
Pollution in P2P File Sharing Systems
Jian Liang

Department of Computer and
Information Science,

Polytechnic University,
Brooklyn, NY

Email: jliang@cis.poly.edu

Rakesh Kumar
Department of Electrical and

Computer Engineering,
Polytechnic University,

Brooklyn, NY
Email: rkumar04@utopia.poly.edu

Yongjian Xi
Department of Computer and

Information Science,
Polytechnic University,

Brooklyn, NY
Email: yxi@cis.poly.edu

Keith W. Ross
Department of Computer and

Information Science,
Polytechnic University,

Brooklyn, NY
Email: ross@poly.edu

Phone : 1-718-260-3859

Abstract— One way to combat P2P file sharing of
copyrighted content is to deposit into the file sharing
systems large volumes of polluted files. Without taking
sides in the file sharing debate, in this paper we
undertake a measurement study of the nature and
magnitude of pollution in KaZaA, currently the most
popular P2P file sharing system. We develop a crawling
platform which crawls the majority of the KaZaA
20,000+ supernodes in less than 60 minutes. From the
raw data gathered by the crawler for popular audio
content, we obtain statistics on the number of unique
versions and copies available in a 24-hour period. We
develop an automated procedure to detect whether a
given version is polluted or not, and we show that
the probabilities of false positives and negatives of the
detection procedure are very small. We use the data
from the crawler and our pollution detection algorithm
to determine the fraction of versions and fraction of
copies that are polluted for several recent and old
songs. We observe that pollution is pervasive for recent
popular songs. We also identify and describe a number
of anti-pollution mechanisms.

Keywords— Network Measurements.

I. I NTRODUCTION

By many measures, file sharing is the most important
application in the Internet today. For example, on a
typical day, KaZaA - currently the most popular file-
sharing application - has more than 3 million active
users sharing over 5,000 terabytes of content. On the
University of Washington campus network in June
2002, KaZaA consumed approximately 37% of all TCP
traffic, which was more than twice the Web traffic on
the same campus at the same time [1].

But file sharing is not only having an important im-
pact on Internet usage and traffic; it is also profoundly
impacting sales in the music and video recording indus-
tries. For example, in a recent study, Forrester estimates
that the music industry lost over $700 million in CD
sales in 2003 due to illicit sharing of copyrighted songs
in P2P file sharing systems [2]. Each week there are
more than one billion downloads of music files, and
over 60 million Americans have downloaded music [3]
[4] .

Because of the potential of huge financial losses,
the music industry has attempted to throttle P2P file
sharing activity on three distinct fronts. First, it has

taken many of the file-sharing companies to court for
copyright infringement. This approach was successful
in 2001, when the US courts effectively shut down the
leading file sharing application, Napster, a US-based
company with a centralized architecture for file location
[5]. However, this approach has had little success at
curtailing KaZaA, for which it is more difficult to
simply “pull the plug” due to its highly decentralized
architecture and to its elusive international corporate
structure. The second front has been to prosecute the
individual users for copyright infringement, which by
some estimates has decreased illicit file sharing by
20%. However, file sharing remains rampant in the
Internet, as it is difficult to prosecute millions of “small”
users, particularly when they are scattered across the
globe. The music industry’s third front for throttling
file sharing is to actually sabotage the P2P file sharing
systems. This approach has received relatively little
press to date but - as we shall demonstrate in this paper
- is currently being deployed on a grand scale.

One sabotage technique that is particularly prevalent
today is that ofpollution . Here, a “pollution com-
pany” first tampers with copyrighted content with the
intention of rendering the content unusable. It then
deposits the tampered content in large volumes in the
P2P network. Unable to distinguish polluted files from
unpolluted files, unsuspecting users download the files
into their own file-sharing folders, from which other
users download the polluted files. In this manner, the
polluted copies of a given song spread through the file-
sharing system, and the number of polluted copies can
eventually exceed the number of clean copies of a given
song. The goal of the pollution company is to trick users
into frequently downloading polluted copies; users may
then become frustrated and abandon P2P file sharing.

One such pollution company is Overpeer [6] [7].
Overpeer works with major record labels, film studios,
television networks, and game publishers to pollute
P2P networks. For example, when a recording com-
pany is on the verge of releasing a song that will
likely be popular, the record company might pay a
pollution company to spread bogus copies of the song
through one or more P2P networks. The approach is
described in Overpeer’s US patent applications [7][8].
A similar approach is described in a recent patent
application from the University of Tulsa [9]. The patent

describes cooperative scanning, manufacturing, sharing
and supervisory control software to share decoy (that
is, polluted) media at a volume that renders media
search ineffectual [9]. Retspan is yet another example of
company in the business of spreading polluted content
in P2P systems [10].

In this paper we undertake a detailed measurement
study of the nature and magnitude of pollution in
KaZaA, currently the most popular P2P file sharing
system. We emphasize that the purpose of this paper
is not to take sides on the P2P file-sharing debate
nor to condone nor to condemn pollution. The goal
instead is to understand P2P pollution, how pervasive
it is currently in P2P networks, how quickly it spreads,
and to identify measures for countering P2P pollution
attacks. We will see that pollution is indeed pervasive,
with more than 50% of the copies of many popular
recent songs being polluted in KaZaA today. Because
P2P file sharing is having a major impact on Internet
traffic and usage, it is important to gain deep insights
into P2P pollution, which is now a central part of the
P2P landscape.

The contributions of this paper include:

• We developed a powerful crawling system which
crawls the majority of the KaZaA 20,000+ supern-
odes in less than 60 minutes. Developing such a
crawler is highly challenging since KaZaA uses
a proprietary protocol with most of its signaling
messages being encrypted.

• From the raw data collected by the crawler, we
obtained statistics for popular audio content on the
number of unique versions and copies available in
a 24-hour period. For a given song, we find that
the number the copies versus the version number
typically follows a Zipf distribution.

• In order to estimate pollution levels, we devel-
oped an automated processing procedure to detect
whether a given version is polluted or not (which
does not involve listening to the song). For the
current pollution attacks, we show that the proba-
bilities of false positives and false negatives of the
detection procedure are very small.

• We used the data from the crawler and our pollu-
tion detection algorithm to determine the fraction
of versions and fraction of copies that are polluted
for several popular songs. We observe that pol-
lution is pervasive for recent popular songs and
hardly significant for older songs.

• We used our crawler to study the evolution of
versions, copies, and pollution in KaZaA for a
period of 19 days.

• We use or measurement data to show that the
KaZaA rating system is ineffective for identifying
polluted files.

• Finally, we identify and describe a number of anti-
pollution mechanisms. These mechanisms fall into
two categories: schemes that require the user to

download a portion of the file before declaring the
file polluted; and those which do not require any
user downloading.

II. CLASSIFICATION OF P2P POLLUTION

Depending on the strategies taken to pollute content,
pollution in file-sharing systems can be classified into
two major categories.

• Content Pollution: This is currently the more
common form of pollution. The polluting party
targets a particular digital recording (e.g., song
or video). It then manufactures decoys for the
recording by modifying it in one or more ways,
including replacing all or part of the content with
white noise, cutting the duration, shuffling blocks
of bytes within the digital recording, inserting
warnings of the illegality of file sharing in the
recording, and inserting advertisements. We ob-
served that today a popular pollution technique
is to insert tens of seconds of undecodable white
noise into the middle of the song.

• Metadata Pollution: The other strategy is to not
tamper with the digital recordings themselves but
instead tamper with metadata. This often involves
taking an older recording, whose copyright has
expired, and changing its song title, album title,
and artist name to that of the targeted recently-
released recording. Thus, when a user requests the
target recording, the user will mistakenly obtain a
different recording.

We emphasize that these pollution schemes currently
work well because there is a lack of good media
matching systems in P2P file sharing. We discuss more
about strategies for countering pollution in Section VI.

We can also classify pollution asintentional andun-
intentional. A pollution company intentionally creates
polluted versions of files, using the content and meta-
data pollution techniques described above. But users
often accidentally create damaged files and inject them
into P2P file sharing systems. For example, a user may
“rip” a song from a CD, inadvertently truncate the song,
and then make available the truncated song in the P2P
file-sharing system. Or a user may record the song from
the radio and accidentally pick up the disk-jockey’s
voice at the beginning or end of the song. We refer to
files which have been inadvertently corrupted by user
error as unintentional pollution. Finally, we remark that
certain parties sometimes make minor modifications in
recordings which are hardly noticeable. For example,
we have observed that to reduce a song’s air time, a
radio station may eliminate a long, repetitive tail of the
song or even slightly accelerate its playback. A user can
then record and distribute the slightly-tampered song in
a P2P file sharing system. The songs investigated in this
study are listed in Table 1. (In Section IV we explain
why we chose these particular songs.)

SONG T ITLE ARTIST L ABEL RELEASE DATE CD DURATION
(secs)

Naughty Girl Beyonce Columbia/Sony music Jun 24, 2003 208

Ocean Avenue Yellowcard Capitol/EMI July 22, 2003 198

Where is the love? Black Eyed Peas Interscope/ Universal Music Aug 12, 2003 274

Hey Ya OutKast Arista/BMG Sep 15, 2003 235

Toxic Britney Spears Jive/Zomba Nov 18, 2003 198

Tipsy J-Kwon So So Def Records/Sony Music Jan 26, 2004 243

My Band D12 Interscope/ Universal Music Mar 11, 2004 299

TABLE I
SONGS INVESTIGATED FOR POLLUTION

III. T HE KAZAA CRAWLING SYSTEM

To gather raw data about versions, copies, and pollu-
tion levels in P2P systems, we developed and deployed
a farm of multi-threaded crawling nodes, which we call
the KaZaA Crawling Platform . This system crawls
through virtually all of the 30,000+ KaZaA supernodes
in 15-60 minutes. Furthermore, it is scalable in that the
crawling time is inversely proportional to the number
of Linux boxes in the platform.

A crawling system was previously developed for
the Gnutella P2P network [11]. Developing a crawling
system for KaZaA is significantly more challenging
for two reasons. First, KaZaA is 10-100 times larger
than Gnutella, both in terms of the number of peers
and traffic. Second, and more importantly, the Gnutella
protocol is in the public domain, whereas the KaZaA
protocol is proprietary with little information available
to the research community about how it operates. Thus,
to develop the KaZaA Crawling Platform, we first had
to undertake a measurement and reverse engineering
project to understand how the KaZaA system operates
[12].

A. Overview of KaZaA Design

To present the KaZaA Crawling System and our
experimental methodology, we first need to summarize
how KaZaA works. Our focus here is on the aspects
of KaZaA that are relevant to the KaZaA Crawling
System. A more complete description is available in
[12].

The KaZaA system contains files available for file
sharing. These files include audio mpegs, videos, and
executables including games. Each file in the system
includesmetadata. A file’s metadata includes thefile
name, the file size and file descriptors. For music, a
file’s file descriptors typically include song title, artist,
album, and user-supplied keywords. The file descriptors
are used for keyword matches during querying.

The KaZaA software installed and executed on the
peers is called theKaZaA Media Desktop (KMD) .
The KMD enables a peer to download files directly
from other peers, upload files directly to other peers,
and query for content stored in the other peers. For each
file in the KaZaA shared folder, the KMD determines

the file’sContentHash, which is a proprietary signature
taken over the entire file, including the file’s metadata.
The ContentHash plays a central role in the KaZaA
design. In the most recent version of KaZaA, the
ContentHash is the only identifier used to identify a
file when requesting a download. If a download from a
specific peer fails, the ContentHash enables the KaZaA
client to search for the specific file automatically, with-
out issuing a new keyword query.

In addition to KaZaA, Grokster and iMesh are two
other clients that currently participate in the FastTrack
overlay network. All three clients are licensed by
Sharman Networks, Inc and use the same protocol as
KaZaA. Many users today also use KaZaA-Lite [13],
an unofficial copy of the KMD, rather than the KaZaA
client (KMD) distributed by Sharman. Each KaZaA-
Lite client emulates Sharman’s KMD and participates
in the same KaZaA network. When we say KaZaA, we
are actually referring to the FastTrack network and all
of its clients.

Unlike Napster, KaZaA is decentralized and does not
maintain an always-on, centralized index for tracking
the location of files. As shown in Figure 1, KaZaA
has two classes of peers, Ordinary Nodes (ONs) and
Super Nodes (SNs). SNs have greater responsibilities
and are typically more powerful than the ONs with re-
spect to availability, Internet connection bandwidth and
processing power. When an ON launches the KaZaA
application, the ON establishes a TCP connection with
a SN, thereby becoming a “child” of that SN. The ON
then uploads to the SN the metadata and ContentHashes
for the files it is sharing. This allows the SN to
maintain alocal index which includes ContentHashes
and file descriptors for all the files its children are
sharing along with the corresponding IP addresses of
the ONs holding the particular files. In this way, each
SN becomes a mini Napster-like hub. But in contrast
with Napster, a SN is not a dedicated server (or server
farm); instead, it is a peer belonging to an individual
user. As shown in Figure 1, each SN also maintains
long-lived TCP connections with other SNs, creating
an overlay network among the SNs.

When a user wants to find files, the user’s ON sends
a query with keywords over the TCP connection to its

Fig. 1. Supernode and Ordinary nodes in KaZaA network

SN. For each match in its local index, the SN returns the
metadata and IP addresses corresponding to the match.
When a SN receives a query, it may flood the query
over the overlay network to one or more of the SNs
to which it is connected. A given query will in general
visit a small subset of the SNs, and hence will obtain
the metadata information of a small subset of all the
ONs.

As part of the signalling traffic, KaZaA nodes fre-
quently exchange with each other lists of supernodes.
For example, when an ON connects with a SN, the SN
immediately pushes to the ON asupernode refresh list,
which consists of the IP addresses of up to 200 SNs.
Each ON maintains a cache of up 200 SNs whereas
SNs appear to maintain a cache of thousands of SNs.
When a peer A (ON or SN) receives a supernode refresh
list from another peer B, peer A will typically purge
some of the entries from its cache and add entries sent
by peer B. By frequently exchanging supernode refresh
lists, nodes maintain up-to-date lists of active SNs.

B. The KaZaA Crawling Platform Architecture

The KaZaA Crawling Platform is shown in Figure
2. It consists of aprocess manager, a measurement
database, and n crawling nodes. At the core of the
system are then crawling nodes, each implemented in
its own Linux box. In our current deployment,n = 10.
Each crawling node runs four processes, with each
process maintaining 40 threads. Thus withn = 10, the
KaZaA Crawling Platform has 1,600 parallel threads.
Each thread partially emulates the client-side of the
KaZaA connect and query protocol. (We used the re-
sults of an earlier reverse engineering project to design
the syntax and semantics of the threads’ messages
[12].) All of these Linux boxes are located in Poly-
technic campus in Brooklyn. It is also possible to run
crawler experiments from multiple locations distributed
throughout the world. However as our measurement
results described in section III-C show, we are crawling
the vast majority of SNs from the one location itself.
Thus a distributed approach is not necessary.

The crawling takes place in rounds of 30 seconds. In
each round, each crawling thread operates as follows:

1) The crawling thread is initialized with(i) the
IP address of some candidate SN in the KaZaA

Fig. 2. KaZaA Crawling Platform Architecture

(FastTrack) network, and(ii) a set of query
strings. For a targeted song, each query string
typically consists of the song title and artist name.

2) The crawling thread attempts to make a TCP
connection with the candidate SN. If it fails to
establish a TCP connection, then the thread waits
until the next round to get a new IP address. If it
succeeds, it exchanges handshake messages with
the SN and continues as follows.

3) The crawling thread receives from the SN a SN
refresh list, consisting of IP addresses of up to
200 SNs. This SN refresh list is forwarded to the
Process Manager.

4) For each query string, the crawling thread sends
a query to the KaZaA network (via the connected
SN). If there arem songs to be queried, the
crawling thread sends outm queries back-to-
back.

5) For each of these queries, the crawling thread
receives (via the connected SN) matching query
results. Each query result includes the metadata
and ContentHash for the file associated with the
match. We set the time-out of each such query
session to be 30 seconds.

6) The metadata, ContentHash and IP address from
each query result is forwarded to the measurement
database.

The Process Manager coordinates and controls the
crawling nodes. It maintains a list of all candidate SNs,
which is augmented whenever it receives a SN refresh
list. In steady state, the Process Manager dispatches
1600 candidate IP addresses to the processes every 30
seconds. Each candidate SN is eventually checked by
one of the threads; if the thread succeeds at making a
TCP connection with the candidate SN and at querying
the SN’s local index, the candidate SN is further labeled
asconfirmed.

At the end of each hour, the KaZaA Crawling Plat-

(a) May 1,2004 - Early Morning (b) May 1,2004 - Afternoon

Fig. 3. Number of discovered SNs over one hour

(a) Total size of the network (SNs + ONs), Saturday, May 1, 2004
(weekend).

(b) Total number of SNs discovered, Saturday, May 1, 2004. (weekend)

(c) Total size of the network (SNs + ONs), Thursday, May 13, 2004.
(weekday)

(d) Total number of SNs discovered, Thursday, May 13, 2004 (week-
day).

Fig. 4. Number of SNs and total number of nodes found every hour.

form starts from scratch, with the candidate set of SNs
initialized with the confirmed set of SNs of the previous
hour. For each experiment, we gather data for a 24-hour
period.

We employ a simple optimization to accelerate the
harvest rate of SN IP addresses. As discussed above,
after connecting to a SN, a crawling thread sends
a sequence of queries into the KaZaA network. We
include in this sequence generic queries such as “mp3”.
For each response, the crawling system identifies the
SN that originating the query response. The responses
thus provide an additional source of IP addresses,
which are merged with the addresses currently in the

global list of the process manager.The measurement
database contains the metadata, ContentHashes and IP
addresses for the song titles under investigation. To
protect the privacy of KaZaA users we replace their ON
IP addresses with MD5 hashes. We say that two files,
stored in different KaZaA files, arecopiesand belong
to the sameversion if they have the same ContentHash
value. Once the crawling is complete, we perform an
offline analysis of the data collected in the measurement
database.

C. Crawling Coverage

Recall that in each hour, the crawler attempts to visit
as many SNs as possible; and at the beginning of each
new hour, the crawling restarts. We claim that in any
given hour, the crawler covers the vast majority of SNs
that were present in the overlay at sometime during the
hour. (Because SNs come and go, the crawler may miss
a small fraction of the SNs that were present during the
hour. The average lifetime of a SN is about 2.5 hours
[12].)

We use two distinct measurement studies to justify
this claim. In [12], we determined the number of clients
that are connected to a typical SN; we also recorded
the total number of peers in KaZaA at any given time,
which is provided through the KMD. Dividing the total
number of peers by the number of peers connected to
a SN gives an estimate of the total number of SNs.
We estimated that the number of SNs is about 20,000-
30,000, depending on the time of day. Figure 3 presents
the number of SNs confirmed by the crawler as a func-
tion of time for 60 minutes for two different trials - one
in the early morning and the other in afternoon, on the
same day. The curves in Figure 3 flatten out after about
30 minutes, at a level of 20,000-30,000 supernodes. The
curves do not completely flatten out, however, due to
supernode churn. This flattening out of the curves in the
20,000-30,000 range supports our claim that our crawler
covers essentially all the supernodes in an hour.

To further justify this claim, we also measured the
number ONs and discovered SNs in the overlay for
each hour for 24 consecutive hours. The number of
discovered SNs in each hour is obtained from the
KaZaA Crawling Platform,. For the total number of
peers (SNs plus ONs), we again rely on KaZaA’s net-
work statistics message displayed in any KMD. Figure
4(a) and 4(c) shows the evolution for the total number
of peers in KaZaA while Figure 4(b) and 4(d) shows
the evolution of number of discovered SNs in each hour.
The measurements were made for over a period of forty
eight hours – 0:00 EST May 13, 2004 to 23:59 EST
May 1, 2004 for Figure 4(a) and 4(b); 0:00 EST, May
13, 2004 to 23:59 EST May 13, 2004 for Figure 4(c)
and 4(d). Observe that the the shape of the evolution
of the SNs closely resembles the shape of the evolution
of the total number of peers. The average degree of
connectivity from a SN to ONs is 115 with a standard
deviation of 9.75. The low variance in the degree of
connectivity further supports our claim that the KaZaA
Crawling Platform identifies almost all the SNs that are
present in each one-hour period.

IV. V ERSIONRESULTS

Many users use applications called “rippers” to ex-
tract audio media from compact discs and store ex-
tracted audio content on hard drives, where they can
be transformed by an “encoder” into the MP3 format

[9]. Such “encoder” and “ripper” processes have re-
cently been bundled into “1-Step” software, making
duplication and distribution of mpeg audio files even
easier [9]. Typically, the software “ripper-encoders”
provide many encoding options, including the bit-rate
of encoding and the lengths of silence at beginning
and end of the song. Thus, users transform the same
song from a CD into non-identical MP3 files, each
of which hashes to a different value and is thus a
different version of the song. Some of the many other
factors that create different versions include ripping of
songs from different radio stations, DJ mixes, and, most
importantly, different metadata keyed in by different
users for the same song. All of this results in a plethora
of different versions for the same song, each with its
own ContentHash.

We performed an extensive version analysis on the
seven popular songs shown in Table I. This analysis is
presented in Table II. In choosing the seven songs, we
chose songs that were ranked highly in the music charts
at the time of the experiment; we also sought a diversity
of record labels. Otherwise, our choice was random -
we did not select and then reject any songs with any
a priori knowledge of their version or pollution levels.
For each of these seven songs, the KaZaA Crawling
Platform determined the number of versions of the song
available in the KaZaA network and the number of
copies available for each version. As shown in Table
II, each of these songs has a huge number of versions,
ranging from 8,000 to almost 50,000. The number of
copies for these songs is also remarkably large, ranging
from about 175,000 to about 1.8 million.

For each of these seven songs, we rank ordered its
versions from the most popular to least popular version,
where here the popularity of a version is defined in
terms of number of its copies discovered in the network.
Figure 5 shows the cumulative distribution function
(CDF) for the number of copies with respect to the
rank-ordered version number. We see from Figure 5 that
for each of these songs, more than 60% of the copies
come from the top 100 versions and more than 75% of
the copies come from the top 500 versions. For two of
the songs, more that 90% of copies come from the top
500 versions.

We also plotted the corresponding PMF on a log-
log scale in in Figure 6. The linearity of the curves
indicates that version popularity closely follows a Zipf
distribution, that is, for a given song the popularity of
a version is give by

f(n) =
K

nα

wheren is the popularity rank of a given version and
f(n) is the fraction of copies of that version discovered
in the KaZaA network. For each song we computeα
factor by fitting the corresponding data on the log-log
plot to a straight line by the least squares method. The

(a) Top 100 versions (b) Top 500 versions

Fig. 5. CDF of copies for 7 songs.Data collected on May 1, 2004

(a) Top 100 versions (b) Top 500 versions

Fig. 6. PMF of copies for 7 songs on a log-log scale.Data collected on May 1,2004

SONG T ITLE NUMBER OF
VERSIONS

NUMBER OF
COPIES

α

Naughty Girl 26,715 631,387 0.80672
Ocean Avenue 8,000 174,106 0.80339
Where is the Love ? 48,613 448,987 1.0215
Hey Ya 46,926 734,108 0.86035
Toxic 38,992 650,529 0.86135
Tipsy 32,893 853,688 0.77721
My Band 49,447 1,816,663 0.82019

TABLE II
FOR SEVEN SONGS, NUMBER OF VERSIONS DISCOVERED, NUMBER OF COPIES DISCOVERED, AND ZIPF α VALUE (DATA COLLECTED

ON MAY 1,2004)

α factors for the seven songs are between 0.77 and 1.03
and are shown in Table II.

V. POLLUTION

A. Automated Pollution Detection

As described in Section III, the KaZaA Crawling
Platform collects the metadata for a keyword string,
such as a song title and artist name. For a set of popular

songs, we have used the KaZaA Crawling Platform to
collect the metadata for essentially all the versions for
each of the songs in the song set. Given a particular
version for a particular song, the aim ofautomated
pollution detection is to determine - without actually
listening to the file - whether a version is polluted.

Our detection algorithm is based on the observation
that today’s polluters use simple techniques for pol-
luting files. In particular, in today’s KaZaA network,

(a) for song Hey Ya (b) for song Naughty Girl

Fig. 7. PMF of version durationsshows the PMF for durations for the decodable versions for the songs “Hey Ya” and “Naughty Girl”.
The official CD durations for these songs are 235 seconds and 208 seconds, respectively.

the vast majority of the polluted MP3 files arenon-
decodable into the corresponding PCM format. This
is because the polluting parties usually tamper with
the binary format of the mpeg data, rendering the file
unplayable (non-decodable). (Instead of writing down-
loaded files to disk, we download to memory, decode
on the fly, and then release the memory after decod-
ing.) Also, we observed that some polluted versions
are decodable but have durations that are significantly
shorter or longer than the official CD version.Our
simple procedure declares a version to be polluted if
either the version is non-decodable or if its length was
not within +10% or -10% of the CD length.We call this
last criterion the 10% criterion. For two songs, Figure 7
provides the probability mass functions (PMFs) for the
durations for the decodable versions. Note the presence
of a significant number of polluted too-short and too-
long versions for both songs.

Our pollution detection procedure never creates false
positives, that is, it never declares a version to be
polluted when it truly isn’t. However, it is is possible
that the procedure declares some files as clean (that is,
as non-polluted) when they are actually polluted. This
can happen as follows.

• It is possible that the polluting party actually took
care to preserve the mpeg structure of the polluted
file. Such a polluted file will decode perfectly
and thus pass undetected through our pollution
detection procedure.

• All meta-data pollution, as described in Section II,
will go undetected.

We performed a statistical analysis to estimate the
percentage of false negatives in our pollution detection
procedure for the two songs “Hey Ya” and “Naughty
Girl.” For these songs, we put the versions in persistent
storage and manually listened to all 239 versions of
“Hey Ya” and all the 412 versions of “Naughty Girl”
that were declared clean by our pollution detection
procedure. For “Hey Ya”, we found 4 content-polluted
versions and 13 meta-data-polluted versions, giving the
fraction 0.07 of false negatives. For Naughty Girl, we
found 17 content-polluted versions and 16 meta-data

versions, giving the fraction 0.08 of false negatives.
Thus the pollution statistics reported in this paper are
representative of the actual pollution levels in KaZaA.

B. Pollution Results

We use two measures for pollution levels for a given
song: the fraction of polluted versions, and the fraction
of polluted copies. Figure 8 shows both of these mea-
sures for seven songs. The x-axis depicts the titles of
the songs and on y-axis the fraction of polluted versions
and copies. For example, for the song “Naughty Girl”
among the top 500 most popular versions, 62% of
the versions are polluted and 73% of the copies are
polluted.

From Figure 8 we see that recent popular songs have
extraordinarily high levels of pollution in KaZaA. Why?
Since pollution is high and widespread over a variety
of recent popular songs, we can rule out accidental
“defective ripping” by the users as responsible for the
bulk of the pollution. We therefore conclude that the
music industry is succeeding in generating high pollu-
tion levels for popular recent songs. It is remarkable
that among the top 500 versions for each of the seven
songs considered, the number of polluted versions lies
in a range of 100-350.

We emphasize that the levels of pollution shown in
the Figure 8 are lower bounds of the actual pollution
levels in the network. Indeed, the presence of false neg-
atives, which are versions which pass our decodability
test for pollution as described in section V-A, biases
the results. We estimate that after taking into account
false negatives, the percentage of polluted versions will
increase by a value in the range of 7% to 8% (this value
comes from our estimation of false negatives in section
V-A).

It is also interesting to note that the the two songs
which respectively have the highest and lowest levels
of pollution also have the highest and lowest number
of copies. Specifically, “Ocean Avenue” with the least
numbers of versions and copies also has the lowest
pollution level. On the other hand, “My Band”, with the
highest number of versions and copies, has the highest
pollution levels. This correlation is also present to a

(a) for the top 100 versions (b) for the top 500 versions

Fig. 8. Fraction of versions and copies found to be polluted.Data collected on May 1,2004

Fig. 9. Fraction of versions and copies found to be polluted for
older songs.Data collected on June 10, 2004.

large extent in the five other songs. This correlation is
likely because the songs with the most versions are the
most popular - and hence potentially the most profitable
for the music industry. Since the music industry wants
to maintain its profits, it more aggressively pollutes the
more popular songs.

Also, if an attempt is made to attack a particular
song by depositing one or more polluted versions into
the network, then it is only worthwhile to do so if
the number of copies of these polluted versions is
substantial. For this reason, the fraction of polluted
copies in the top 100 versions typically exceeds the
fraction of polluted versions in the top 500 versions.

To gain insight on what types of songs are highly
polluted, we repeated the entire crawling experiment
for five older songs (all of which were chart hits in
the 70s). These five songs are listed in Table III. From
Table III we first observe that these formerly popular
songs have relatively few versions and copies, a result
which is not unexpected. From Figure 9, we see that
the pollution levels for these songs are low, with three
of the five songs having less than 2% polluted copies.
The pollution levels of ”Born to Run” and ”Saturday
in the Park” are somewhat higher, but still way below
those of the currently popular songs. It is possible that
most (or even all) of the pollution for these older songs
is unintentional pollution.

C. Evolution of Pollution

We also studied the dynamics of content evolution,
which, to our knowledge, has not been explored pre-
viously. Specifically, we tracked the total number of
polluted and unpolluted copies available for the top 100
most popular versions of a given song over a period
of 19 days. Due to space constraints, we present the
results of this experiment for only two songs, “Hey
Ya” and “Naughty Girl”. These results are shown in
figure 10. We also performed a statistical analysis of this
evolution data and found that although the total number
of copies available (polluted and unpolluted) is very
dynamic, the percentage of polluted copies is slowly
varying. The average change in percentage of polluted
copies in consecutive measurements is 0.7% for “Hey
Ya” and a slightly higher value of 2.5% for “Naughty
Girl”. This can also be seen by observing that the shape
of polluted copies curve closely follows the unpolluted
copies curve. It suggests that the dynamics observed in
the evolution of content are highly influenced by the
change in the size of the network over the experiment
duration.

D. Ratings and Pollution

The KMD client gives users the ability to rate the
integrity of the files that they are making available for
sharing. Any file can be rated as:

• Excellent: File has complete data and is of an
excellent technical quality

• Average: File has some of the claimed data and is
of moderate technical quality.

• Poor: Poor technical quality.
• Delete File: File may be virus infected or in

general should not be shared.

When a user receives responses for a search for a file,
the user’s KMD client aggregates, for each discovered
version, the ratings of all the copies found for that
version into one single rating. For example, during a
search, if three copies are discovered for some version,
and the ratings for the three versions are excellent, poor
and null (no rating), the KMD presents to the user the
aggregation of these three scores.

SONG T ITLE ARTIST NUMBER OF
VERSIONS

NUMBER OF
COPIES

Born to Run Bruce Springsteen 332 18,828
Hey Jude Beatles 636 115,846
Like a Virgin Madonna 326 10,448
Saturday in the Park Chicago 283 9,331
You’re So vain Carly Simon 261 17,397

TABLE III
OLDER SONGS: NUMBER OF VERSIONS AND COPIES(DATA COLLECTED ON JUNE 10, 2004)

(a) for song Hey Ya (b) for song Naughty Girl

Fig. 10. Evolution of PollutionShows the number of polluted and unpolluted copies for top 100 most popular versions for the songs
“Hey Ya” and “Naughty Girl”.

SONG T ITLE % COPIES RATED P(polluted/good rating) POLLUTED COPIES (%)
Naughty Girl 1.07 .49 68.9
Ocean Avenue 1.47 .07 19.0
Where is the Love ? 1.83 .04 37.6
Hey Ya 1.82 .21 36.9
Toxic 1.49 .02 51.7
Tipsy 1.61 .17 60.8
My Band 0.80 .52 76.8

TABLE IV
EFFECTIVENESS OFKAZAA’ S RATING SYSTEM

For each of the seven recent songs studied in this
paper, we recorded the rating for each discovered copy.
Table IV provides a summary of our findings. We
see from this table that a small percentage of copies
are rated for each song. Although the KMD provides
incentives for users to rate files by awarding users more
participation points whenever a rated file is uploaded
[14], the low percentage of rated files is surprising.
This is most likely due to(i) the popularity of the
KaZaA-lite client, which provides users with maximum
participation levels by default, and(ii) lack of user
awareness about the relationship between rating activity
and participation points.

Table IV also presents statistics on the accuracy of
the ratings for the seven songs. We say a copy of a
version isfalsely rated when it has been rated as good
(excellent or average) when in-fact it is polluted. The

third column of table IV presents the fraction of falsely
rated copies for each song. We observe that this fraction
is highly correlated with the actual pollution levels,
given in Column 4 of the same table: The higher the
fraction of falsely rated copies for a song, the higher
is the corresponding pollution level. This leads us to
conclude that pollution companies also falsely rate their
polluted copies.

It appears that even before users are able to rate
out a polluted version, new polluted versions are intro-
duced into the network. Frequently introducing polluted
versions of a particular song is capable of defeating
the content rating mechanism. KaZaA’s content rating
mechanism is meaningless in the face of an onslaught
of polluted versions.

VI. A NTI-POLLUTION MECHANISMS

Given that pollution in P2P file sharing systems is
pervasive, it is natural to consider what can be done
to defend against the pollution attack. In this section
we describe a number of potential anti-pollution mecha-
nisms. We classify the mechanisms into two categories:
• Detection without downloading: After receiving

search results, the mechanism attempts to deter-
mine whether the files in the results are polluted
without actually downloading any portion of the
files.

• Detection with downloading: For this class, the
mechanism detects whether a file is polluted by
first downloading portions (or all) of the file.

Clearly, from the perspectives of the user and of net-
work traffic, the first class of mechanisms is preferable,
as resources are not wasted downloading high-bit-rate
polluted multimedia files (or portions thereof).

Detection with file downloading

Within this class of anti-pollution mechanisms, we
have identified a number of subclasses:
• Matching: In a matching mechanism, there is a

trusted database (centralized or decentralized) that
contains the fingerprints of authentic content. A
fingerprint could be the hash of a song, a frequency
(Fourier) representation of the song, or a time-
domain summary of the song. For matching, after
the client peer downloads a portion (or all) of the
file, it matches what it has downloaded with the
fingerprints in the database. If a match is not found,
the client peer concludes that the file is polluted
and deletes all file portions it has downloaded.
The Sig2dat project [15] makes available a tool
for obtaining the KaZaA ContentHash of any file.
This tool is increasingly being used by KaZaA
users, who post file names and corresponding
ContentHash values on Web sites and message
boards. However, because users can easily create
different versions of clean (non-polluted) songs, it
is unlikely that a hash-based fingerprinting scheme
will be successful. Audible Magic [16] offers a
proprietary database of frequency-representation
of signatures of copyrighted audio content. The
database can be used to verify if a file distributed
by a P2P file sharing system is copyright protected
or not. However, we are skeptical about frequency
fingerprinting schemes, as we believe that they
can be circumvented by clever content pollution
mechanisms. It remains an open question whether
there is a time-domain fingerprinting scheme that
is difficult to thwart. In any case, each of the
fingerprinting schemes requires a trusted database,
which not only has a maintenance cost but could
itself be the target of a legal attack.

• User filtering: We conjecture that if most users
first check their downloaded files before copying

them into their shared folders, then the level of
pollution in file sharing would be significantly
reduced. Peers with such a behavior would be
acting as sieves, downloading both polluted and
unpolluted content but filtering out the former. The
challenge here is to provide users a robust incentive
scheme that encourages users to filter out polluted
files.

Detection without file downloading

The mechanisms in this class rely on the experience
of other peers with shared files. For these mechanisms,
although a given peer does not need to explicitly
download the content, the success of the mechanism
depends on an appraisal of the content by other peers
that have downloaded the content in the past.
• Rigid trust: In this scheme, a user only down-

loads files from friends who the user fully trusts.
These friends agree to manually (listen or watch)
verify that files are clean before copying them
into their shared folders. If a user starts to receive
polluted files from any friend, the user ceases to
download files from that friend. Users may locate
their friends using presence detection (as in instant
messaging systems).

• Web of trust: Here the user receives updated
lists of friends from all of its own trusted friends.
The user downloads from friends and from the
friends of his friends. If the user receives polluted
content from any friend of friend, the user ceases
to download from the friend of friend and notifies
his direct friend of the problem. The idea is similar
to the trust mechanism used in PGP [17].

• Reputation systems:Reputation systems such as
[18], [19] allow peers to rank each other. These
reputation systems can potentially be used to re-
duce pollution. The reputation system would iden-
tify malicious peers that have been responsible
for injecting polluted content into the file sharing
system. In an ideal reputation system, peers engag-
ing in malicious behavior eventually develop low
reputations. However, current designs of these rep-
utation systems may suffer from problems of low
robustness against collusion, and high complexity
of implementation.

VII. R ELATED WORK

There are a number of other P2P measurement stud-
ies, but most of these studies examinetransmittedP2P
traffic rather thanstoredP2P content (as in this paper).
In these traffic studies, traffic is collected at a link inter-
face (for example at the boundary of a campus network)
and then processed off-line. [20] talks about P2P ap-
plication specific signatures; these signature techniques
could be deployed by an ISP to identify and filter illicit
P2P traffic. [21] analyzes P2P traffic by measuring flow-
level information collected at multiple border routers
across a large ISP-network. By measuring KaZaA traffic

in the University of Washington campus, [1] studies file-
sharing workloads and develops models for multimedia
workload.

A crawling system was previously developed for
the Gnutella P2P network [11]. Developing a crawling
system for KaZaA is significantly more challenging
for two reasons. First, KaZaA is 10-100 times larger
than Gnutella, both in terms of the number of peers
and traffic. Second, and more importantly, the Gnutella
protocol is in the public domain, whereas the KaZaA
protocol is proprietary with little information available
to the research community about how it operates. See
also [22] for some additional work on crawling Gnutella
and Napster.

There has been some recent measurement work on
spread of spyware in networked systems. In [23] the
authors develop signatures for popular spyware and
obtain traces of network activity within the University
of Washington campus to quantify the spreading of
these programs.

VIII. C ONCLUSION

We examined the nature and extent of pollution in
P2P file sharing. We found that popular contemporary
songs can have a remarkably large number of different
versions, as many as 50,000. There are also huge
numbers of copies of popular songs, often over 1
million. We found that pollution is indeed pervasive
in file sharing, with more than 50% of the copies of
many popular recent songs being polluted in KaZaA
today. Our results indicate that the vast majority of this
pollution is intentional. For older songs, pollution is
less prevalent and may mostly consist of unintentional
pollution. We have also tracked the evolution of copies
in KaZaA and have found that pollution levels remained
roughly constant over a 19-day period. We also found
that KaZaA’s rating system is largely ineffective at
identifying polluted copies. We identified and reviewed
a number of potential anti-pollution mechanisms.

We developed the KaZaA Crawling Platform to ob-
tain measurement data for this study. This crawler is
of independent interest. Developing the crawler was
challenging since KaZaA uses a proprietary protocol
with most of its signaling messages being encrypted.
Also, a farm of server nodes, each running a large
number of threads, was necessary to crawl the 20,000+
KaZaA supernodes in an acceptable amount of time.
In future work we will further exploit the crawler to
gain insight into IP and geographic information on the
sources of content.
Acknowledgments: We thank Torsten Suel of Poly-
technic University for his comments and suggestions.

REFERENCES

[1] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy
and J. Zahorjan, “Measurement, Modeling, and Analysis of a
Peer-to-Peer File-Sharing Workload,” Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP-19),
October 2003.

[2] “From Discs to Downloads,” Forrester Research, Inc.
http://www.forrester.com/Info/0,1503,353,00.html

[3] “Americans Continue to Embrace Potential of Digital Music,”
Tempo: Researching the Digital Landscape,http://www.ipsos-
na.com/dsptempo.cfm.

[4] F. Oberholzer, K. Strumpf, “P2P’s Impact on Recorded Music
Sales,” Second Workshop on Economics of Peer-to-Peer Sys-
tems, Cambridge, Massachusetts, June 2004

[5] J. Kurose, K.W. Ross, “Computer Networking: A Top-Down
Approach Featuring the Internet,” Addison-Wesley, 2005.

[6] “Overpeer,” http://www.overpeer.com
[7] “Hitting P2P Users Where It Hurts,” Wired News, Jan 13,2003,

http://www.wired.com/news/digiwood/0,1412,57112,00.html
[8] “Method of preventing reduction of sales amount of records due

to digital music file illegally distributed through communication
network,” US PATENT AND TRADEMARK OFFICE, June
27, 2002.

[9] “Method to inhibit the identification and retrieval of proprietary
media via automated search engines utilized in association with
computer compatible communications network,” US PATENT
AND TRADEMARK OFFICE, May 4, 2004.

[10] “RetSnap,” http://www.retsnap.info/
[11] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the

Gnutella network: Properties of large-scale peer-to-peer sys-
tems and implications for system design,” IEEE Internet Com-
puting Journal, vol. 6, no. 1, 2002.

[12] J. Liang, R. Kumar and K.W. Ross, “Understanding KaZaA,”
submitted, 2004

[13] “KaZaA Lite 2.10,” http://www.k-lite.tk/
[14] “ Integrity Rating,” http://www.kazaa.com/us/help/glossary/ratings.htm
[15] “Sig2dat tool for FastTrack network,”

http://www.geocities.com/vlaibb/tools.html
[16] “Audible Magic,” http://www.audiblemagic.com
[17] P. Zimmerman, “Pgp:Source Code and Internals,” MIT Press,

1995.
[18] S.D. Kamvar, M.T. Schlosser and H. Garcia-Molina, “The

EigenTrust Algorithm for Reputation Management in P2P
Networks,” Proceedings International WWW Conference, Bu-
dapest, Hungary, 2003.

[19] D. Dutta, A. Goel, R. Govindan, and H. Zhang, “The Design
of a Distributed Rating Scheme for Peer-to-Peer Systems,”
Workshop on Economics of Peer-to-Peer Systems, June 2003.

[20] S. Sen, O. Spatcheck and D. Wang, “Accurate, Scalable
In-Network Identification of P2P Traffic Using Application
Signatures,” Proceedings International WWW Conference, New
York, USA.

[21] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic Across
Large Networks,” ACM/IEEE Transactions on Networking, Vol.
12, No. 2, April 2004.

[22] K.P. Gummadi, S. Saroiu and S.D. Gribble, “A Measure-
ment Study of Peer-to-Peer File Sharing Systems,” Proceed-
ings of Multimedia Computing and Networking, January 2002
(MMCN’02), San Jose, CA, USA.

[23] S. Saroiu, S.D. Gribble and Henry M. Levy, “Measurement
and Analysis of Spyware in a University Environment,” Proceed-
ings of the First Symposium on Networked Systems Design and
Implementation (NSDI ’04), San Francisco, California, March
2004.

