
Rateless Codes and Big Downloads

Petar Maymounkov and David Mazières���������	��
����������������������	�	�

NYU Department of Computer Science

Abstract

This paper presents a novel algorithm for download-
ing big files from multiple sources in peer-to-peer
networks. The algorithm is simple, but offers sev-
eral compelling properties. It ensures low hand-
shaking overhead between peers that download files
(or parts of a files) from each other. It is computa-
tionally efficient, with cost linear in the amount of
data transfered. Most importantly, when nodes leave
the network in the middle of uploads, the algorithm
minimizes the duplicate information shared by nodes
with truncated downloads. Thus, any two peers with
partial knowledge of a given file can almost always
fully benefit from each other’s knowledge. Our algo-
rithm is made possible by the recent introduction of
linear-time, rateless erasure codes.

1 Introduction

One of the most prominent uses of peer-to-peer sys-
tems is to download files—often very large files,
such as movies [9]. More often than not, these files
are available at least in part at more than one node on
the network. This observation has inspired a number
of different algorithms for multi-source file down-
load [3], including some that have already been de-
ployed [1].

The basic multi-source download problem is sim-
ple. A set of nodes, called source nodes, have com-
plete knowledge of a certain file. A set of nodes we
call requesting nodes wish to obtain a copies of that
file. The goal is to transfer the file to the request-
ing nodes in a fast and bandwidth-efficient manner.
In practice, the task is complicated by the fact that
nodes can join or leave the system, aborting down-
loads and initiating new requests at any time. Thus, a

download algorithm can make very few assumptions
about the uptime or bandwidth capacity of participat-
ing nodes.

Most multi-source download algorithms take the
same general approach. When a requesting node
needs a file, it first locates a set nodes with full or par-
tial knowledge of that file. It then contacts as many
of them as necessary to download the file efficiently.
For each source node the requesting node contacts,
the two must reconcile the differences in their knowl-
edge of the file. Then either the requesting node
downloads any non-overlapping information, or of-
ten both nodes exchange any non-overlapping infor-
mation they have about the file.

An effective multi-source download algorithm
should meet two main challenges. First, it should
maximize the utility of nodes with partial knowledge
of a file to each other. This, in turn, means minimiz-
ing the amount of overlapping information nodes are
likely to have. We call this property the availability
aspect of the algorithm, because it allows nodes with
truncated downloads to reconstruct a file even in the
event that every source node with the complete file
has left the network.

The second challenge of a multi-source down-
load algorithm is to make the reconciliation phase
as bandwidth-efficient as possible. This phase is an
instance of the more general set reconciliation prob-
lem [10, 4, 11, 2]. Unfortunately, existing set recon-
ciliation algorithms are not practical for multi-source
download algorithms. They are either too computa-
tionally costly, suboptimal in terms of message com-
plexity, or simply too complicated to implement.

In this paper, we propose an algorithm that com-
bines near-optimal availability with a simple yet
practical reconciliation phase not based on the gen-
eral set reconciliation problem. Our approach is

1

made possible by the recent introduction of locally-
encodable, linear-time decodable, rateless erasure
codes. It exploits particular properties of the way
file contents tend to disperse over nodes in a peer-
to-peer system. The paper is presented in terms of a
new erasure code called on-line codes [8]. The re-
cently published LT-codes [7] are similar to on-line
codes, but have O ���������	��
 running time, compared
to linear time for on-line codes.

The next section gives an overview of erasure
codes and their use in multi-source downloads and
introduces on-line codes. Section 3 details on-line
codes and their implementation. Section 4 describes
our multi-source download algorithm. Section 5 dis-
cusses aspects of the algorithm and open questions.

2 Loss-resilient codes

Erasure codes transform a message of � blocks into
an encoding of more than � blocks such that one can
recover the message from only a fraction of the en-
coded blocks. A block is just a fixed-length bit string,
with block size a parameter of the algorithm. Many
erasure codes, including the on-line codes in this pa-
per, support blocks of arbitrary size, from a single
bit to tens of kilobytes or more. Choice of block size
is driven by the fact that a fragment of an encoded
block conveys no useful information about the orig-
inal message. Thus, blocks should be small enough
that aborted block transfers do not waste appreciable
bandwidth.

Conventional erasure codes also have a rate pa-
rameter, specifying the fraction of the encoded out-
put blocks required to reconstruct the original mes-
sage. An optimal erasure code with rate � trans-
forms a message of � blocks into ���� blocks such
that any � suffice to decode the original message.
Because of the cost of optimal codes, people often
employ near-optimal codes, which require ��������
��
output blocks to reconstruct the message for any
fixed ����� . The cost of a smaller � is increased
computation. Currently there is only one instance
of linear-time, near-optimal, conventional erasure
codes, called Tornado codes [5].

Linear-time, near-optimal erasure codes have al-
ready been used for multi-source downloads [3]. The
basic approach is for source nodes to encode files

with rate ������ � to achieve a large expansion fac-
tor. When a node downloads files, the source node
sends a pseudo-random permutation of the encoded
blocks to the requesting node, deriving the permuta-
tion from the requesting node’s ID. Using this tech-
nique, two nodes that each have downloaded �"!$#��
encoded blocks of an � -block file will likely have
enough information between them to reconstruct the
file. Thus, the file will remain available even if all
source nodes leave the network. To generalize the
technique to more requesters, however, the expan-
sion factor ���� would need to grow proportionally to
the number of truncated downloads. Unfortunately,
even Tornado codes become impractically expensive
and memory-intensive for rates �%�&��(' .

A new class of erasure codes, rateless, locally-
encodable codes, addresses the problem. The two
novel properties of these codes—ratelessness and
local encodability, go hand-in-hand. Ratelessness
means that each message of size � has practically
infinite encoding. Local encodability means that
any one encoding block can be computed quickly
and independently of the others. Replacing con-
ventional fixed-rate codes with rateless, locally-
encodable ones in the above scenario and making
some additional use of the unique properties of rate-
less codes leads to the multi-source download algo-
rithm presented in section 4 of this paper.

There are two instances of rateless codes, LT
codes [7] and on-line codes [8], both recently pro-
posed. We present our algorithm in terms of on-
line codes because they are more efficient, requiring) ����
 time to generate each encoding block and

) ����

time to decode a message of length � . LT codes, in
contrast, take

) �*�����	��
 and
) ���������+��
 time respec-

tively (though they require no preprocessing, which
may make them more convenient for other settings).
The next section describes the implementation of on-
line codes in greater detail.

3 On-line codes

This section explains how to implement on-line
codes. A more detailed description and analysis of
the algorithm is available in [8]. On-line codes are
characterized by two parameters, � and , (in addi-
tion to the block size). � determines the degree of

2

OUTER � �
INNER � �

INNER

OUTER

�����

Partially-recovered message
and auxiliary blocks

Message blocks
Auxiliary blocks

Recovered message blocks

Received check blocks

Lossy channel

Check blocks

Figure 1: Overall design of online codes.

suboptimality—a message of � blocks can, with high
probability, be decoded from ����� � �
�� output blocks.
, , discussed subsequently, affects the success proba-
bility of the algorithm—it may fail to reconstruct the
message with negligible probability � � �
����
	 .

The overall structure of on-line codes has two lay-
ers, depicted in Figure 1. To encode a message, in
an outer encoding, we first generate a small number
of auxiliary blocks and append them to the original
message to produce a composite message. The com-
posite message has the property that knowledge of
any ������ � fraction of its blocks is sufficient to re-
cover the entire original message. Next, in a sec-
ond, inner layer, we continuously generate blocks to
form an infinite, rateless encoding of the composite
message. We call these blocks check blocks, because
they serve as a kind of parity check during message
reconstruction.

The decoding process is the inverse of the encod-
ing. We first recover a �� � � fraction of the com-
posite message from (received) check blocks, then
recover the entire original message from the this frac-
tion of the composite message. In practice, auxiliary
blocks and check blocks are similar in nature, allow-
ing implementations to combine both layers of the
decoding process.

3.1 Outer encoding

The first step of the encoding process is to produce
a composite message by generating �"!���� ,�� � auxil-

iary blocks and appending them to the original mes-
sage. Each auxiliary block is computed as the XOR
of a number of message blocks, chosen as follows.
We first seed a pseudo-random generator in a deter-
ministic way. Then, using the pseudo-random gen-
erator, for each block of the original message, we
chose , auxiliary blocks, uniformly. Each auxiliary
block is computed as the XOR of all message blocks
we have assigned to it. We append these auxiliary
blocks to the original message blocks, and the result-
ing ����� �*�"!���� ,�� � ��
�� blocks form the composite
message.

With this construction, knowledge of any ��� � �
fraction of the composite message is sufficient to re-
cover the entire original message with probability
�� � � �
����
	 . The decoding process is described at
the end of this section, though the analysis is beyond
the scope of this paper and described in [8].

3.2 Inner encoding

We now describe how to generate check blocks from
the composite message. The inner encoding depends
on global values � and � 	�� ! ! ! � ��� computed as fol-
lows: � � � ��� � ��� ('

��� ����� � �
! � 	 � �"� �+� ��#�
� � ���$%� ���"�&� 	
���'�(� ��
*) �+),� ��
 for �.-/)0-1�

Each check block is named by a unique identifier,
taken from a large ID space, such as 160-bit strings.
The check block is computed by XORing several
blocks of the underlying composite message. These
blocks of the composite message are chosen as fol-
lows, based on the check block ID.

We begin by seeding a pseudo-random generator
with the check block ID. Using the pseudo-random
generator, we chose a degree 2 from � to � for the
check block, biased such that that 23�4) with prob-
ability � $. We then pseudo-randomly and uniformly
select 2 blocks of the composite message and set the
check block to the XOR of their contents.

Any set of ��� � �
�� � check blocks generated ac-
cording to this procedure will be sufficient to re-

3

5.4.3.

1. 2.

Figure 2: Evolution of the decoding process of an
example 3-block message. Squares with double-
boundaries represent blocks that are known (recov-
ered).

cover a � � � � fraction of the underlying com-
posite message. The price to pay for a smaller �
is an increase by a constant factor in the decoding
time. Specifically, the decoding time is proportional
to ��� � � � ����� ���� ��
 .
3.3 Decoding

We call the message blocks that were XORed to pro-
duce a check or auxiliary block its adjacent mes-
sage blocks. Decoding consists of one basic step:
Find a check or auxiliary block with exactly one un-
known adjacent message block and recover the un-
known block (by XORing the check block and all
other adjacent message blocks). Repeat this step un-
til the entire original message has been recovered.

The decoding process is depicted in Figure 2. Ini-
tially, the only useful check blocks will be those of
degree 1, which are just copies of composite mes-
sage blocks. Once the degree-1 check blocks have
been processed, more check blocks become usable.
As the number of decoded message blocks contin-
ues to increase, more and more higher-degree check
and auxiliary blocks will become usable. Note that
one can execute this decoding procedure on-the-fly,
as check blocks arrive.

To see that the decoding process takes linear time,
following the approach of [5, 6], we think of the
composite message blocks and the check blocks as
the left and right vertices, respectively, of a bipartite

graph
�

. A check block has edges to and only to the
message blocks that comprise it in terms of the XOR.
We say that an edge has left (respectively right) de-
gree 2 if the left-end node (respectively right-end
node) of this edge is of degree 2 . Using the graph
language, the decoding step is: find an edge of right
degree 1 and remove all edges incident to its left-
end node. In the graph context, decoding completes
when all edges have been removed. Since the total
number of edges is bounded by ��� � �
�� �
� (specifi-
cally it is roughly equal to �
� ��� �), the decoding pro-
cess runs in linear-time. A similar argument applies
to the auxiliary blocks as well.

3.4 Practical considerations

On-line codes are proven to be good asymptotically
in � . Thus, as messages get too small, the subopti-
mality of the erasure code increases. However, with
� � �"! � � and , � �

, one can decode messages of
as few as 1,000 blocks after receiving only 3% more
check blocks than the size of the message, and with
probability of failure � ����� .

To estimate the performance on large files, we
used a non-optimized, 150-line Java implementation
to encoded and decoded a message of size 1 million
blocks. The decoding took roughly 10 seconds for
blocks of size zero, and would have required approx-
imately ��� million block XORs for a non-zero block
size.

We recommend the parameters � �%�"! � � and , ��
to implementors, resulting in � � �"��� ' and an

average check block degree of � !$� � .
4 Multi-source download

We now address the question of how to imple-
ment multi-source download with on-line codes.
One approach might be for source nodes simply to
send check blocks with random IDs to requesting
nodes. This solution yields nearly optimal availabil-
ity. However, if source nodes disappear and request-
ing nodes begin exchanging check blocks, two com-
municating nodes may still have significant overlap
in their knowledge of check blocks. (This can only
happen, if the overlapping check blocks came from

4

the same third node earlier in time. Avoiding this ef-
fect is within the scope of another topic—deciding
how nodes choose whom to exchange information
with in the first place.) Exchanging only useful
blocks would essentially boil down to the set recon-
ciliation problem.

To improve on the above solution, a multi-
source download algorithm should allow nodes to
produce concise descriptions of large numbers of
check blocks. Fortunately, requesting nodes tend to
download large numbers of blocks from the same
source before being interrupted. Thus, we can di-
vide a node’s check blocks into a small number
of streams—one for each aborted download from a
source node to a particular requesting node.

We define a stream with ID � ����� � � ��� 		��
 to
be the sequence of 160-bit numbers �
#� � 	 � � � � ! ! ! ,
where � $ �������� � ��� � �)�
 . For a given file � , we re-
fer to a sequence of check blocks with IDs � 	 � � � � ! ! !
as the encoding stream with ID � � .

Each requesting node downloading a file � can
keep a small state table of pairs (stream ID, last po-
sition). A pair ��� � ���
 is in the table if and only if
the node has the first � check blocks of the encod-
ing stream with ID � � . The pair �*, � ���
 , where , � is
the node’s ID in the peer-to-peer system, is always in
this table, even if � � � .

To download a file, a requesting node, � , first uses
a peer-to-peer lookup system to locate and select a
node with information about the file. Preference is
always given to a source with complete knowledge
of the file, if one is available and has spare capacity.
When downloading from a source node, a requesting
node always downloads the encoding stream with ID
equal to its own node ID in the peer-to-peer system.
When resuming an aborted download, the requesting
node simply informs the source of which stream po-
sition to start at.

When a requesting node � downloads a file from
another node � that has only incomplete informa-
tion, � begins by sending its entire state information
table to � . In this way, � can send � only streams or
stream suffixes that � does not already have. Further-
more, � can optionally request that � simultaneously
upload any of its streams or stream suffixes. Blocks
can be transfered one stream at a time, or else mul-
tiple streams can be interleaved, so long as each en-

coding stream is sent in order and starting from the
correct position. There is a lot of freedom in the or-
dering of streams transfered, allowing for some opti-
mizations we discuss later.

5 Discussion

Rateless codes are a promising new tool for the
peer-to-peer community, offering the prospect of im-
proved file availability and simplified reconciliation
of truncated downloads. We expect even the sim-
ple multi-source download algorithm in the previ-
ous section to outperform most other schemes, ei-
ther proposed or implemented. Rateless codes guar-
antee that almost every data block transmitted by a
source node contains unique information about a file,
thus minimizing the amount of duplicate information
amongst nodes with partial file information. More-
over, the freedom to chose encoded block IDs from
a large identifier space allows files to be encoded in
concisely specifiable streams so that nodes can in-
expensively inform each other of what blocks they
know.

5.1 Open questions

We speculate that the reconciliation costs upon ini-
tiation of interaction between two nodes are mini-
mal. The message cost of reconciliation between two
nodes is no bigger than the cost of sending the state
information table, whose size is directly proportional
to the number of different streams from which a node
has check blocks. This number is generously upper-
bounded by the total number of nodes that had par-
tial knowledge of the file within the life-span of the
download. In our experience, this number has actu-
ally never exceeded 20. As a result, the reconcilia-
tion data sent upon initiation of interaction between
two nodes will in practice always fit in one IP packet.
This is likely more efficient than algorithms based on
compact summary data structures [2] for set recon-
ciliation.

To make the algorithm truly scalable, however,
one needs to consider scenarios with dramatically
larger numbers of nodes with partial file knowledge.
In this case, we believe we can limit the growth of
state tables by clustering peers into smaller groups

5

within which nodes exchange partial file informa-
tion. How big these clusters need to be, and how
to design the algorithms for forming these clusters
poses an open question.

Another open question is whether availability
guarantees can be further improved. The specifica-
tion of the algorithm in Section 4 leaves some free-
dom of interpretation. When a node � requests help
from a node � with partial knowledge, � can choose
the order in which it sends streams to � . For example,
� could send blocks from one stream until the stream
is exhausted, or it could interleave blocks from dif-
ferent streams. The choice becomes important if the
connection between the two nodes is unexpectedly
interrupted. By choosing what specific approach to
use, and which stream(s) to send first, one can pick
a favorable trade-off between higher reconciliation
costs and higher file availability in the presence of
unexpected disconnects. It is an open problem to
find good strategies and understand the nature of this
trade-off.

Finally, our multi-source download algorithm uses
TCP. One could alternatively imagine UDP-based
downloads. In particular, people often want peer-to-
peer traffic to have lower priority than that of other
network applications. A user-level UDP download
protocol less aggressive than TCP could achieve this.
With erasure codes, such a protocol might also avoid
the need to retransmit lost packets, but at the cost of
complicating state tables with gaps in streams.

6 Conclusion

We hope that this paper will motivate further studies
of applications of rateless codes to peer-to-peer prob-
lems. Our experiments show that due to their sim-
plicity of implementation and speed, on-line codes
are a good candidate for practical solutions.

The download algorithm that we propose shows
that rateless codes offer increased file availability
and decreased reconciliation costs. Interestingly, the
decrease of reconciliation costs is due to the limit
on how many streams a cluster of nodes may need.
This shows that one can avoid difficult information-
theoretical problems, like set reconciliation, by mak-
ing use of a wider range of properties of the under-
lying peer-to-peer system. Moreover, since the limit

on the number of streams is, in some sense, a global
property of the multi-source setting, further research
should be done to better use other such global prop-
erties.

Acknowledgments

We thank Yevgeniy Dodis, Srinivasa Varadhan and
Maxwell Krohn for helpful feedback on this work.

This research was supported by the National
Science Foundation under Cooperative Agreement
#ANI-0225660 (���������	�
������
�
�����������������������), and
by DARPA and the Space and Naval Warfare Sys-
tems Center under contract #N66001-01-1-8927.

References
[1] EDonkey2000. http://www.edonkey2000.com/.

[2] J. Byers, J. Considine, and M. Mitzenmacher. Fast Ap-
proximate Reconciliation of Set Differences. In Draft
paper, available as BU Computer Science TR 2002-019,
2002.

[3] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. In-
formed Content Delivery Across Adaptive Overlay Net-
works. In SIGCOMM, 2002.

[4] M. Karpovsky, L. Levitin, and A. Trachtenberg. Data ver-
ification and reconciliation with generalized error-control
codes. In 39th Annual Allerton Conference on Communi-
cation, Control, and Computing, 2001.

[5] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman,
and V. Stemann. Practical Loss-Resilient Codes. In STOC,
1997.

[6] M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analy-
sis of Random Processes via And-Or Tree Evaluation. In
SODA, 1998.

[7] Michael Luby. LT codes. In The 43rd Annual IEEE Sym-
posium on Foundations of Computer Science, 2002.

[8] Petar Maymounkov. Online Codes. Technical Report
TR2002-833, New York University, October 2002.

[9] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn,
Steven D. Gribble, and Henry M. Levy. An analysis of in-
ternet content delivery systems. In 5th Symposium on Op-
erating Systems Design and Implementation, pages 315–
327, December 2002.

[10] Y. Minsky, A. Trachtenberg, and R. Zippel. Set Reconcili-
ation with Nearly Optimal Communication Complexity. In
International Symposium on Information Theory, 2001.

[11] Y. Minsky and A. Trachtenberg. Practical Set Reconcilia-
tion. In 40th Annual Allerton Conference on Communica-
tion, Control, and Computing, 2002.

6

