
A Smart Pre-Classifier to Reduce Power Consumption of
TCAMs for Multi-dimensional Packet Classification

Yadi Ma
University of Wisconsin

Madison, WI, USA
yadi@cs.wisc.edu

Suman Banerjee
University of Wisconsin

Madison, WI, USA
suman@cs.wisc.edu

ABSTRACT

Ternary Content-Addressable Memories (TCAMs) has become the
industrial standard for high-throughput packet classification. How-
ever, one major drawback of TCAMs is their high power consump-
tion, which is becoming critical with the boom of data centers, the
growing classifiers and the deployment of IPv6. In this paper, we
propose a practical and efficient solution which introduces a smart
pre-classifier to reduce power consumption of TCAMs for multi-
dimensional packet classification. We reduce the dimension of the
problem through the pre-classifier which pre-classifies a packet on
two header fields, source and destination IP addresses. We then re-
turn to the high dimension problem where only a small portion of a
TCAM is activated and searched for a given packet. The smart pre-
classifier is built in a way such that a given packet matches at most
one entry in the pre-classifier, which make commodity TCAMs
sufficient to implement the pre-classifier. Furthermore, each rule
is stored only once in one of the TCAM blocks, which avoids
rule replication. The presented solution uses commodity TCAMs,
and the proposed algorithms are easy to implement. Our scheme
achieves a median power reduction of 91% and an average power
reduction of 88% on real and synthetic classifiers respectively.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internetworking—
Routers

Keywords

Packet classification, SmartPC, power consumption

1. INTRODUCTION
Given a set of strictly ordered rules in a classifier, the packet

classification problem is to find out the first (highest priority) rule
that matches each incoming packet at a router.

Many common packet classification techniques define rules on
multiple header fields, e.g., a 5-tuple on source and destination
IP addresses, source and destination port numbers and protocol.
Packet classification plays a significant role in many networking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$15.00.

services and functions that require network traffic (i.e. packets) to
be distinguished and isolated into different flows for suitable pro-
cessing. Examples of such services include: QoS, security, packet
filtering (e.g., deny all packets from a known source), policy rout-
ing (e.g., route all VoIP traffic over a separate network), traffic shap-
ing (e.g., ensure that no one source overloads the network), and so
on.

There are two major trends of previous work on packet clas-
sification: RAM-based algorithmic solutions and hardware-based
TCAM solutions. The most prevailing RAM-based solutions in-
clude decision-tree based schemes such as HiCuts [8], HyperCuts [19],
EffiCuts [23], et al. Algorithmic methods do not scale effectively
to high performance systems that must process tens of millions of
packets per second.

TCAMs allow simultaneous match of an incoming packet against
all the stored rules of a classifier within a single memory access
and a fixed number of clock cycles. TCAM has become the de

facto industrial standard for packet classification in high perfor-
mance routers. However, one major disadvantage of using TCAMs
is the high power consumption. The main component of power
consumptions of TCAMs is proportional to the number of searched
entries [26]. A typical 18Mbit TCAM device can consume up to
15 Watts of power when all the entries are searched. This can be
a significant power overhead for the router, switch, or other net-
working hardware that embeds them. Furthermore, as enterprises
and operators continue to seek larger and bigger classifiers, the en-
ergy footprint of these devices would continue to grow even fur-
ther. In this paper, we present a new solution for reducing the en-
ergy footprint of TCAMs when applied to the problem of multi-
dimensional packet classification by carrying out the classification
in two pipelined stages.

1.1 Our pre-classifier approach
TCAM vendors have been providing mechanisms to address and

activate smaller portions of the TCAMs, called blocks. A TCAM
block is a contiguous, fixed-sized chunk of TCAM entries, much
smaller than the size of the entire TCAM, as shown in Figure 1. If
the width of a TCAM block is 80 bits and there are 2K entries in
each block, the size of a block is 160K bits. Further suppose the 104
bit header fields of an IPv4 packet (32 bit source or destination IP
address, 16 bit source or destination port, plus 8 bit protocol) would
occupy two entries in a block. Therefore, each block can hold up to
1K rules. A large classifier of size 50K requires 50 such blocks to
store the rules. To reduce power consumption of TCAMs, we take
advantage of this mechanism to select and activate a small number
of blocks, instead of all the 50 blocks, for each packet classification.

Activating a small number of blocks is only feasible if we can
somehow ensure that the incoming packet will be correctly matched
by searching the entries stored in these active blocks. We achieve

(a) TCAM is composed of a number of blocks.
For each incoming packet, all the blocks that
are used for packet classification are activated.

(b) A TCAM block is used for pre-classifier. For
each incoming packet, the pre-classifier is con-
sulted first. Based on its result, only 3 blocks are
activated.

Figure 1: An overview of TCAM power saving.

this goal by using a pre-classifier. In particular, we construct a spe-
cific pre-classifier and shuffle the rules in the original classifier into
different blocks so that only the pre-classifier and a small number
of TCAM blocks need to be activated to classify a packet. The nov-
elty of our approach lies in finding a good way to form pre-classifier
entries so as to minimize the number of blocks activated for each
packet classification.

In Figure 1(a), we show an example TCAM composed of 25
blocks. In this example, 21 blocks are used to store the rules in a
classifier while 4 remain unused (could be used for other purposes,
e.g., IP lookups for packet forwarding). All the 21 blocks that are
used to store the original classifier need to be activated for every
packet classification. In our modified system, shown in Figure 1(b),
one block is used to store pre-classifier entries 1. The pre-classifier,
in this example, requires only three other blocks be activated for
correctly matching the incoming packet. This achieves a power
reduction of (21 − 4)/21 ∗ 100% = 81%. For a 18Mbit TCAM,
this approach could bring down its power consumption from 15
Watts to less than 3 Watts.

Our proposed pre-classifier is motivated by previous work [8, 7,
19, 9] which suggest that although large classifiers could contain
hundreds of thousands of rules, for any individual packet there are
usually a small number of “intercepting” rules — rules that match
the given packet. (Note that different packets can have completely
different intercepting rules and hence it is possible a large frac-
tion of the rules are actually compared to classify a large number
of packets.) The power consumption could be reduced if we can
somehow shuffle the rules in a classifier into TCAM blocks, such
that for each incoming packet, only a subset of blocks that contain
all the rules intercepting with the packet are searched.

In this paper we create this pre-classifier by reducing the dimen-
sionality of the problem. Instead of the typical 5-dimensional rules,

1This figure shows one way of implementing a pre-classifier. In
practice, a pre-classifier could also be implemented in software, as
discussed later in Section 4.

we construct the pre-classifier by creating rules in two dimensions
only: the source and destination IP address ranges. This choice pro-
vides an adequate reduction in storage requirements, yet provides
adequate ability to classify packets. In fact, the results of the pre-
classifier ensure that the packet can then be correctly classified by
comparing against only a few other TCAM blocks (which contain
suitably shuffled rules). We present a detailed analysis to explain
the efficacy of this choice of two dimensions in Section 3.

Finally, this design and use of the pre-classifier is made possible
by new features of TCAMs, which support turning on and off a
specific subset of blocks. The time and overheads of turning on and
off such blocks is negligible. Furthermore, such hardware supports
multiple searches in parallel, e.g., Cisco’s TCAM4 which allows
four parallel searches [3].

The notion of using multiple stages to implement packet clas-
sification techniques is not entirely new. Two of the most related
examples of this approach for TCAMs are CoolCAMs [26], and
packet classification using extended TCAMs [20]. Our work dif-
fers from such prior approaches in the specific algorithmic tech-
niques in creating pre-classifiers, and our approach is very deploy-
able with current TCAMs for the problem of packet classification.
For instance, CoolCAMs[26] was designed for the problem of IP
lookups, in which classification is performed in a single dimen-
sion — destination IP address. Their proposed hash-based and trie-
based approaches for solving this one dimensional problem do not
extend to the multi-dimensional packet classification problem that
we are addressing, and required new algorithmic considerations.
Similarly, extended TCAMs assumes a new type of ternary match
hardware that are not available in current commodity TCAMs. The
specifics of our multi-dimensional packet classification problem
and the specific restrictions of commodity TCAMs make our so-
lution uniquely applicable to this important problem domain.

1.2 Summary of our contributions
In this paper, we propose a Smart Pre-Classifier to reduce power

consumption of TCAMs for packet classification (SmartPC). With
SmartPC, the actual packet classification occurs in two stages: first
a given packet is classified by a pre-classifier which provides in-
formation on which TCAM block needs to be activated in the next
stage; in the second stage, the block from first stage plus a few
general blocks are activated and searched in parallel for a match
for the packet. SmartPC can typically bring down the TCAM’s
power consumption from 15 Watts to less than 3 Watts. The two-
dimensional pre-classifier contains non-overlapping entries, which
are formed by combining and expanding rules in the original clas-
sifier. The rules in the original classifier are thus reorganized into
TCAM blocks so that the rules covered by an entry in the pre-
classifier are stored in the same TCAM block. Those rules that do
not fit in a block are marked as general rules and stored in general
blocks.

We present a detailed design of SmartPC and evaluate it on a
large amount of real classifiers from ISPs and synthetic classifiers
generated by ClassBench [21]. The experimental results suggest
huge power reductions on both real and synthetic classifiers. With
block size 128, SmartPC achieves a median of 91% and an aver-
age of 88% power reductions on these classifiers with the highest
reduction reaching 98%.

2. BACKGROUND

2.1 Problem statement of packet classification
Packet classification is performed using a packet classifier, also

called a policy database, flow classifier, or simply a classifier. A

Table 1: A simple example with 8 rules on 5 fields

Rule F1 F2 F3 F4 F5 Action

R0 000* 111* 10 * UDP action0

R1 000* 10* 01 10 TCP action1

R2 000* 01* * 11 TCP action0

R3 0* 1* * 01 UDP action2

R4 0* 0* 10 * UDP action1

R5 000* 0* * 01 UDP action1

R6 * * * * UDP action3

R7 * * * * TCP action4

classifier is a collection of rules or policies. Given a set of strictly
ordered rules in a classifier, the packet classification problem is
to find out the first rule that matches each incoming packet at a
router. Each rule is associated with an action. After classification,
the corresponding action will be performed on each packet.

Suppose a classifier at a router contains a set of N rules, and
each rule contains K fields. We consider the case where K = 5.
The five fields are source IP address, destination IP address, source
port, destination port and protocol type, respectively (shown as F1

through F5 in Table 1). There are three types of matches that a field
can have: prefix match (source or destination IP address), exact
match (protocol type), or range match (source or destination port).

Table 1 shows a simple example with eight rules on five fields. In
a prefix match, the rule field should be a prefix of the header field.
Suppose header field 2 of a packet is 1010. In Table 1, it matches
the second field, F2, of rule R1. In exact match, the header field of
a packet should match the rule field exactly. For example, protocol
type could be TCP or UDP. In a range match, the header value
should lie in the range specified by the rule. If each of the header
fields of a packet P matches each of the corresponding fields in a
rule R, the packet P is said to match rule R. If P matches multiple
rules, the first rule (with the minimum index) is returned.

2.2 Geometric view of packet classification
We can view a 32-bit prefix like 001* as a range of addresses

from 0010 · · · 00 to 0011 · · · 11 on the number line from 0 to 232. If
prefixes can be viewed as line segments geometrically, two-dimensional
rules correspond to rectangles, three-dimensional rules to cubes,
and so on. A given packet header is a point. The problem of
packet classification reduces to finding the highest-priority multi-
dimensional region that contains a given point. This is a classic
problem in computational geometry, named point location prob-
lem. The point location problem is defined as follows: given a par-
tition of K-dimensional space into N disjoint regions, determine
the region where a query point lies. Numerous results have been
reported in the literature [10, 6], most of which deal with the case
of non-overlapping regions or specific arrangement of hyperplanes
or hypersurfaces of bounded degree.

2.3 Basics of TCAMs
Ternary Content Addressable Memories (TCAMs) are fully as-

sociative memories that allow three matching states, "0", "1" or
"X"(wildcard). A "X" state matches both 0s and 1s in the corre-
sponding input bit. This feature makes TCAMs particularly attrac-
tive for packet classification and route lookup applications which
require longest prefix matches.

The rules are stored in the TCAM array in the order of decreas-
ing priority. Given a packet header to classify, the TCAM performs
a comparison against all of its entries in parallel, and a priority en-
coder selects the first matching rule. TCAMs allow simultaneous
match of a packet against a large number of rules within a single
memory access, while conventional trie-based designs may require

multiple memory accesses for a single packet. Therefore, TCAMs
are very popular for designing high-throughput packet classifica-
tion solutions. However, TCAMs do suffer from some deficiencies
such as high power consumption and so on.

3. PROPERTIES OF REAL CLASSIFIERS
A number of previous work have mentioned important proper-

ties of real classifier [8, 7, 19, 9]. However, these studies are based
on a very small number of classifiers (e.g., in [9], the authors ana-
lyzed four ACLs), which may not represent the wide range of real
classifiers.

We performed an analysis of more than 200 real classifiers rang-
ing in size from 3 to 15,181. These classifiers were provided to
us by a large networking vendor and these are sample classifiers
they use for testing their own classification systems. However, the
specifics of the classifier are under an NDA and unfortunately can-
not be released.

Rule overlapping.
A classifier could contain a large amount of rules, but the num-

ber of rules intercepting with a given packet is usually significantly
smaller than the theoretical upper bound [8, 7, 19, 9]. Even though
only a small number of rules are intercepting with a packet, all the
multi-dimensional rules stored in a TCAM need to be searched,
which leads to high power consumption. It is reasonable to reduce
the dimension for the purpose of power efficiency. Since source and
destination addresses are more specific than the other three header
fields, we consider these two dimensions as candidates. Therefore
we are more interested in what is the maximum number of source
and destination IP prefix pairs that need to be searched for any in-
coming packet.

This question is equivalent to the following geometry problem:
given a set of axis-aligned rectangles, where each rectangle repre-
sents a two-dimensional rule with a range of values in each dimen-
sion, what is the maximum number of rectangles that overlap at
any point? We employ a line sweep algorithm [22] in which a ver-
tical sweep line moves from left to right. When it crosses the left
edge of a rectangle, the rectangle is added to an active set. When it
crosses the right edge, the rectangle is removed from the active set.
In the inner loop, a horizontal sweep line moves top-down. When it
crosses the upper or lower horizontal edge of a rectangle in the ac-
tive set, we increment or decrement a counter that says how many
rectangles overlap at the current point. The maximum value of the
counter is the number we are looking for.

We run this line sweep algorithm on the classifiers and the re-
sults are shown in Figure 2(a), where x-axis represents classifier
size, and y-axis shows the maximum number of overlapping rules
in the two-dimensional space (i.e., source and destination IP ad-
dresses). Similarly, we plot the number of rules that contain wild-
cards in the two dimensions as shown in Figure 2(b). The wildcard
rules match any packet and intercept with any other rules in the
two-dimensional space, therefore, they form a subset of the set of
maximum overlapping rules.

From the plots, we observed that:

• In the two-dimensional space, the maximum number of over-
lapping rules and the number of wildcard rules of a classifier
is an order of magnitude smaller than the classifier size.

Based on these properties, in Section 4, we build a two-dimensional
pre-classifier and design an efficient classification algorithm to re-
duce the power consumption of TCAMs.

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

M
ax

im
u
m

 o
v
er

la
p
s

Classifier size

(a) Maximum number of overlapping
rules in the two-dimensional space

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
u
m

b
er

 o
f

w
il

d
ca

rd
s

Classifier size

(b) Number of wildcard rules in the two-
dimensional space

Figure 2: Properties of real classifiers (both axes are in log

scale)

4. DESIGN
To reduce the power consumption of TCAMs, we propose SmartPC,

in which we pre-process a classifier and shuffle its rules into blocks
in a TCAM, so that only a few TCAM blocks, instead of all the
blocks that are used to store the classifier, will be searched to find
the desired matching rule for any given packet.

SmartPC reduces the complex multi-dimensional packet clas-
sification problem to a much simpler problem by introducing a
pre-classifier which classifies each incoming packet on two header
fields, source and destination IP addresses. Hereafter, we use “rules”
to refer to five-dimensional rules in the original classifier, and “en-
tries” to refer to two-dimensional entries in the pre-classifier. The
rules are shuffled into TCAM blocks such that each pre-classifier
entry covers a number of rules in one of the blocks. Note that when
rules are shuffled to TCAM blocks, the relative order of the rules is
preserved in each TCAM block, since commodity TCAMs select
the match from the first (highest priority) rule.

4.1 Design overview
SmartPC is motivated by our large-scale analysis of real classi-

fiers as shown in Section 3, from which we observe that in a clas-
sifier, the maximum number of source-destination pairs matching a
given packet is much smaller than the size of the classifier.

The main idea behind our work is that we group source-destination
pairs in a classifier into clusters based on their locations in the two-
dimensional space. The two-dimensional space is thus divided by
non-overlapping rectangles of different sizes. Each rectangle cov-

ers a cluster of rules and represents an entry in the pre-classifier for
the classifier, as discussed in Section 4.2.

Given the ranges of the source and destination IP addresses of a
pre-classifier entry p,

p = {[slp, shp], [dlp, dhp]}

and the ranges of the two header fields of a rule r,

r = {[slr, shr], [dlr, dhr]}

we say p covers r if slp ≤ slr ≤ shr ≤ shp and dlp ≤ dlr ≤
dhr ≤ dhp, where sl, sh represent lower and upper bound of
source address, and dl and dh stand for lower and upper bound
of destination address.

We then shuffle the rules in the classifier such that each pre-
classifier entry is associated with a TCAM block, named specific

block, which contains up to a block size of rules that intercept with
the entry in the two-dimensional space. If the number of rules that
intercept with the pre-classifier entry is larger than one block size,
the extra rules are stored in TCAM blocks named general blocks.
When classifying a packet, the pre-classifier is first consulted. If
a match is found in the pre-classifier, then its associated specific
block plus the general blocks are activated and searched in paral-
lel for the final result; otherwise, if no match is found in the pre-
classifier, only the general blocks are searched.

We propose a classification system for SmartPC as shown in Fig-
ure 3. The classification process of a packet occurs in the following
steps:

• Each incoming packet is first matched against Index TCAM,
which contains pre-classifier entries. The Index TCAM in-
dexes into an associated Index SRAM, which contains the
ID of the specific TCAM block. This block will be searched
in the second stage lookup.

• In the second stage, only the specific block found in the first
stage, if any, together with general blocks are activated and
involved in two parallel searches.

• Finally the matches from the specific block and general blocks
are resolved by priority, and the action of the higher priority
match is returned as the final result.

The above steps can be pipelined to maintain the same operating
frequency as commodity TCAMs. It is worth noting that although
latency grows slightly due to pipelining, throughput remains un-
changed. Throughput is the main metric of interest.

4.2 Construction of a pre-classifier
In SmartPC, we propose the concept of pre-classifier, which

is motivated by Storm [14], where sampled incoming traffic (i.e.,
packets) are expanded and combined to form evolving rules which
are stored in a rule cache. Those evolving rules are updated over
time and are used as popular rules to classify incoming packets. In
SmartPC, we adapt the idea of expanding rule, while we expand
and combine original rules in a classifier to construct entries in the
proposed pre-classifier. Our approach is not dependent on traffic
pattern and the process only occurs once for each classifier 2. Al-
though this insight about expanding and combining rules is derived
out of Storm, it is worth noting that SmartPC employs an intelligent
pre-classifier to cluster overlapping rules while Storm is focusing
on a multi-core approach.

How to build an effective and efficient pre-classifier is of cru-
cial importance. In SmartPC, each entry in a pre-classifier is con-
structed by expanding and combining the rectangles formed by
source and destination fields of the rules in the original classifier.
The rules in the classifier are reorganized, with each pre-classifier
entry pointing to a TCAM block that contains all the rules covered
by the corresponding pre-classifier entry. The number of original

2The pre-classifier does not change over time unless the rules in the
classifier change.

Figure 3: Packet classification system for SmartPC.

rules covered by a pre-classifier entry is restricted to be less than a
pre-defined parameter, named block size in SmartPC. If the inclu-
sion of a rule causes the number of rules covered by a pre-classifier
entry to exceed the block size, the rule will be marked as general 3.
All the rules marked as general are stored in general blocks, which
will be searched in parallel with the specific block associated with
the matching pre-classifier entry, if there is any, for each incoming
packet.

Our experimental results show that usually only a small portion
of rules in a classifier are marked as general (e.g., the fraction of
general rules ranges from 0 to around 20% for all the classifiers we
evaluated), therefore the number of general blocks will be much
smaller than the total number of TCAM blocks used to store the
whole classifier.

Example on how to build a pre-classifier.
Table 2 shows a five-dimensional classifier containing 14 rules.

The source and destination addresses are in the format of address/prefix-
length. Figure 4(a) is a graphical representation of the source and
destination address fields of this classifier, where x-axis and y-axis
represent destination address and source address, respectively.

Figure 4 demonstrates the process of building a pre-classifier for
the given classifier, assuming a block size of 5 (note that real block
size could be much larger, and this small number is for demon-
stration purposes only). Initially there is no existing pre-classifier
entry, thus rule 0 becomes the first pre-classifier entry P0 as shown
in Figure 4(a). Then we try to expand P0 to cover other rules. In
Figure 4(b), P0 is expanded to cover rule 1. Since rule 5 intercepts
with the expanded pre-classifier entry P0, we keep expanding P0
to cover rule 5 as shown in Figure 4(c). Rule 6 lies inside P0. Ex-
pansion of P0 to cover rule 7 fails, since the expanded P0 would
cover more than 5 rules. Therefore 7 is marked as general and
will be stored in general blocks. Rule 8 lies inside P0, thus so far
P0 = {0, 1, 5, 6, 8}. The size of P0 reaches block size. Other
intercepting rules 11, 12 and 13 are also marked as general.

We continue to form new pre-classifier entries. Rule 2 forms a
new pre-classifier entry P1. Similarly, P1 is expanded to cover
rules 3, 4, 9 and 10. Thus P1 = {2, 3, 4, 9, 10} as shown in Fig-
ure 4(d).

Heuristic algorithm.
We present the pseudo code on how to build a pre-classifier in

Algorithm 1.
The inputs to the algorithm include a classifier C, and an empty

pre-classifier P . The properties isDone and isGeneral of each rule
in the classifier are initialized to false, where isDone indicates whether

3Though a rule with more wildcards (or shorter prefix lengths on
source and destination addresses) is more likely to be marked as
general, rules that are marked as general are not necessarily the
rules with more wildcards.

the rule is already covered by a pre-classifier entry, and isGeneral
indicates whether it is marked as a general rule. The size property
of each pre-classifier entry is updated to show the current num-
ber of rules covered by the pre-classifier entry. When this number
reaches BLOCK-SIZE, which is the pre-defined TCAM block size,
the pre-classifier entry can not be expanded any further.

In the outer loop of the algorithm, each rule in the classifier is
processed to form or expand a pre-classifier entry. In the inner loop,
the existing pre-classifier entries are checked one by one, until a
pre-classifier entry is found which can be expanded to include the
current rule without exceeding BLOCK-SIZE. If none is found at
the end of the inner loop, and the rule is not marked as general,
this rule forms a new pre-classifier entry by itself, which may be
expanded later.

Algorithm 1 BuildPreClassifier()

1: for each rule i in C do

2: success = false
3: if (i.isDone) || (i.isGeneral) then
4: continue
5: end if

6: for each pre-classifier entry j in P do

7: if (j.size = BLOCK-SIZE) then
8: continue
9: end if

10: expandedEntry = j
11: if ExpandPreEntry(i, j, expandedEntry) then
12: success = true
13: j = expandedEntry
14: for each rule k in C do

15: if k is covered by j then
16: k.isDone = true
17: end if

18: end for

19: break {j is successfully expanded to cover i}
20: end if

21: if i.isGeneral then
22: break
23: end if

24: end for

25: if ((!success) && (!i.isGeneral)) then
26: a new pre entry k = i{no existing pre entry can be ex-

panded and i does not intercept with any existing pre-
entry}

27: k.size = 1
28: end if

29: end for

Algorithm 1 calls ExpandPreEntry, shown as Algorithm 2, in
which a rule is marked as general if it intercepts with the current
pre-classifier entry but the inclusion of the rule causes the size of

Table 2: A classifier which contains 14 rules
Rule# Src_addr Dst_addr Src_port Dst_port protocol

0 228.128.0.0/9 0.0.0.0/0 0 : 65535 0 : 65535 0x01
1 223.0.0.0/9 0.0.0.0/0 0 : 65535 0 : 65535 0x06
2 0.0.0.0/1 175.0.0.0/8 0 : 65535 0 : 65535 0x06
3 0.0.0.0/1 225.0.0.0/8 0 : 65535 0 : 65535 0x01
4 0.0.0.0/1 225.0.0.0/8 0 : 65535 0 : 65535 0x06
5 128.0.0.0/1 123.0.0.0/8 0 : 65535 0 : 65535 0x06
6 128.0.0.0/1 37.0.0.0/8 0 : 65535 0 : 65535 0x06
7 0.0.0.0/0 123.0.0.0/8 0 : 65535 0 : 65535 0x06
8 178.0.0.0/7 0.0.0.0/1 0 : 65535 0 : 65535 0x06
9 0.0.0.0/1 172.0.0.0/7 0 : 65535 0 : 65535 0x06
10 0.0.0.0/1 226.0.0.0/7 0 : 65535 0 : 65535 0x06
11 128.0.0.0/1 120.0.0.0/7 0 : 65535 0 : 65535 0x01
12 128.0.0.0/1 120.0.0.0/7 0 : 65535 0 : 65535 0x06
13 128.0.0.0/1 38.0.0.0/7 0 : 65535 0 : 65535 0x06

the entry to exceed BLOCK-SIZE, or it causes entries in the pre-
classifier to be overlapping, or it results in conflicts with other rules.
This algorithm keeps expanding a pre-classifier entry to cover non-
general rules intercepting with it until its size reaches BLOCK-
SIZE, or all the intercepting rules in this round are included. This
function returns true if the expansion succeeds, and false otherwise.

Algorithm 2 ExpandPreEntry(i, j, expandedEntry)

1: tmp = expandedEntry
2: expandedEntry = new entry formed by expanding j to cover i
3: expandedEntry.size += 1
4: if expandedEntry.size > BLOCK-SIZE then

5: i.isGeneral = true
6: expandedEntry = tmp
7: return false {fail to expand}
8: end if

9: if expandedEntry overlaps with other pre entries || RuleCon-
flict(expandedEntry) then

10: if i intercepts with j then
11: i.isGeneral = true
12: end if

13: expandedEntry = tmp
14: return false {fail to expand}
15: end if

16: return true {succeed to expand}

Algorithm 2 and Algorithm 3 calls each other recursively. Al-
gorithm 3 checks all the non-general rules in classifier C that are
intercepting with expandedEntry for conflicts. It returns true if a
conflict is found or BLOCK-SIZE is exceeded; otherwise, it returns
false.

When Algorithm 1 terminates, a list of pre-classifier entries are
formed, and those rules that are not covered by the pre-classifier
are marked as general. These general rules are stored in general
TCAM blocks. All the rules covered by a pre-classifier entry are
stored in the same TCAM block, with their orders in the original
classifier preserved. In spite of this, the rules covered by other
entries can also be stored in the same TCAM block if they can fit in
the block. This is because the rules covered by different entries will
not overlap. We only need to separate the blocks that store general
rules from other blocks. It is a bin-packing problem to minimize
the number of TCAM blocks when organizing the rules covered
by pre-classifier entries into TCAM blocks. Simple and efficient
heuristics such as best-fit decreasing and first-fit decreasing could
be used to solve the problem.

Algorithm 3 RuleConflict(expandedEntry)

1: for each rule k in C do

2: if k.isGeneral || k is already covered || k does not intercept
with expandedEntry then

3: continue
4: end if

5: if k lies inside expandedEntry then

6: expandedEntry.size += 1
7: if expandedEntry.size > BLOCK-SIZE then

8: return true
9: end if

10: else if k intercepts with expandedEntry then

11: tmp = expandedEntry
12: if ExpandPreEntry(k, j, expandedEntry) then
13: break {succeed}
14: else

15: expandedEntry = tmp
16: end if

17: end if

18: end for

19: return false {no conflict}

Algorithm analysis.
Our goal is to build a pre-classifier which minimizes the num-

ber of general rules. However, an optimal solution is hard to find.
Though our proposed heuristic algorithm may not be optimal, it is
proved to be effective and efficient, achieving a median power re-
duction of 91% on real classifiers. Smarter heuristics might exist
(and the slack in our experiments is obviously upper bounded by
around 9%).

In the worst case, all the rules are overlapping in the 2-dimensional
space and all are marked general, resulting in no power reduction.
As expected, this is not common in practice since the maximum
number of overlapping rules is an order of magnitude smaller than
classifier size (see Section 3).

4.3 Packet classification with SmartPC
When a packet as shown in Figure 4(a) arrives, the pre-classifier

entries P0 and P1 are consulted first, and a matching entry P0 is
found. Figure 3 shows the whole process of the classification. The
TCAM block pointed to by P0, which contains rules (0, 1, 5, 6, 8),
together with the general TCAM block are activated and searched
in parallel. Finally, the priorities of two matches, rule 1 and 7, are
compared, and the action of the higher priority rule 1, “accept”, is
returned as the final classification decision for the packet.

(a) Rule 0 in the classifier forms the first
pre-classifier entry P0.

(b) Expand P0 to cover rule 1.

(c) Rule 5 intercepts with P0, expand P0
to cover 5. P0={0,1,5,6,8}.

(d) The second pre-classifier entry
P1={2,3,4,9,10}.

Figure 4: An example on how to build pre-classifier (assume

block size = 5). Two pre-classifier entries are formed and four

rules (7, 11, 12, 13) are marked as general.

4.4 Properties of pre-classifiers
We build an intelligent pre-classifier that satisfies the following

properties for the purpose of simplicity and power-efficiency. Note
that pre-classifier entries do not necessarily cover the whole two-
dimensional space.

Entries in a pre-classifier are non-overlapping. This property
guarantees that any incoming packet matches at most one entry in
the pre-classifier. If the pre-classifier is implemented in TCAM,
there is no need to consider the priorities of pre-classifier entries.
While if pre-classifier entries are allowed to overlap, the situation
becomes complicated when a given packet matches multiple entries
in the pre-classifier, since we need to decide which entry has higher
priority. In addition, this property provides more flexibility to the
implementation of a pre-classifier as discussed below.

Each rule in a classifier is either covered by only one pre-

classifier entry, or marked as general. In other words, each rule
is associated with no more than one pre-classifier entry. This prop-
erty ensures that rules in a classifier are not replicated in TCAM
blocks, i.e., each rule is stored only once in one of the blocks.
Therefore, our approach is storage-efficient. The only extra stor-
age in SmartPC is the storage used for storing the entries in a pre-
classifier.

4.5 Implementation of a pre-classifier
Considering the properties of pre-classifiers, there are a number

of approaches to implement a pre-classifier.
For the special case of two-dimensional non-overlapping rectan-

gles (which is the case in our proposed pre-classifier), a number
of geometric solutions have been reported with logarithmic time
complexity and near-linear space complexity [10, 6]. However, ge-
ometric approaches are not efficient enough for pre-classifiers. For
the special case of pre-classifiers on just two header fields, Grid of
Tries [24] is an efficient algorithmic solution.

TCAM is another alternative where a pre-classifier is stored in
TCAM block(s). Our experimental results suggest that a pre-classifier
usually contains a small number of entries which can fit in one or
a few TCAM blocks. Plus TCAMs are much faster than SRAMs
(used in geometric and algorithmic solutions). Though geomet-
ric and algorithmic solutions may incur lower power consumption
than TCAM-based methods, we decide to store pre-classifiers in
TCAMs.

4.6 Rule update
Rule update overhead of SmartPC is generally less than that of

regular TCAMs. In SmartPC, the ordering of TCAM entries is
kept within one specific block or within a small number of general
blocks when rules are added or deleted, while with regular TCAMs,
the ordering of TCAM entries has to be kept throughout all the
blocks.

To add a rule, the simplest approach is to insert the rule into
the general blocks 4. We can rerun our algorithms and construct
from scratch if the number of general blocks exceeds some pre-
defined number. A slightly sophisticated approach could be that if
the rule is covered by a pre-classifier entry (i.e., the pre-classifier
entry matches the rule), and the specific block associated with this
pre-classifier entry is not full, the rule is stored into the specific
block; otherwise, the rule can be simply inserted into the gen-
eral blocks. Depending on rule add/delete frequencies, we may
leave some holes in each block (e.g., by under loading the blocks
when constructing pre-classifiers) to reduce the overhead of mov-
ing rules.

To delete a rule, the block that stores the rule is first found and
the rule is deleted. Only when the deletion of the rule changes the
ranges of the corresponding pre-classifier entry, the pre-classifier
entry is updated.

4Please note that the ordering of rules (i.e. rule priorities) must be
kept when inserting rules into blocks.

Table 3: Summary of real classifiers

Name Size MaxOverlaps Wildcard

R1 5233 49 18
R2 5626 63 32
R3 5874 98 48
R4 6339 47 16
R5 7356 38 5
R6 8063 64 35
R7 8475 31 4
R8 10054 1 0
R9 11574 334 271
R10 15181 177 143

An update operation can be considered as a delete operation fol-
lowed by an add operation, as described above.

In summary, only one specific block or a few general blocks
plus at most one pre-classifier entry need to be modified for each
rule add/delete, while regular TCAMs may have to modify all the
blocks.

5. EXPERIMENTAL RESULTS
We start this section with an overview of our experimental method-

ology. We then evaluate the power reduction of our scheme on real
classifiers and synthetic classifiers as well. We also look into the
performance of pre-classifiers.

5.1 Experimental methodology
We evaluate the performance of SmartPC using a number of real

classifiers and synthetic classifiers generated by ClassBench [21].
As we discussed in Section 3, the real classifiers were provided to
us by a large networking vendor and the specifics of the classifier
are under an NDA and unfortunately cannot be released. So we are
presenting some statistics in Table 3.

Since the power consumption problem is more critical for large
classifiers, we only show results from 10 real classifiers with more
than 5,000 rules. The largest real classifier we have access to has
a size of 15,181. Larger real classifiers are hard to find since ISPs
or CAM venders do not release their classifiers. Therefore, we also
show results on synthetic classifiers of sizes 50,000 and 100,000.
Even larger synthetic classifiers show similar trend and the results
are not shown in the paper. Though our focus is on large classi-
fiers, we also evaluated the performance of small real classifiers.
SmartPC could achieve significant power reductions on these clas-
sifiers as well.

An important parameter is TCAM block size, which is usually
dependent on hardware design. In this paper, we show results with
different block sizes, to demonstrate how the performance of our
scheme is affected by block sizes. This work might aid TCAM
designers in choosing the right block size.

Table 3 summarizes the properties of the real classifiers used in
the evaluations. In this table, we show the size of each classifier, the
maximum number of overlapping rules in two dimensions: source
and destination IP addresses, and the number of rules that are wild-
card(covers the whole space) on the two dimensions (as discussed
in Section 3). These wildcard rules need to be searched for every
packet classification and will be marked as general. MaxOverlaps
indicates the maximum number of rules that need to be searched for
a given packet. This number gives us a rough estimation of block
size. As seen here, MaxOverlaps of most classifiers are smaller
than 128, and all of them are smaller than 512. We evaluated real
classifiers with six different block sizes, 32, 64, 128, 256, 512 and
1024, respectively.

Table 4: Summary of synthetic classifiers

Name Size MaxOverlaps Wildcard

S1 9802 22 4
S2 9416 126 57
S3 9497 76 18
S4 9624 82 12
S5 7255 28 0
S6 99823 27 5
S7 87039 249 79
S8 99836 89 47
S9 99866 81 38
S10 99220 10 0

Similarly, we summarize the properties of ten synthetic classi-
fiers in Table 4. We generate these classifiers using ClassBench by
setting rule size parameters to 10k and 100k and using five differ-
ent classifier seeds. The properties MaxOverlaps and Wildcard are
similar to those of real classifiers.

To evaluate our scheme, we use power reduction as the main
metric, since the goal of this work is to reduce power consumptions
of TCAMs. As mentioned in Section 1, the main component of
power consumptions of TCAMs is proportional to the number of
searched entries [26]. Therefore, we employ a simple linear power
model to estimate the power reductions, though the real reductions
may be slightly different. Suppose a classifier contains N rules,
and TCAM block size is B. In the default scheme without using
SmartPC, all the TCAM blocks that are used to store the classifier,
defined as X , must be searched for any packet classification, where
X = ⌈N/B⌉.

To classify a packet using SmartPC, the pre-classifier, and at
most one specific TCAM block plus general TCAM blocks are ac-
tivated. The power consumption of pre-classifiers depends on how
pre-classifiers are implemented. Here we assume pre-classifier en-
tries are stored in TCAM blocks, and we count its power consump-
tion as well. Suppose G out of N rules are marked as general,
and P pre-classifier entries are formed. With SmartPC, at most
Y = ⌈P/B⌉ + 1 + ⌈G/B⌉ blocks must be activated for each
packet classification. Therefore, the percentage of power reduction
with SmartPC is X−Y

X
× 100%. We use this definition to evaluate

power reductions of SmartPC.

5.2 Power reductions
We evaluate the percentage of power reductions on real and syn-

thetic classifiers by SmartPC. We first evaluate how block sizes af-
fect the power reductions on all the classifiers. We evaluate these
classifiers using five different block sizes, 32, 64, 128, 256, 512,
and 1024, respectively. We plot the power reductions in Figure 5,
where x-axis represents block size and y-axis shows the percentage
of power reductions.

As shown in Figure 5(a), regardless of classifier sizes, our scheme
achieves huge power reductions on real classifiers, ranging from
78% to 97%. We further observe that the power reduction of each
classifier fluctuates with block sizes. For most classifiers, the max-
imum power reduction occurs at block sizes 64, 128 and 256. With
block size 128, the average and median power reductions are 92%
and 87%, respectively.

Similarly, we evaluate the percentage of power reductions on
synthetic classifiers. As shown in Figure 5(b), SmartPC also achieves
huge power reductions on synthetic classifiers. For every classifier
and block size combination, the power reduction is more than 60%,
with the highest reduction reaching 98%. With block size 128, the
average and median power reductions are 91% and 88%, respec-
tively. It is worth noting that power reductions on the five larger

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

P
o
w

er
 r

ed
u
ct

io
n
 (

%
)

Block size (log scale)

R1
R2
R3
R4
R5
R6
R7
R8
R9

R10

(a) Real classifiers

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

P
o
w

er
 r

ed
u
ct

io
n
 (

%
)

Block size (log scale)

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

(b) Synthetic classifiers

Figure 5: The percentage of power reductions (note that y-axis starts at 40).

Table 5: Number of general rules and pre-classifier entries for

real classifiers with block sizes 64, 128 and 256.

Name
general rules # pre entries

64 128 256 64 128 256

R1 85 101 159 101 50 25
R2 146 146 146 103 52 28
R3 824 520 302 103 55 29
R4 62 62 62 103 52 27
R5 11 11 11 123 62 31
R6 1513 1462 516 108 53 35
R7 11 11 11 179 88 48
R8 0 0 0 234 120 58
R9 2055 1004 1792 224 131 62
R10 2799 2479 2380 304 169 86

classifiers (S6 through S10) are bigger than those on the smaller
ones.

By comparing Figure 5(a) and Figure 5(b), we find that the five
10K synthetic classifiers (S1 through S5) present similar trend of
power reductions as the real classifiers (R1 through R10). How-
ever, the five 100k classifiers (S6 through S10) show bigger power
reductions, as they appear in the upper part in Figure 5(b). This
suggests that SmartPC achieves more power reductions for larger
classifiers. The intuition behind this is that the number of inter-
cepting rules with a given packet and the number of wildcard rules
in the two-dimensional space do not increase proportionally with
classifier size (as discussed in Section 3). Consequently, the num-
ber of pre-classifier entries and general blocks do not scale as well.
According to the definition of the percentage of power reduction
(X−Y

X
×100%), in the case of larger classifiers, Y does not increase

proportionally with X . Therefore, SmartPC usually achieves more
power reductions on larger classifiers.

To further understand the behaviors of our proposed algorithms
for building pre-classifiers, we summarize the number of general
rules, and the number of pre-classifier entries of real classifiers and
synthetic classifiers, as shown in Table 5 and Table 6, for block
sizes 64, 128, and 256 respectively.

We make the following observations from these tables:

• With the increase of block size, there is a general trend of
non-increasing number of general rules. This is because that
with smaller block sizes, rules have bigger chances to be
marked as general, while with larger block sizes pre-classifier
entries are more likely to be expanded successfully to cover
more rules.

• With the increase of block size, the pre-classifier sizes de-

Table 6: Number of general rules and pre-classifier entries for

synthetic classifiers with block sizes 64, 128 and 256.

Name
general rules # pre entries

64 128 256 64 128 256

S1 203 130 91 252 129 64
S2 2075 2030 1903 223 110 54
S3 1971 1931 1877 178 90 42
S4 2028 1776 1530 179 88 45
S5 119 73 67 167 97 48
S6 344 316 290 2855 1561 824
S7 5810 5490 4883 2302 1153 593
S8 11509 11191 11318 3147 1604 861
S9 9401 8699 9198 3091 1573 819

S10 787 558 379 3286 1748 866

crease, since the number of entries in a pre-classifier is roughly
proportional to N/B.

• The number of general rules and pre-classifier entries are
much smaller than the size of a classifier. Therefore, SmartPC
can achieve huge savings in power consumptions since only
the pre-classifier, general rules and a block of specific rules
will be activated.

5.3 Storage overhead
In SmartPC, we need extra storage to store pre-classifier entries.

Pre-classifier entries are two-dimensional on source and destination
addresses, so each pre-classifier entry occupies 64 bits, while each
five-dimensional rule occupies 104 bits. We show the percentage
of pre-classifier size compared to the size of a whole classifier on
real and synthetic classifiers in Figure 6. For example, R1 contains
5233 rules. With block size 128, there are 50 pre-classifier entries
for R1. Therefore, we calculated the percentage of storage over-
head as 50×64

5233×104
×100 = 0.59%. Though the actual extra storage

depends on TCAM specifications (e.g., width of TCAM, and etc),
the numbers shown in Figure 6 provide an estimation of the stor-
age overhead of pre-classifiers. As we can see, the percentage of
extra storage decreases as block size increases, since the number
of pre-classifier entries is proportional to N/B. We observe that
the overhead is pretty small, less than 4% for every classifier. More
than 80% of power reductions on the classifiers justify these storage
overhead.

SmartPC may introduce holes in blocks, since some blocks may
not be full. As discussed in Section 4.2, classifier rules associ-
ated with multiple pre-classifier entries can be stored into the same
TCAM block as long as the block can fit them. We implemented a

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000 10000

F
ra

ct
io

n
 o

f
st

o
ra

g
e

o
v
er

h
ea

d
 (

%
)

Block size (log scale)

R1
R2
R3
R4
R5
R6
R7
R8
R9

R10

(a) Real classifiers

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 100 1000 10000

F
ra

ct
io

n
 o

f
st

o
ra

g
e

o
v
er

h
ea

d
 (

%
)

Block size (log scale)

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

(b) Synthetic classifiers

Figure 6: The storage overhead of SmartPC.

variant of first-fit algorithm to minimize the number of blocks used
and found no significant increase of blocks. Considering regular
TCAMs also leave holes in blocks to reduce overhead of rule inser-
tions, we only focus on the extra storage incurred by pre-classifiers.

5.4 Comparison of SmartPCwith naive-divide
To prove that the huge power reductions come from the intelli-

gence of the proposed pre-classifiers, we compare SmartPC with a
naive approach, named naive-divide, which recursively divides the
multi-dimensional space into smaller non-overlapping regions. As
in the extended TCAMs paper [20], up to a block size number of
rules that lie entirely in each region are assigned to the region and
these rules are stored in the same TCAM block. Different from the
extended TCAMs paper, naive-divide executes one phase, rather
than multiple phases, so that there will be only one match in the in-
dex TCAM, instead of multiple matches. Naive-divide eliminates
the need for multi-match TCAMs. In naive-divide, those rules that
do not fit in the blocks are treated as general rules as in SmartPC.

In Figure 7, we compare the power reductions of SmartPC and
naive-divide on real and synthetic classifiers. Here we show results
with block size 128, while other block sizes show similar perfor-
mance. SmartPC outperforms naive-divide on every classifier we
evaluated. On average, SmartPC achieves 87% power reductions
on real classifiers, while naive-divide only achieves 67%. SmartPC
outperforms naive-divide by 14% to 34% on real classifiers, with an
average of 20%. With synthetic classifiers, SmartPC achieves 88%
power reductions on average, while naive-divide achieves 65%.
SmartPC outperforms naive-divide by 7% to 32% on synthetic clas-
sifiers, with an average of 23%.

The reductions of SmartPC come from the intelligence of the
pre-classifiers. In SmartPC, the structures of the rules are taken into
account when building the pre-classifier entries. While in naive-
divide, the multi-dimensional space can be divided arbitrarily, re-
sulting in a larger amount of general rules. Compared to naive-
divide, SmartPC results in smaller number of active TCAM blocks
by reducing the number of general rules. Therefore, SmartPC achieves
higher power reductions.

5.5 Discussion

5.5.1 The effect of block size on power reductions

To understand how block sizes affect power reductions, we plot
the number of blocks that need to be activated with default scheme
(without using power reduction optimizations) and SmartPC in Fig-
ure 8, where x-axis is block size, y-axis represents the number of
TCAM blocks that need to be activated, and both axes are in log

 0

 20

 40

 60

 80

 100

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

P
o
w

er
 r

ed
u
ct

io
n
(%

)

Classifiers

Naive-divide
SmartPC

(a) Real classifiers

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

P
o
w

er
 r

ed
u
ct

io
n
(%

)

Classifiers

Naive-divide
SmartPC

(b) Synthetic classifiers

Figure 7: Compare power reductions of naive-divide and

SmartPC on real and synthetic classifiers with block sizes 128.

scale. For brevity, we use classifiers R1, R9, S4 and S10 as repre-
sentatives, while other classifiers show similar trends.

In the default scheme, the number of active blocks decrease lin-
early with block size because the number of active blocks equals to
⌈N/B⌉, resulting in a straight line for each classifier in Figure 8.
While in SmartPC, there is a non-linear relationship between the
number of active blocks and block size. Initially, the number of
active blocks decreases quickly with block size, till it reaches some
point when the decreasing speed reduces. We can see this point oc-
curs at block size 64 for R1 (as shown in 8(a)), 128 for R9 (8(b)),
256 for S4 (8(c)) and 512 for S10 (8(d)). Accordingly, the max-
imum power reductions are achieved at these points as shown in
Figure 5.

Moreover, we discover that the number of active blocks for R1
reaches a constant value of 3 when the block size exceeds 128. 3
blocks is the minimum number of blocks that have to be searched
in our scheme 5, which include a block storing the pre-classifier, a
general block and a specific block. Similarly, we also observe this

5This is generally true, while it is possible that the number of gen-

 1

 10

 100

 1000

 10 100 1000 10000

N
u
m

b
er

 o
f

b
lo

ck
s

Block size

default
SmartPC

(a) R1

 1

 10

 100

 1000

 10 100 1000 10000

N
u
m

b
er

 o
f

b
lo

ck
s

Block size

default
SmartPC

(b) R9

 1

 10

 100

 1000

 10 100 1000 10000

N
u
m

b
er

 o
f

b
lo

ck
s

Block size

default
SmartPC

(c) S4

 1

 10

 100

 1000

 10000

 10 100 1000 10000

N
u
m

b
er

 o
f

b
lo

ck
s

Block size

default
SmartPC

(d) S10

Figure 8: Number of blocks activated with default scheme and

SmartPC (both axes are in log scale)

behavior with other classifiers. For example, the number of active
blocks for S10 also reaches 3 when the block size is greater than
512.

5.5.2 The effect of prefix distribution and prefix length

Using ClassBench [21] tool, we generate classifiers with dif-
ferent prefix distributions by adjusting the smoothness parameter
which may take a value from 0 to 64. A value 0 maintains the dis-
tributions specified in a parameter file to the rule generator, while a
value of 64 models a uniform distribution. We observe that with the
increase of smoothness from 0 to 64, both the number of general
rules and the size of the pre-classifier decrease, resulting in larger
power reductions. We set smoothness to 2 when generating the ten
synthetic classifiers to evaluate the performance of SmartPC in a
relatively rigorous environment.

We also generate classifiers with more or less specific address
prefixes by varying address scope, a parameter in range of -1.0 to
1.0 which adjusts the average scope of the address prefixes. With
less specific address prefixes (shorter prefix lengths), the number of
rules marked as general increases, while the size of the associated
pre-classifier decreases. Though the number of general rules and
the size of pre-classifier fluctuate with the parameter, there is no
obvious change in the percentage of power reductions in SmartPC.

5.5.3 Power reductions on small classifiers and IPV6
classifiers

Though the focus of our work is on large classifiers, small clas-
sifiers can also benefit from SmartPC. From above analysis, our
scheme could provide power reductions on a classifier which occu-
pies more than three TCAM blocks, since generally three blocks is
the minimum number of blocks that are activated in our scheme.

Although we do not have access to IPV6 classifiers, the algo-
rithms presented in Section 4 apply to IPV6 classifiers without any
modifications. We expect similar performance on IPV6 classifiers.

6. RELATED WORK
There are two main threads of research on packet classification:

RAM-based algorithmic approaches and TCAM-based approaches.
A lot of intelligent algorithmic solutions are proposed and many

eral rules is zero for some classifiers, therefore bring down this
number to 2.

of them are based on decision trees, e.g., HiCuts [8], HyperCuts
[19], HyperSplit [18], Modular packet classification [25], Common
Branches [4], and EffiCuts [23]. The core issue of algorithmic ap-
proaches centers on the tradeoff between memory usage and speed.

Wire speed packet classification motivated the development of
hardware-based solutions. Ternary Content Addressable Memories
(TCAMs) has become the de facto industrial standard for packet
classification in high performance routers. However, TCAMs suf-
fer from several primary deficiencies: high power consumption,
high cost per bit relative to other memory technologies, and stor-
age inefficiency. Accordingly, prior work in optimizing TCAM-
based systems fall into four broad categories: power efficiency [26,
20], circuit modification [20, 11], classifier compression [5, 15] and
range reencoding [17]. In this paper, we focus on power-efficient
TCAM solutions, while reencoding or compression or reducing the
number of entries is an orthogonal problem, and our solution can
be combined with these types of work.

CoolCAMs [26] divides a TCAM device into multiple partitions.
An IP lookup becomes a two stage process where only one parti-
tion is selected in the first stage and the partition is queried in the
second stage. However, CoolCAMs is limited to the problem of IP
forwarding where the destination address of an incoming packet is
matched against the longest matching prefix in a routing table.

To apply TCAMs to the more difficult packet classification prob-
lem where incoming packets are matched against multi-dimensional
rules in TCAMs, extended TCAMs [20] extends the partitioned
TCAM concept in [26]. A filter set is partitioned into multiple
blocks, each of which is associated with an appropriate index fil-
ter. Upon a query, all matching index filters are first identified and
then the blocks associated with those matching index filters are
queried. However, packets follow up on multiple matches in the
index TCAM, which makes this approach infeasible in two ways.
First, if legacy chips are used, the bitmap with the blocks can not
be transferred to activate on each search. Second, it requires a new
type of ternary match hardware that returns all matches because
commodity TCAMs give only the first result.

Except [26] and [20], there is significant recent work in the space
of power efficiency that we are aware of, but they are within com-
panies and are of proprietary nature. We are under NDA with one
company and can not refer to them.

Classifier compression optimizations convert a given classifier
into another semantically equivalent classifier that requires fewer
TCAM entries. While these techniques would also reduce power
consumptions, SmartPC is complementary to compression tech-
niques, and if combined, power consumptions could be further re-
duced. In [5], by expanding, trimming, adding and merging rules,
the authors identify semantically equivalent classifiers that lead to
fewer TCAM entries. The redundancy removal algorithm in [12]
can reduce TCAM usage by eliminating all the redundant rules
in a packet classifier. To address the prefix expansion problem
of TCAMs, TCAM Razor [15] proposed a greedy algorithm that
finds locally minimal solutions along each dimension and com-
bines these solutions into a smaller equivalent packet classifier. In
Bit Weaving [16], the authors proposed the first algorithm that can
compress a given classifier into a non-prefix ternary classifier.

Range reencoding schemes cope with range expansion by devel-
oping a new representation for important packets and intervals. Pre-
vious range reencoding schemes fall into two categories: database
independent encoding schemes [1, 11], where each rule is encoded
according to standard encoding scheme, and database dependent
encoding schemes [2, 17, 13], where the encoding of each rule de-
pends on the intervals present within the classifier. While range

reencoding schemes mitigate the effects of prefix expansion, they
require either extra hardware or more per packet processing time.

In [9], the authors explored the structure and properties of four
ACLs, and provided a guideline for designing classification algo-
rithm which states that a multi-dimensional classification problem
should be split into two stages. Though we also employ a two-stage
process, there are major differences. The focus of [9] is on prop-
erties of ACLs and the authors did not design any specific packet
classification algorithm. Furthermore, we employ a pre-classifier
to pre-classify on source and destination addresses, and then a full
classifier on all the five fields. While in [9], the first stage is classifi-
cation on source-destination pairs and the second is on other fields.
The results from the two stages are merged to get the final result.

7. CONCLUSION
In this paper, we performed a large scale analysis of important

properties of more than 200 real classifiers. Based on our analy-
sis, we propose SmartPC, a smart pre-classifier for power-efficient
packet classification using TCAMs. In SmartPC, the rules in a clas-
sifier are shuffled into TCAM blocks such that each pre-classifier
entry is associated with a TCAM block. To classify a packet in
SmartPC, the two-dimensional pre-classifier is first consulted which
directs the search to at most one specific TCAM block that contains
rules intercepting with the packet. Then the specific block plus a
few general blocks are searched in parallel and two matches are
generated. Finally the action from the higher priority match is re-
turned as the final result. SmartPC uses commodity TCAMs, and
the algorithms for building pre-classifiers are easy to implement.
We evaluated SmartPC with real and synthetic classifiers. SmartPC
achieves more than 80% power reductions on most classifiers with
less than 4% storage overhead. With block size 128, SmartPC
achieves a median power reduction of 91% and an average power
reduction of 88% on these classifiers. To demonstrate the effective-
ness of pre-classifiers, we compared SmartPC with naive-divide, a
naive approach that recursively divides the multi-dimensional space
into smaller regions. SmartPC outperforms naive-divide for every
classifier, with 20% more power reductions on average. SmartPC
is a practical and promising solution to address the high power con-
sumption of TCAMs and can find its applications in data centers.

8. ACKNOWLEDGEMENTS
All authors are supported in part by the following grants of the

US NSF: CNS-1040648, CNS-0916955, CNS-0855201, CNS-0747177,
CNS-1064944, and CNS-1059306.

9. REFERENCES
[1] A. Bremler-barr and D. Hendler. Space-efficient

TCAM-based classification using gray coding. In IEEE

INFOCOM, 2007.

[2] H. Che, Z. Wang, K. Zheng, and B. Liu. DRES: Dynamic
range encoding scheme for tcam coprocessors. IEEE
Transactions on Computers, 57:902–915, 2008.

[3] Cisco. Cisco catalyst 4500 series supervisor engine 6-e
centerflex technology.
http://www.cisco.com/en/US/prod/collateral/switches
ps5718/ps4324/prod_white_paper0900aecd806dc821.html.

[4] E. Cohen and C. Lund. Packet classification in large ISPs:
Design and evaluation of decision tree classifiers. In ACM

SIGMETRICS, 2005.

[5] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla.
Packet classifiers in ternary CAMs can be smaller. In ACM

SIGMETRICS, 2006.

[6] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point
location in a monotone subdivision. SIAM J. Comput.,
15:317–340, May 1986.

[7] P. Gupta and N. Mckeown. Packet classification on multiple
fields. In ACM SIGCOMM, 1999.

[8] P. Gupta and N. Mckeown. Packet classification using
hierarchical intelligent cuttings. In Hot Interconnects VII,
1999.

[9] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T.
Campbell. Directions in packet classification for network
processors. In HPCA-9, 2003.

[10] T. V. Lakshman and D. Stiliadis. High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching. In ACM SIGCOMM, 1998.

[11] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary.
Algorithms for advanced packet classification with ternary
CAMs. In ACM SIGCOMM, 2005.

[12] A. X. Liu, C. R. Meiners, and Y. Zhou. All-match based
complete redundancy removal for packet classifiers in
TCAMs. In IEEE INFOCOM, 2008.

[13] H. Liu. Efficient mapping of range classifier into
Ternary-CAM. In HOT Interconnects, 2002.

[14] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging
parallelism for multi-dimensional packet classification on
software routers. In ACM SIGMETRICS, 2010.

[15] C. Meiners, A. Liu, and E. Torng. TCAM Razor: A
systematic approach towards minimizing packet classifiers in
TCAMs. In ICNP, 2007.

[16] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A
non-prefix approach to compressing packet classifiers in
TCAMs. In ICNP, 2009.

[17] C. R. Meiners, A. X. Liu, and E. Torng. Topological
transformation approaches to optimizing TCAM-based
packet classification systems. In ACM SIGMETRICS, 2009.

[18] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. Packet classification
algorithms: From theory to practice. In IEEE INFOCOM,
2009.

[19] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. In ACM

SIGCOMM, 2003.

[20] E. Spitznagel, D. Taylor, and J. Turner. Packet classification
using extended TCAMs. In ICNP, 2003.

[21] D. Taylor and J. Turner. ClassBench: A packet classification
benchmark.
http://www.arl.wustl.edu/∼ det3/ClassBench/index.htm.

[22] TopCoder. Line sweep algorithms.
http://community.topcoder.com/tc?module=Static&d1=
tutorials&d2=lineSweep.

[23] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. EffiCuts:
optimizing packet classification for memory and throughput.
In ACM SIGCOMM, 2010.

[24] G. Varghese. Network Algorithmics: An Interdisciplinary
Approach to Designing Fast Networked Devices. Morgan
Kaufmann, 2005.

[25] T. Y. Woo. A modular approach to packet classification:
algorithms and results. In IEEE INFOCOM, 2000.

[26] F. Zane, G. Narlikar, and A. Basu. CoolCAMs:
Power-efficient TCAMs for forwarding engines. In IEEE

INFOCOM, 2003.

