limits, even in presence of errors. When the receivers do not have enough
memory resources to implement sophisticated retransmission techniques,
forward error correction can compensate the relative inefficiency of cheap
algorithms of the go-back N family.

Packet level forward error correction is not very difficult to implement.
The level of redundancy can easily be tuned as a function of the network’s
characteristics. The additional robustness obtained through packet level
redundancy helps implementing feedback control algorithms. In short, this
seldom used technology could easily improve the performance of current
transmission control protocols.

The case for packet level FEC 2

1 Zero defect and networking

Although packet level FEC has been proposed by many researchers, the idea is
usually dismissed because the gain is not worth the pain. Implementing com-
plex packet redundancy code in software is deemed difficult. It is costier than
a checksum, at least as expensive as a memory move, thus likely to nearly dou-
ble the computational load of transport control protocols such as TCP. Then, in
the case of point to point transmission, one can argue that a selective acknowl-
edgement procedure is always more efficient, transmission wise, because selective
retransmission inserts exactly the level of redundancy that is actually needed.

But modern application often involve more than two parties. In their com-
munication [1] to the 1995 Sigcomm conference Sally Floyd and her coauthors
present their reliable multicast framework and explain why “repair request and
retransmissions are always multicast to the whole group.” A consequence of this
architectural decision is that the overhead of retransmissions will grow with the
size of the group. In section 3 we will detail this effect and show how it can be
alleviated by packet level FEC.

The reduction in the packet level error rate may in fact be beneficial for point
to point exchanges, when the transport protocol does not exhibit the near-perfect
characteristics. This is the case for example of simple TCP implementations,
which rely on time-outs to cope with certain forms of errors. We will discuss this
aspect in section 4.

Even when perfect retransmission procedures are available, the correction of
errors result in long transmission delays, specially when the application requires
that data be re-ordered before processing. Section 5 explains how packet level
FEC results in better delays and is thus suitable for delay sensitive applications.

Before exposing the advantages of packet level FEC, we will first examine how
it can be implemented and used in practice. We will later re-examine the imple-
mentation problem after exposing the main advantages of the solution, showing
how the level of redundancy can be adapted to the network configuration and
status.

2 Packet level forward error correction

Bit level error correction operates on sequences of bits. It comes in two variations,
block codes and convolutional codes. In block codes, a set of N input bits is
completed by M redundancy bits. Out of the 2¥+t¥ codes which can be encoded
with N+ M bits, only 2" are allowed. When the block is received, the redundancy
is used to find out the allowed code which best matches the received pattern,
thus removing errors if at least N bits out of N + M were received correctly.
In convolutional codes, each transmitted signal is a function of the input signal
and of the history. Convolutional codes may be more robust than block codes,

The case for packet level FEC 3

because they can use the redundancy which was spread over several consecutive
blocks. They are also much more difficult to implement, at least in software.

In this paper, we will not consider the variants of packet level redundancy
that can be built with convolutional codes. For practical reasons, we will only
consider block codes where the transmission of N input packets is complemented
by that of M redundancy packets. If at least N packets out of N+ M are received
correctly, then all N input packets can be retrieved. If fewer than N packets out
of M are received, we cannot gain advantage from the redundancy but we can at
least retrieve the fraction of the initial N packets which made their way to the
receiver.

Packet level correction is different from bit level correction, because it deals
with straight packet losses, not with unpredictable bit values. It can thus be
implemented very simply with a combination of exclusive or (&) and shift (<)
operations. If we note X _y the input packets and Y7 s the redundancy packets,
then we can obtain Y; as a function of Xy :

Yi=@ (Xi < (#7' — 1))

The resources necessary for implementing this form of redundancy are memory
and computing power. The sender uses M additional buffers to compute the
redundancy, the receiver must dispose of N + M buffers to use it in case of
errors. The cost of computing each Y is approximately equivalent to one memory
move per input packet. Senders and receivers will probably easily dispose of the
required memory, but the computing cost has often been deemed excessive. A
redundancy of form N + 1 may dobble the processing requirement of the best
TCP implementations. We will thus only consider the redundancies of forms
N+1, N+2and N + 3.

For simplicity sake, we will assume that errors are independant. With the
N +1, N+2and N + 3 redundancies, the perceived packet loss rate is a function
of the initial loss rate € and the number N. The resulting rates €, € and €3 can

be computed as:
€1 =€<1—(1—€)N>

e=c(1—(1—"" — (N +1)e(1-¢)")

N +2)(N +1
€3 =€ <1 — (1 —e)¥*"2 — (N 4 2)e(1 —)V — v+)2(i)62(1 — e)N))
In each case, the amount of additional overhead is M /(N+ M). The question that
we set up to solve is whether the gain of a reduced error rate is worth the pain
of this additional overhead, as well as the cost of implementing the redundancy.

The case for packet level FEC 4

2.2 | I
no redondancy ——
+1 -
642
2+ Error: 1% per receiver _
18 |
1.6
1.4 / |
12 F NWWWWWU |
1 | I
1 10 100 J

Figure 1: Number of transmissions, as a function of the number of members in
the group, the packet error rate being 1%

3 FEC and large multicast groups

Transmission efficiency is often defined as the “goodput” ratio, i.e. the number
packets that will be received and processed divided by the total number of packets
that will be transmitted. According to this ratio, for point to point transmission,
packet level redundancy is always less efficient than selective repeat procedures.
In one case, we will pay an insurance and always send some redundancy in the
hope that this redundancy may correct a transmission error. In the other case,
we only send the redundancy after an error has occured, thus effectively min-
imizing the overhead. The situation changes however if we consider multicast
transmission.

To demonstrate this effect, lets consider a very simple model. A source S
transmit a stream of packets, for example a data file, towards a group of G
receivers, using a multicasting service. We will assume that all transmission errors
occur in the last leg of transmission, that the errors experienced by the receivers
are independent and that each receiver has a probability € of not receiving any
given packet. This hypothesis is not entirely realistic because errors will also occur
in the common paths between S and subsets of receivers and because receivers
will experience different networking situations. We adopt it because it results in
very simple computations, and also because the simplication does not render our
results invalid. Multicast packets may be affected by errors at different stages of
transmission, but it is very clear that the more receivers we add to the group,
the largest the probability that some of them will loose any given packet.

The case for packet level FEC 5

1.7 T T
no redondancy ——
7+1 -—---
6+2 -
16 543
15 Error: 0.1% per receiver B
14 F E
13 | B
1.2 + B
1.1 + B
l 1
1 10 100 1000

Figure 2: Number of transmissions, as a function of the number of members in
the group, the packet error rate being 0.1%

The figure 1 shows the average number of time a packet has to be transmitted
in order to be received by a group of size G, as a function of the size of the
group. It takes into account both the initial transmission due to the redundancy
scheme and the other retransmissions caused by the selective repeat procedures.
As explained in [1] we assume that all retransmissions are sent to the whole
group. In the figure 1 we assume that the packet loss rate is ¢ = 1%, a rate
which is not uncommon in the internet today. The figure contains four curves,
corresponding to the raw case, without redundancy, and to three variations of
redundancy, namely 7+1, 642 and 5+3. These three levels are chosen arbitrarily,
the rationale being that they only require the buffering of 8 packets, and are thus
reasonably easy to implement.. When redundancy is used, € is replaced by the
lower value €;, € or €3, i.e.6.8 107%, 2 1075 or 3.4 107 instead of 1072. For low
recipient numbers, the gain of redundancy is not worth the increased overhead
of even a 7 + 1 scheme. But the number of transmissions increases with the
number of recipients. As soon as this number reaches 18, the no redundancy
curve passes above the 7 + 1 limit, which will itself be passed by the 6 + 2 curve
when the number of recipient is larger than 300. The physical explanation is very
simple. A packet will be retransmitted once if it lost by at least one receiver.
The probability of this event is:

1—(1-¢°

There may well be multiple retransmissions for a given packet, for example if
a sufficient number of recipients missed the initial transmission: the common

The case for packet level FEC 6

Error: 10% per receiver

25

15

1 1 1
1 10 100 1000

Figure 3: Number of transmissions, as a function of the number of members in
the group, the packet error rate being 10%

assumption is that a single retransmission always suffice is too simplistic. The
probability of this event increases with the size of the group. In fact, the proba-
bility that one given receiver requires exactly X transmissions of a given packet

is:
(1—¢€) x e

Alternatively, we can write that the probability of having fewer than X trans-
missions is:
1—&X

In the case of multiple recipients, a packet will have to be retransmitted as long
as it is not received correctly by all recipients. The probability of having fewer
than X transmissions, for a group of size G, is:

(1—5)¢

We used this formula to compute the curves of figure 1, as well as those of figure 2,
for a loss rate of 1073, and those of figure 3, for a loss rate of 10~!. The comparison
of these three figures shows that there is not one best level of redundancy. We
have to balance the gain of reduced errors and the pain of increased overhead,
and the trade-off is a function of the loss rate and the size of the group. This
is further demonstrated by the curves of figure 4 which shows the efficiency of
transmission as a function of the error rate, for a group of 100 receivers. We can
distinguish four successive ranges, where each of the possible solutions chose be
chosen. We may also observe the limits of packet level redundancy. If the packet

The case for packet level FEC 7

0.2 |- 100 Receivers \\;\3 i

o 1 1 1
0.0001 0.001 0.01 0.1 1

Figure 4: Efficiency as a function of the error rate, for a group of 100 receivers

loss rate becomes very large, say higher than 10%, even a redundancy of rate
N + 3 cannot result in satisfactory performances. This is also visible in figure 3.

Chosing the best level of redundancy depends however on the sender’s objec-
tives, as reducing the packet loss rate has two effects besides allowing a better
goodput for file multicasting. It also reduces delay, and may be used to simplify
the retransmission procedures.

4 FEC and simple transport protocols

In the previous section, we assumed that the transport protocol implemented
fully selective retransmissions. In practice, implementations often fall short of
this ideal. In classic implementations of TCP, once an error has been detected
by a timer, a retransmission is triggered. The connection will remain inactive
as long as this retransmission has not been acknowledged. During this waiting
for retransmission, we could have transmitted a full window of W packets. This
waiting time will occur after every error, thus at the end of every run of successful
transmissions. As the length of such runs is 1/¢, we may define the efficiency of
the procedure as the ratio of the length of the run over the number of packets
that could have been transmitted in the absence of error, i.e., the length of the
run plus the size of the transmission window:

/e 1
W+1/e eW+1

This formula does indeed not take into account the details of congestion control
algorithms. It is in some sense an upper bound to the efficiency of classic TCP.
We used it to compute the curves of figure 5, where we assumed a window size
of 200 packets. These curves show clearly the usefulness of redundancy when the

The case for packet level FEC 8

1 T T T

09 r C _
7777777777 - 5+3

08 |- -

N
\\
0.7 | N -
\

0.6 [-
05 - -
04 i
0.3 7
0.2 ‘ 4

0.1 Go Back N, 1 Receiver -

0 1 1 1
0.0001 0.001 0.01 0.1 1

Figure 5: Efficiency of classic TCP as a function of the error rate, for a window
size of 200 packets

error rate is larger that 1073. The threshold does indeed vary with the size of
the window. An approximation of this threshold can be obtained by observing
that N + M redundancy is never justifiedif the goodput of straight transmission
is better than the best that can be achieved with redundancy, that is if:

1 < N
eW +1 N+ M

This inequality can be simplified to:

M

eW > N
By observing figure 5 we see that the converse is also true. 7 + 1 redundancy is
already almost justified when the efficiency of straight transmissions falls under
87.5%, 6 + 2 redundancy is almost immediately justified when the efficiency of
7+ 1 falls under 75%, 5+ 3 redundancy is almost immediately justified when the

efficiency of 6 + 2 falls under 62.5%. We will use this observation in section 6.

Indeed, we know how to implement better procedures than classic TCP, us-
ing for example fast retransmission in case of duplicate acknowledgement. Matt
Mathis, Jamshid Mahdavi, Sally Floyd and Allyn Romanow recently proposed a
selective acknowledgement extension to TCP that would in theory results in an
almost perfect utilization of the transmission resources [2]. However, their pro-
posal establishes a balance between transmission efficiency and implementation
requirements. As selective acknowledgement can only be advisory, Mathis et al

The case for packet level FEC 9

have to rely on timers to solve errors which would not be cured by a first retrans-
mission. This will occur when both the initial packet and the retransmission are
lost, with a probability of ¢2. The waiting time of W packets will thus occur at
the end of each run of successful transmissions or retransmissions. The length of
this Tuns will be 1/€2, an upper bound of the efficiency will be:

1/e 1

W+1/e EW +1

We may thus foresee that packet level redundancy will be useful in the case of very
large windows, even if we implement selective acknowledgements, when the prod-
uct We? is larger than M/N. In fact, we have also to take into account the need
to allocate large resequencing buffers when waiting for selective retransmissions.
This will be discussed in the next section.

5 FEC and resequencing delays

The delivery delay of a packet has three components, initial queuing before trans-
mission, transmission and queuing at the recipient side. In order to simplify our
demonstration, we will assume that the initial queuing delay is nil. We have seen
above that the probability of having fewer than N transmissions for a group of
size G 1is:

p(i < N,G) = (1 —)¢

The retransmissions terminates once a copy of the packet has been correctly
received. If we assume that the transport mechanism is very efficient, successive
packets will be retransmitted independently of each other, hence may well arrive
at different times. Many applications require that the packets be reordered before
they can be successfully delivered. A packet which has been correctly received will
thus be kept in a resequencing buffer, waiting for the successful retransmission
of all preceeding packets.

In order to evaluate the resequencing delay, we will assume that the initial
transmissions are regularly spaced. We will also assume that each retransmission
takes the same delay as the transmission of a full window, “W”. Figure 6 presents
the variation of the delay as a function of the error rate for basic transmission,
without redundancy, and also for three different forms of redundancy, 7 + 1,
6 4+ 2 and 5 4 3. The unit of the resequencing delay, in this figure, is the round-
trip delay itself. We have assume a transmission window of 200 packets, which
would correspond to a T1 satellite network, or to a long distance T3 networks.
Generally, the effect will be more intense with high values of W.

The figure is very expressive. The average resequencing delay soars when the
error rate grows and so does the variance of this delay grows. The advantage
of using FEC for delay sensitive applications is thus obvious. The maximum

The case for packet level FEC 10

no redondancy ——
7+1 -
6+2 -
5+3
25 | 1 recipient, RTT = 200 packets B
2 - -
15 |
1 - -
05 | -
0 K . L L
0.0001 0.001 0.01 0.1 1

Figure 6: Sequencing delay as a function of the error rate, for one receiver.

redundancy rate of 5 + 3 results in stable delays over a large range of packet loss
rates. There are many applications that would be happy to pay this overhead,
e.g. when user satisfaction matters more than network efficiency.

But this figure calls for another remark. When the resequencing delay in-
creases, the memory requirements increase at the same time. TCP requires that
the sender keep in memory a copy of all unacknowledged packets. The average
number of acknowledged packets is equal to the sum of a transmission window,
W, plus the average number of packets waiting to be resequenced. This second
part is in fact proportional to the average retransmission delay. A consequence is
that implementing selective retransmission on “long fat networks” is by no means
free. Similar requirements will also occur at the recipient, which shall keep a copy
of all packets waiting for resequencing. This may well explain why implemen-
tors have insisted on the “advisory” nature of selective acknowledgements: under
certain conditions, the memory requirements of these systems may exceeds the
number of buffers available.

A system that runs short of buffers cannot benefit fully from the theoretical
efficiency of selective retransmissions. We are brought back to the imperfect
efficiency that we studied in section 4. Using FEC in this conditions will stabilize
the memory requirements, resulting in an improvement of the goodput.

The case for packet level FEC 11

6 Choosing the level of redundancy

All our graphs have shown that there is not one “best” level of redundancy. We
already discussed this in section 3 and 4 but we limited our analysis to three
simple cases, 7+ 1, 642 and 5+ 3. Figure 7 shows a more systematic exploration
of the problem. We assumed that the sender knew the number of recipients (100)

1 T T T T T T

0.9

0.7

0.6

05

03| | .

0.2 L L L L L L
0 5 10 15 20 25 30 35

Figure 7: Efficiency as the function of the size of the block, for 100 receivers and
a packet loss rate of 1%

and the loss rate (1%), and we plotted the efficiency of various level of redundancy,
N +1, N+2or N+ 3 as a function of the number N of “initial” packets in the
block. The result is in fact quite obvious. If we can pick a block that is arbitrarily
large, we should always use N + 3 redundancy. If on the contrary there is a limit
to size of the block, we may have to settle for less, or maybe for no redundancy
at all. This trade-off will be a function of several factors such as:

e the sender’s objective, efficiency or response time,

the available memory, that may restrict the size N + M of the redundancy
block,

the size of the multicast group,

the observed loss rate,

the delay x banswidth product,

The case for packet level FEC 12

These parameters are likely to vary during the course of a transmission. There is
thus a need to define an adaptive algorithm for chosing the redundancy level. The
good news is that using FEC allow us to easily meter the basic error rate with-
out necessarilly suffering from these errors. The semantic of acknowledgments
and other “transmission reports” should be augmented to contain an “observed
loss rate” parameter. This loss rate ¢ can be used to determine the necessary
redundancy, for example with the help of precomputed tables.

Most packet losses in the current Internet are due to congestion. Algorithms
such as slow-start have been devised to identify the throughput of the network’s
bottlenecks and to stabilize the transmission rate around this throughput [3].
The use of forward error correction should not result in an increase congestion,
which suggests two implementation requirements:

e reduce the congestion window when redundancy is used,
o use the observe error rate to tune the congestion window.

A station which decides to use redundancy should not suddenly increase its trans-
mission rate. The actual transmission window W/ should be a fraction of the value
W. that was computed using the slow-start algorithm. Specifically, this fraction
should be: N
.= W,

N+ M
Because FEC will wipe out isolated losses, the station will not notice the first
packet losses that are usually the warning signs of congestion. It may go on
increasing its transmission rate until the congestion becomes massive. This un-
desirable behavior will be avoided if the receivers report the observed error rate
and if the station reduces its congestion window whenever this rate increases.

7 Implementing FEC

This paper showed that packet level FEC can be implemented with benefits
when transmitting reliably towards large groups, when using simple transport
protocols and when requiring stable delays. Usual objections such as the concern
for congestion may be overcomed by a careful tuning of the interaction between
forward error correction and congestion control.

The purpose of our intellectual exercize was to demonstrate the interest of
packet level FEC. We believe that we made this point. We have now to go back
to the workbench and come out with a practical demonstration over the Internet.
We have good hopes to complete this demonstration before August 1996.

The case for packet level FEC 13

References

[1] Floyd, Sally, Van Jacobson, Steven McCanne, Ching-Gung Liu, Lixia
Zhang.A Reliable Multicast Framework for Light-weight Sessions and Appli-

cation Level Framing. Proceedings of ACM SIGCOMM’95, Computer Com-
munication Review, Volume 25 Number 4, October 1995.

[2] Mathis, Matt, Jamshid Mahdavi, Sally Floyd, Allyn Romanow. TCP selective
acknowledgement option. Work in progress.

[3] Jacobson, Van. Congestion avoidance and control. Proceedings of ACM SIG-
COMM’88, Computer Communication Review, September 1988.

