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Abstract

We consider the problem of locating nearby application peers over the Internet. We
define a new peer-location scheme (called Tiers), that scales to large application
peer groups. Tiers creates a hierarchy of peers, and provides an efficient and scal-
able solution to the peer-location problem. Tiers can be implemented entirely in
the application-layer and does not require the deployment of either any additional
measurement services, or well-known reference points in the network.

We have evaluated the performance of Tiers through detailed experiments. Our
results show that Tiers is able to locate the nearest peers quickly (� 1 second)
and accurately on wide-area Internet-like topologies. We have also compared the
performance of Tiers with two other schemes, Beaconing and Distributed Binning,
both of which are known to have good performance. Both these techniques are
reference-points based schemes and are efficient for overlays with a small number of
peers (e.g. ≤ 32). Our results show that Tiers significantly outperforms both these
schemes. Tiers is particularly efficient for large overlay networks, has an order of
magnitude lower control overheads for overlays with 512 peers and still achieves
greater accuracy in locating the nearest peers.

Key words: Group communication, Hierarchy, Overlays, Peer location, Triangle
inequality.

1 Introduction

Consider a distributed peer-to-peer application, such as Gnutella. When a new
member joins the application, it often has to find another peer that is already
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part of the application. Usually, the goal is to locate another application peer
that is “near” the new host. We refer to this problem as the peer-location
problem.

Efficiently locating nearby peers is an important problem for many appli-
cations. For applications like Gnutella, locating the nearest peer can reduce
network load for queries and responses. In fact, nearest-peer locating tech-
niques are applicable to a number of peer-to-peer applications. For example
they are used to efficiently construct resilient overlay networks [1], implement
application-layer multicast [2–5], enable efficient overlay routing [6,7], and
define distributed data storage and lookup services [8,9]. Efficient solutions
for nearest peer-location are also beneficial to legacy (non peer-to-peer) ap-
plications. For example, peer finding schemes can be used to locate nearby
mirrors for file transfers [10], or to locate nearby sources in content distri-
bution networks. Peer-finding schemes can naturally be used to implement
application-layer anycasting services [11]. Lastly, the reachability of native
multicast groups over the Internet is currently being extended by setting up
dynamic unicast tunnels between multicast-enabled regions of the Internet.
A solution developed for peer finding can be applied directly to create ef-
ficient tunnels. Such a solution would not only be useful for multicast, but
also for efficiently deploying new overlay-based services e.g. ABone [12] and
6Bone [13].

The peer-finding problem can be solved relatively easily if we assume network-
layer assistance such as native IP multicast or Global Internet Anycast (GIA [14]).
Similarly, the Internet-wide distance maps system (IDMaps [15]) can also pro-
vide solutions to the peer-finding problem but it requires Internet-wide de-
ployment of special measurement entities. Other peer-finding techniques that
require a very limited infrastructure support include a triangulation method,
due to Hotz [16], and its weighted variant [17], a “distributed binning” tech-
nique [18] and our prior work, Beaconing [19]. These techniques use a small
set of measurement reference points in the network called landmarks [18] or
beacons [19]. The distances between each application peer and these beacons
are measured, and are processed to obtain the nearest peer.

In this paper, we define Tiers, a technique to efficiently solve the closest peer-
location problem, without requiring any network-layer assistance or infrastruc-
ture support. Tiers is specifically designed to scale to large application groups
and can be implemented on an unicast-only network. There are specific chal-
lenges that need to be addressed for such a unicast-only solution, which are
outlined in [19].
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1.1 Problem Statement

Formally, the peer finding problem can be modeled as follows:

Assume a set of peers (or hosts) H arranged in some arbitrary topology T .
We denote the distance between two hosts, a and b, by dist(a, b). Let A be the
current set of hosts that participate in some application (A ⊆ H). Let n /∈ A
be a host that wishes to join the application. The peer-finding problem finds
a node p, such that p ∈ A and ∀q ∈ A, dist(p, n) ≤ dist(q, n), i.e. p is already
part of the application and is the closest such host to the new host n.

Clearly, the peer finding problem can be solved for a number of distance mea-
sures, e.g. hop count in the underlying network, application-perceived latency,
etc. Tiers can be implemented with any such application-specific metric.

1.2 Tiers Approach

In the Tiers technique, proposed in this paper, we create a hierarchy of the
application peers. The hierarchy is based on topological clustering of these
peers, where nearby peers are grouped into the same cluster. The querying
member (termed query-host) finds its closest peer by successively refining its
search in a top-down manner over this hierarchy.

The Tiers technique has benefits over previously known techniques in two
significant ways:

• No infrastructural support required: All the prior proposed schemes rely on
the existence of some infrastructure support. Schemes based on GIA and
IDMaps would require a widespread deployment of these mechanisms on
the Internet. Schemes based on Hotz triangulation, Distributed Binning
and Beaconing requires the existence of special landmark entities (referred
to as landmarks or beacons) which serve as the reference point for different
proximity tests.

In contrast, the Tiers scheme requires no such support. In this scheme,
each application peer dynamically discovers a few other application peers,
and is required to make distance measurements to a subset of them.
• Scalability: Because of its use of an appropriate peer hierarchy, the Tiers

scheme scales well with increase in the application group size. More specif-
ically, the worst case storage and communication overhead at any entity
(application peers or query-host) in this technique is bounded by O(log N),
while the overheads at an average entity is a constant. The query latency is
also bounded by O(log N). In this paper, we study in detail the tradeoffs of
the marginal increase in query latency to the significant reduction in control
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overheads.

Additionally we show in this paper that the performance of Tiers is also ro-
bust in presence of changes to group membership. One of the challenges for
the closest peer-location problem is to maintain good accuracy even as peers
rapidly join and leave the application group. This is an important component
of any solution because application peers are typically processes on end-hosts,
and are susceptible to unexpected failures.

1.3 Roadmap

The rest of the paper is structured as follows. In the next section, we describe
the Tiers techniques for peer-location and present analytic bounds for this
scheme. In Section 3 we describe some of the prior approaches for the closest
peer location problem and how they compare to our proposed scheme. In
Section 4 we evaluate and compare the performance of these different schemes
through detailed simulations. Finally we conclude in Section 5.

2 Tiers : Scalable Peer Location for Large Groups

The Tiers peer-location technique arranges the set of application peers into a
hierarchy. This hierarchy construction mechanism is similar to what we had
defined for the NICE application-layer multicast protocol [2]. Use of this hier-
archy enables scalability, since most peers are at the bottom of the hierarchy
and only maintain state about a constant number of other peers. The peers at
the very top of the hierarchy maintain (soft) state about O(log N) other peers.
Logically, each peer keeps detailed state about other peers that are near in
the hierarchy, and only has limited knowledge about other peers in the group.
The hierarchical structure is also important for localizing the effect of peer
failures.

While constructing the Tiers hierarchy, peers that are “close” with respect to
the distance metric are mapped to the same part of the hierarchy. We leverage
this topological arrangement in efficiently identifying the closest peer, with a
small number of probes. The closest peer-finding operation proceeds top-down
on the hierarchy thus successively refining the search at each step, till the
appropriate peer is identified. In this paper, we use the number of hops as the
distance metric between hosts.

In the rest of this section, we describe how the Tiers hierarchy is defined, the
closest peer-location operation using the hierarchy, and the analytic bounds
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Fig. 1. Hierarchical arrangement of peers in Tiers. The layers are logical entities
overlaid on the same underlying physical network.

using this technique.

2.1 Hierarchical Arrangement of Application Peers

The Tiers hierarchy is created by assigning peers to different levels (or layers)
as illustrated in Figure 1. Layers are numbered sequentially with the lowest
layer of the hierarchy being layer zero (denoted by L0). Hosts in each layer are
partitioned into a set of clusters. Each cluster is of size between k and 3k− 1,
where k is a constant, and consists of a set of hosts that are close to each
other. Further, each cluster has a cluster leader. The protocol distributedly
chooses the (graph-theoretic) center of the cluster to be its leader, i.e. given
a set of hosts in a cluster, the cluster leader has the minimum radius. (The
radius of the cluster is defined as the maximum distance between the cluster
and its members.) The cluster leader, is therefore, an approximation of the
location of all the cluster peers.

Hosts are mapped to layers using the following scheme: All hosts are part of
the lowest layer, L0. The clustering protocol at L0 partitions these hosts into a
set of clusters. The cluster leaders of all the clusters in layer Li join layer Li+1.
This is shown with an example in Figure 1, using k = 3. The layer L0 clusters
are [ABCD], [EFGH] and [JKLM] 1 . In this example, we assume that C, F
and M are the centers of their respective clusters of their L0 clusters, and are
chosen to be the leaders. They form layer L1 and are clustered to create the
single cluster, [CFM], in layer L1. F is the center of this cluster, and hence its
leader. Therefore F belongs to layer L2 as well.

Each peer in this hierarchy exchanges HeartBeat messages with each peer in all
of its clusters. For example, in Figure 1, peer A sends a HeartBeat message to
peers B, C, and D (they are all part of the same cluster in layer L0). Similarly,
C sends a HeartBeat message to peers A, B, D, F , and M (A, B, and D share
a common cluster with C in layer L0, while F and M share a common cluster
with C in layer L1). The lack of HeartBeat messages are used to detect peer

1 We denote a cluster comprising of hosts X,Y,Z, . . . by [XY Z . . .].
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Fig. 2. Query-host A1 finds its closest peer (A0).

failures and trigger subsequent re-arrangement of the hierarchy.

The entire distributed protocol for this hierarchy construction (or re-structuring
in case of peer failures) is same as the one employed by the NICE application-
layer multicast protocol [2].

2.2 Finding the closest peer

The closest peer finding operation proceeds top down on the peer hierarchy.
We assume the existence of a special host that the query-hosts know of a-
priori through out-of-band mechanisms. We call this peer the Boot Strap Host
(BSH) 2 . Each query-host initiates the query process by contacting the BSH.
For ease of exposition, we assume that the BSH is the leader of the single
cluster in the highest layer of the hierarchy. (Alternatively it is possible that
the BSH is only aware of the leader of the highest layer cluster, and is therefore
not a part of the hierarchy. We do not belabor this complexity further.)

We illustrate the query procedure using the example shown in Figure 2. In the
figure, the application group has already been arranged into four L0 clusters
(marked by dotted lines). Hosts C0, B0, B1 and B2 are the leaders of these
respective clusters. They together form a single cluster in layer L1. The leader
of this L1 cluster is C0, and is the only host in layer L2.

Assume that host A1 wants to find its closest peer in this group. First, it
contacts the BSH with its query (Panel 0). The BSH responds with the hosts
that are present in the highest layer of the hierarchy. The query-host then
contacts all peers in the highest layer (Panel 1) to identify the peer closest to
itself. In the example, the highest layer L2 has just one peer , C0, which by
default is the closest peer to A1 amongst layer L2 peers. Host C0 informs A1

of the three other peers (B0, B1 and B2) in its L1 cluster. A1 then contacts
each of these peers with the query to identify the closest peer among them
(Panel 2), and iteratively uses this procedure to find the closest L0 cluster
(whose leader happens to be B2). Finally, it queries each of these L0 cluster

2 It is same as the host known as the Rendezvous Point in [2].
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Procedure : FindClosest(h)
Clj ← Query(BSH,−)
while (j ≥ 0)

Find y such that dist(h, y) ≤ dist(h, x), x, y ∈ Clj
if (j = 0)

return y
endif

Clj−1(y) ← Query(y, j − 1)
Decrement j, Clj ← Clj−1(y)

endwhile

Fig. 3. Basic query operation for peer h. Clj(y) indicates the cluster in layer Lj to
which the peer y belongs. This is defined if and only if y belongs to a cluster in
layer Lj. Query(y, j − 1) seeks the membership information of Clj−1(y) from peer
y. Query(BSH,−) seeks the membership information of the topmost layer of the
hierarchy, from the BSH.

peers (Panel 3), and is thus able to select the closest of these peers (i.e. A0)
as its closest peer in the application group.

It is important to note that any host, H, which belongs to any layer Li is the
center of its Li−1 cluster, and recursively, is an approximation of the center
among all peers in all L0 clusters that are below this part of the layered hier-
archy. Hence, querying each layer in succession from the top of the hierarchy
to layer L0 results in a progressive refinement in finding the closest peer. The
outline of this operation is presented in pseudo-code as Procedure FindClosest

in Figure 3.

Occasionally it might happen that the cluster membership information at the
leader is stale (e.g. all members of the cluster suddenly left the application
peer group). The cluster leader detects this situation when it does not receive
appropriate HeartBeat messages from its members. In such cases, the query-
host is unable to elicit responses from any of these members returned by the
cluster leader. In such cases, the query-host re-initiates the query from the
previous layer’s cluster leader. In the worst case, the query is re-initiated from
the BSH.

2.3 Invariants

The following properties hold for the distribution of hosts in the different
layers:

• A host belongs to only a single cluster at any layer.
• If a host is present in some cluster in layer Li, it must occur in one cluster
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in each of the layers, L0, . . . , Li−1. In fact, it is the cluster leader in each of
these lower layers.
• If a host is not present in layer, Li, it cannot be present in any layer Lj,

where j > i.
• Each cluster has its size bounded between k and 3k − 1. The leader is the

graph-theoretic center of the cluster.
• There are at most logk N layers, and the highest layer has only a single peer.

All the good properties of this scheme (as analyzed next) hold as long as
the hierarchy is maintained. Thus, the objective of this distributed hierarchy
construction protocol (which is the same as the one used to construct a similar
hierarchy in NICE application-layer multicast [2]) is to scalably maintain the
host hierarchy as new peers join and existing peers depart.

2.4 Analysis

We analyze the efficiency of this peer-finding scheme by evaluating the storage
requirements for peer state, communication overheads to exchange control
messages for maintaining the hierarchy and the latency incurred by the query-
host in identifying the closest peer.

Each cluster in the hierarchy has between k and 3k − 1 peers. Then, a host
that belongs only to layer L0 maintains state for only O(k) other hosts and
incurs an equivalent communication overhead for exchange of control messages
(due to the HeartBeats). In general, a host that belongs to layer Li and no
other higher layer, maintains state for O(k) other hosts in each of the layers
L0, . . . , Li. Therefore, the control overhead for this peer is O(k.i). Hence, the
cluster leader of the highest layer cluster (Host C0 in Figure 2), maintains
state for a total of O(k log N) neighbors. This is also the worst case control
overhead at a peer.

It follows using amortized cost analysis that the control overhead at an average
peer is a constant. The number of peers that occur in layer Li and no other
higher layer is bounded by O(N/ki). The amortized control overhead at an
average peer is

≤
1

N

log N∑

i=0

N

ki
k.(i + 1) = O(k) + O(

log N

N
) + O(

1

N
)→ O(k)

with asymptotically increasing N . Thus, the control overhead is O(k) for the
average peer, and O(k log N) in the worst case.

The query process incurs a message overhead of O(k log N) query-response
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pairs. The query-latency depends on the delays incurred in these exchanges,
which is typically about O(logN) round-trip times.

3 Existing Approaches for Peer Location

A few different approaches have been described in the prior literature that
implements a peer-location service. In this discussion, let A denote the set of
the peers in the application group. Let n denote the query-host.

3.1 Centralized Random Selection

In this case, all peers in A register with a well-known node w. When n decides
to join the application, w chooses some node i ∈ A uniformly at random as
the “nearest” peer for n. This scheme has extremely low run-time overhead,
but also incurs a high error rate. Note that Gnutella uses this heuristic to
define its neighbors on the overlay. The Narada application-layer multicast
protocol [4] uses this simple heuristic to define an initial set of neighbors on
their mesh overlay, and subsequently refines the topology over time.

3.2 Triangulation and Weighted Triangulation

The triangulation method, due to Hotz [16], also computes distances using a
set of measurement points called beacons.

Given a host i in A and k beacons B0, . . . , Bk−1 , the triangulation method de-
scribed by Hotz [16] defines a k-tuple Di = 〈dist(i, B0), dist(i, B1), . . . , dist(i, Bk−1)〉
.

A similar k-tuple Dn = 〈dist(n, B0), dist(n, B1), . . . , dist(n, Bk−1)〉 is also de-
fined for the new node n. In the scheme, the parameter Avg(i, n) is computed
as

Avg(i, n) =
Max(i, n) + Min(i, n)

2

where the Max and Min are defined as:

Max(i, n) = min(|Di + Dn|) and Min(i, n) = max(|Di −Dn|)
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where the max and min are the usual arithmetic maximum and minimum
computed component-wise over the k-tuples. The triangulation scheme chooses
the peer i with the lowest value of Avg(i, n).

Weighted triangulation [17] uses the same computation but assigns higher
distances to backbone links such that after triangulation, the servers which
are close to the client have a better chance of being selected. In Internet-
based experiments reported in [17], the weighted scheme performs slightly
better than Hotz triangulation. However, this scheme requires some way of
recognizing when a distance is being measured across backbone links.

This scheme incurs high control overheads at the beacons since each beacon
needs to periodically measure the distance to each of the application peers.

3.3 Expanding Ring Multicast and Broadcast

These are two classical techniques that are extremely efficient but require
network-level multicast (or broadcast). In expanding ring multicast, all peers
in A join a well-known multicast group. Host n too joins this group and begins
sending messages to group with a low Time-to-Live (TTL). Any peer that
receives this message is within a small TTL-distance of n and therefore is
a close peer. If no such peer is found within a timeout period for a specific
TTL, n resends the message with larger TTLs. Host n, therefore, finds its
nearest peer simply by listening on the multicast group for the first response
to its peer solicitation messages. This protocol is extremely robust since it
does not require any centralized state at any peer and is also efficient since it
does not involve any application-layer distance computations. However, as can
be observed, this approach is only applicable for hop-count based distances.
Additionally, the query latency can be large depending on the location of the
closest peer. The expanding ring broadcast scheme is similar except all peers
in the network receive the messages and only nodes in A respond.

3.4 Techniques requiring global service deployment

The peer-finding problem can effectively be solved using Global Internet Any-
cast [14]. All nodes in A could join an anycast group and n could find a near
peer by sending a message to the anycast group. While this scheme could
potentially be even more efficient than expanding ring multicast, it requires
global anycast support from all participating domains. While there is an effort
for standardizing the GIA protocols,such services will likely not be globally
available in the near future. An Internet-measurement infrastructure such as
IDMaps [15] can also be used to solve the peer finding problem. IDMaps are

10



an Internet-wide service that provides distance information between any two
nodes in the Internet. IDMaps could be used (along with a centralized direc-
tory of current peers) to find near peers or they can even be used in the bea-
coning protocol to find the best host in the reduced set. Unlike GIA, IDMaps
do not require global changes to the network infrastructure; however, IDMaps
do require Internet-wide deployment and is also unlikely to be available in the
near future.

3.5 Beaconing

In this scheme, proposed in our prior work [19], we designate a set of κ hosts
(B0, . . . , Bκ−1), to be reference-points in the network. These hosts are called
beacons and are known to all peers in the application group. Each peer in
the application group periodically measures the distance from itself to each of
these beacons and reports this to the beacons. The beacons serve as reposito-
ries of this distance information and handle closest peer-location queries.

Consider a querying host, n, that wants to find its closest peer in the appli-
cation group, A. Host n measures and sends its own distance d to a single
beacon (say B0). Beacon B0 sends to n a list containing the identities of all
hosts in A within distance d ± δ. The parameter δ is chosen such that the
nearest node is within δ hops of n with high probability. Peer n repeats this
procedure by measuring and sending its own distance to each other beacon
Bi. The beacons respond, each with a list of peers whose distances are in the
range dist(n, Bi)± δ. Thus, h accumulates the lists of prospective near peers
and computes an intersection of these lists. As n communicates with more
beacons, the size of the intersection set reduces. The procedure is terminated
when the size of the intersection set (S) is reduced to some reasonable num-
ber or when n has communicated with all beacons. The peers in A that are in
fact close to n will typically appear in all of these sets and hence also in the
intersection of the sets. Beaconing then chooses the closest peer from the set
S using one of many heuristics as described in [19].

3.6 Distributed Binning

Another reference-point based closest peer-location technique has been pro-
posed in recent literature, called Distributed Binning [18]. The goal of the
Distributed Binning scheme is to have the set of peers independently par-
tition themselves into disjoint “bins” such that peers within a single bin are
relatively closer to one another than to peers not in their bin. Therefore such a
scheme can be leveraged to define a good heuristic for the closest peer-finding
problem (which is also discussed in [18] as a potential application).
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Scheme Infrastructure Required Permissible Metric Query Accuracy Query Latency Control Overheads

Expanding Ring Search Network-layer multicast Hop-count based High Moderate Low

GIA [14] Globally deployed anycast Hop-count based High Low Low

Triangulation-based [16] Unicast-only, and Any Moderate Low High

deployment of few beacons

IDMaps [15] Unicast-only, and Any High Low Moderate

global deployment of tracers

Distributed Binning [18] Unicast-only, and Any Moderate Low High

existence of few landmarks

Beaconing [19] Unicast-only, and Any High Low High

deployment of few beacons

Tiers Unicast-only Any High Low Low

Table 1
Comparison of different peer-location schemes.

When a new peer joins the application, it computes its own bin. Subsequently
the new peer locates other peers that are part of the same bin. These peers
are relatively close to the new peer and are therefore appropriate candidates
for being its closest peer. Each peer computes its own bin by measuring its
relative distance from the set of reference-points in the network. In Distributed
Binning these reference-points are called landmark nodes. The peer measures
the round trip latency to each of these landmarks and orders the landmarks
in the order of increasing round-trip times. Thus every peer has an associated
ordering of landmarks. This order represents the bin that peer belongs to.
The rationale behind this scheme is that topologically close peers are likely to
have the same ordering for the different landmarks and hence belong to the
same bin. Note that the new peer needs to be aware of the IP address of these
landmark nodes and needs some out of band mechanisms to find them.

The Distributed Binning scheme incurs overheads similar to Beaconing. Each
peer in the application group periodically exchanges O(k) messages with the
k landmarks to compute their bins. Hence each landmark receives O(N) mea-
surement (control) traffic from all the N peers in the application group.

The control overheads and query latency of Distributed Binning and Beacon-
ing are comparable. While both these schemes are efficient for small appli-
cation peer groups, they do not scale with increasing sizes. This is because
the control overheads at the landmarks or beacons is O(N). This can be con-
trasted with the Tiers approach, where the worst case control overhead at any
entity is bounded by O(log N).
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3.7 A Qualitative Comparison with Tiers

A key distinction of Tiers from all these prior approaches is that Tiers requires
no additional deployment (of reference-points in Beaconing or Distributed
Binning, or measurement entities, e.g. IDMaps) or network-level support e.g.
GIA, for its operation. This is because Tiers leverages interaction between
peers to construct a scalable solution to the peer-location problem. This leads
to significant benefits in terms of accuracy and control overheads, with some
marginal increase in query latency (typically 10-15% higher). We quantify
these tradeoffs in our simulation based experiments in the next section.

In Table 1 we present a qualitative comparison of all the schemes (including
Tiers).

4 Performance Analysis

We have analyzed the performance of Tiers using detailed simulations on very
large network topologies. In our prior work [19], we have presented detailed
evaluation of the Beaconing scheme in comparison with some other existing
techniques, e.g. Hotz Triangulation [16]. Our results have showed that Beacon-
ing achieves significant performance improvements over these other schemes.
Therefore, in this paper, we restrict the performance comparisons to three
schemes — Tiers, Beaconing and Distributed Binning.

Broadly, our findings can be summarized as follows: Both Tiers and Beaconing
achieves better accuracy in comparison with the Distributed Binning scheme.
The query latency of Tiers is marginally higher than the other two schemes
(about 10-15%). However, due to its hierarchical structure, the worst case
overheads at hosts in Tiers are significantly lower than both Beaconing and
Distributed Binning.

4.1 Experimental Methodology

We used the Georgia Tech Internet Topology Modeler (GT-ITM [20]) to create
our simulation topologies. In our simulations, we used 10,000 node Transit-
Stub (TS) graphs. We experimented on fifty randomly generated TS graphs.
For different experiments, we distributed upto 512 application peers uniformly
at random within the stub domains. We also placed 500 query-hosts, again
distributed uniformly at random, on the topology, that sought to find the
closest peer using the three schemes. For both Beaconing and Distributed
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Binning, we used a set of twelve beacons and landmarks respectively, as was
shown to be appropriate in [18]. Also, for Beaconing, we used the Beaconing
with Vectoring and Probing with δ = 3 as was shown to provide good accuracy
with low overheads in [19]. We ran between 10 and 20 instances for each
experiment, to get a tight bound on the variations in the results. In all these
experiments we use number of hops as our distance metric.

We observe three different metrics in this study:

• Accuracy: of the different schemes in finding the closest peer.
• Query latency: measured from the instant the query for the nearest peer is

initiated by the query-host upto the time when this query is resolved.
• Control overheads: of the different schemes for the application peers and

other entities.

Note that unlike all prior schemes, the Tiers scheme leverages distributed
state management involving the application peers. As a consequence, it adds
dependence between the peers of an application. Therefore in this section we
also examine the impact of the effect of dynamic changes to group membership
on the performance of Tiers and how it compares to that of Beaconing and
Distributed Binning.

Since we assume dynamically changing application groups, we assume that
each scheme incorporates a periodic soft state refresh mechanism. As defined
in Section 2, the Tiers scheme already uses a periodic HeartBeat-based mech-
anism to discover peer failures. For both Beaconing and Distributed Binning,
we implemented similar HeartBeat messages, which are sent by the applica-
tion peers to the beacons or landmarks to periodically update their measured
distances. For all the schemes we choose the same periodic rate (of once every
5 seconds) for these refresh messages. For the Tiers scheme, we also varied the
cluster size parameter k, to study its effect on the different metrics. In the
different plots Tiers-3, Tiers-6 and Tiers-12 represent the data for the Tiers
scheme with k set to 3, 6, and 12 respectively. As mentioned, the cluster size
upper bound was 3k− 1. Such a choice of the upper bound helped in avoiding
a cluster split and a merge operation to occur in quick succession that may
occur otherwise in some special cases. This is explained in [2].

Application Peer Group Size

We varied the application group size between 8 and 512 to study its effects
on the different metrics. In Figure 4 we plot the accuracy of the different
schemes in finding the closest peer. In the plot, ‘Oracle’ indicates the distance
of the query-host to its actual closest peer on the topology. Tiers-12 performs
the best among all the schemes. In particular, for the Tiers schemes, larger

14



3

4

5

6

7

8

9

10

50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e 
(in

 h
op

s)

Number of peers

Proximity of selected nearest peer in hops

Beaconing
Binning
Tiers-3
Tiers-6

Tiers-12
Oracle

Fig. 4. Accuracy of the queries. ‘Oracle’ indicates the actual closest peer. (Varying
peer group sizes).

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 50  100  150  200  250  300  350  400  450  500

La
te

nc
y 

(in
 s

)

Number of peers

Latency in finding nearest peer

Tiers-3
Tiers-6

Tiers-12
Binning

Beaconing

Fig. 5. Query latency (Varying peer group sizes).

the cluster size, the more accurate is the result of the query. Beaconing per-
forms somewhat less accurately than Tiers, however the difference between
the schemes is relatively low. Though the accuracy of Distributed Binning
also increases with increase in the size of the peer group, it performs relatively
worse in comparison to the other schemes.

In Figure 5, we plot the latency of the queries for the same set of topologies.
The query latency of Beaconing and Distributed Binning does not depend on
the size of the application group. In contrast, for the Tiers schemes, the query
latency increases very slowly (logarithmically) with the increase in peer group
size. In Figure 5, we can observe that the latency for the Tiers schemes do not
increase smoothly for a given cluster parameter, k. This is because the query
latency increase only when the number of layers increase, i.e. when the peer
group size approximately increases by a factor of k, as can be observed in the
plots. For peer group sizes that have the same number of layers, the latency
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Fig. 7. Worst case control overheads at the end-hosts.

actually decreases (sometimes marginally) with increase in group size. This is
because, as the topology gets more and more populated by application peers,
the nearest peers are effectively closer to the query-host.

In Figures 6 and 7 we plot the average and the maximum control traffic over-
heads at the hosts. Note that Y-axis in the figures are plotted in the log scale.
For all the group sizes simulated, the overheads at the peers for Beaconing
and Distributed Binning are very close to each other. Among the different
Tiers schemes, the peers in the Tiers-3 has the lowest overheads (about 2.6
packets/second). The overheads for Tiers-6 and Tiers-12 are correspondingly
higher (2.9 and 13.0 packets/second respectively for groups of size 512). In
contrast, the overheads at the beacons (in Beaconing) and the landmarks (in
Distributed Binning) are about 193.5 packets/second for the same size group.
The maximum packet overhead at any host for Tiers-6 is significantly lower
than than Beaconing for groups of size 32 or more and is about an order of
magnitude lower (22.8 packets/second) for the peer groups of size 512. The
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overheads at the beacons increase linearly with the peer group size, where as
the worst case overheads for Tiers increase logarithmically. Therefore, both
Beaconing and Distributed Binning are efficient and fast for small groups, but
does not scale with increasing group sizes.

Finally in Figure 8 we examine the control overheads incurred at the different
network routers in the topology for the different schemes for a group of 512
peers. The figure plots the cumulative distribution of the control packets at
the different network routers. For all the schemes, the overheads incurred at
most routers are low (about 94% of the routers carry less than 20 packets per
second). However, the network routers close to the beacons in Beaconing and
Landmarks/central entity in Distributed Binning carry high volume of data.

The worst case control overheads at the routers for Beaconing and Distributed
Binning are close to 1000 packets per second. In contrast, for the Tiers-3, -6,
and -12 schemes, the worst case is less than 100, 200, and 600 packets per
second respectively.

Effect of the k parameter

In the Tiers scheme, the different metrics of interest —- query accuracy, query
latency and control overheads, are affected by the choice of the cluster size
lower bound parameter, k. In Table 2 we examine this dependence more closely.
Note that if k is chosen to be the size of the application peer group, N , then the
Tiers scheme has a single layer with a single cluster. In such a case the scheme
degenerates to explicit probing of all the application peers by the query-host.
Clearly this scheme will be perfectly accurate. The control overheads in this
scenario will be high (O(N) at each peer). However, the query latency will
be minimum, since all the distance probes will occur in parallel. Therefore in
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Scheme Accuracy Latency Overheads at host

Average case Worst case

Oracle 3.33 - - -

Distributed Binning 6.48 84.3 4.88 192.87

Beaconing 5.14 69.6 4.49 191.59

Tiers-k

k = 3 5.05 103.0 2.94 11.42

k = 4 4.79 105.4 4.10 14.59

k = 5 4.61 84.8 5.04 16.35

k = 6 4.55 85.7 6.11 22.38

k = 7 4.70 88.2 7.31 25.09

k = 8 4.31 89.2 8.36 27.77

k = 9 4.42 87.0 9.30 39.53

k = 10 4.13 84.8 9.36 35.33

k = 11 4.05 68.7 12.24 55.09

k = 12 3.93 68.6 12.78 55.12

Table 2
Effect of the cluster size lower bound parameter, k, for the Tiers scheme on an
application group with 512 members.

general, as the value of k increases, the accuracy of the scheme in finding the
closest peer increases, the control overheads increase, and the query latency
decreases. We see this trend in Table 2. Also note that the query latency does
not decrease smoothly with increase in the cluster lower bound parameter,
k. The latency only decreases when the number of layers in the hierarchy
decreases. This happens as k increases from 4 to 5, and from 10 to 11.

Therefore, this parameter can be appropriately chosen to trade-off between
the protocol performance and control overheads.

Changing Group Membership

Changes in membership of application peer groups will change the closest
peer to a query host. In this part of the study, we examined how adaptive the
different schemes are to such dynamics of group membership.

In this experiment, a set of 256 application peers initially joined the group over
a 200 second period. Subsequently, new application peers joined and existing
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peers left the group uniformly at random at a specified rate. We varied this
average join/leave rate from moderately changing groups (i.e. 1 change per
40 seconds, a rate of 0.025/s) to very rapidly changing groups (i.e. 1 change
every 3 seconds, a rate of 0.33/s). In Figure 9, we plot the accuracy of the
results for this experiment. As can be observed, the accuracy of the result is
not significantly impacted for these change rates.

The query latency, however, increases significantly for the high change rate sce-
narios (Figure 10). Note that for the most dynamic scenarios, the join/leave
rate is faster than the periodic refresh rates (of one every 5 seconds) used
for the schemes. For the Beaconing scheme, the responses from the beacons
might include peers that have already left the group, leading to re-initiating
the query. (The performance of Beaconing and Distributed Binning in these
experiments had similar trends. So for the sake of clarity, we only included
the data for the Beaconing scheme in the plots.) The high join leave rate has
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a greater impact on the Tiers scheme, because in this scenario, the member-
ship of clusters change frequently. The cluster leaders have stale information
about the cluster members (some of them might have already left). This also
leads to occasional re-queries at each layer in the hierarchy. This causes the
corresponding increase in the query latency.

5 Conclusions

In this paper, we have presented Tiers, a new scheme for scalable peer loca-
tion on the Internet. While simple alternative techniques like Beaconing and
Distributed Binning, performs well for small groups, a hierarchical approach
like Tiers is essential to scale with increase in group sizes. Through detailed
simulations we show that Tiers achieves similar performance with significantly
lower overheads than any other scheme for groups larger than 32. The protocol
is based on a hierarchical clustering of the peers.

While in this paper, we describe the protocol to find the closest peer with
respect to latency-based metrics, it has a wider applicability to other metrics
as well. For example, by performing the hierarchical clustering based on the
access bandwidths, it is easy to see that this protocol is able to find peers
with similar bandwidths. Such bandwidth-based peer finding proved to be
useful in the preference clustering approach for multicast data delivery to a
group, where members clustered into sub-groups based on their bandwidths,
and an appropriate data rate is sent to these sub-groups that best meets their
capabilities.
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