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Abstract

Traditional methods for localization in wireless networ&ly on the correlation of the received signal strength
with physical distance. It is also well known, that these hagdsms fail in an adversarial setting due to the lack of
robustness of the signal strength property to maliciowsnintin this paper, we present a property of the wireless
medium, which we call ‘wireless congruity’, that capturksielative similaritiesin wireless media characteristics
(such as packet receptions, idle channel time, etc.) as\@ibby two receivers that are in physical proximity
of each other. We show that wireless congruity holds proriissecure localization by presenting an initial yet
encouraging set of results obtained through extensiverampatation in a rich indoor wireless environment.

. INTRODUCTION

With the growth of m-Commerce applications, systems thatige location information for a mobile user
are becoming popular. Such localization systems can bsifitgsinto two: the ones that use dedicated
hardware for localization, such as Cricket [1] which usdsasbund, and the ones that operate through
off-the-shelf 802.11 hardware. The systems in the lattergmay are of particular commercial interest due
to their ease of deployment over the widely available 80¥VL ANs and the resultant cost-savings. Thus,
a lot of prior research has focused on building accurateantiealization systems [2], [3], [4] which use
the signal strength property of wireless transmissionss$sain location inference. While signal strength
is a good indicator of physical distance, its predictapitits become an Achilles heel when faced with
the issue of validating it in the presence of malicious ihteit is possible for an attacker to ‘guess’ the
signal strength at a location without being there physycall

The signal strength property of wireless transmissiongesufromtemporaland spatial predictability.
Temporal predictability refers to the possibility of infiexg behavior at timé” by observing behavior at
an earlier (or later) tim& — t, for example, by building a radio-map of the environmentxi\spatial
predictability refers to the ability to predict signal stgth properties at locatioh by observing it at a
different location’. Both properties are, in fact, exploited by localizatiosteyns to aid location pre-
diction [5], [2]. Such predictabilities allow an attackentisit a WLAN installation and collect sufficient
information (such as a radio map) to launch two types of k#ta) Against authenticationAn attacker
can forge his location by ‘guessing’ the signal strengttie@tocation being spoofed and reporting this to
the localization system, and (Bgainst privacy:An attacker could monitor another user's communication
with the localization system and use that information toduigantage in determining that user’s location.

Looking beyond signal strength: Philosophically, it is not good security practice to buiigsgems over

a property that is known to have weaknesses. While it mighpdsesible to address security through
dedicated hardware such as infrared or ultrasound, theesggamuilding accurate yet secure localization
systems over commodity 802.11 hardware is challengingrateddsting from a research perspective apart
from being commercially attractive. Thus, the challenge ¢an we build such a systemif this paper,
we identify a unique property of the wireless environmeatletl Wireless Congruityvhich we believe
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Fig. 1. An analysis of the congruity property.

might provide the right answer towards our question of bogddsecure localization algorithms. In the
next Section, we derive the concept of congruity. Later inti®e Il we validate its properties through
experiments in the lab and in a rich wireless environmentc@elude with key research challenges that
lie ahead in Section IV.

II. WIRELESS CONGRUITY

Motivation and threat model: Suppose a group of people wish to conduct a conference or tnyed

a public place such as hotel or a community center equipptddwireless access. The attendees wish
to grant access to confidential material (or just implemetivork access control and/or encryption) to
wireless clients who are within a certain physical premisghsas a conference hall. Here, validation of a
client’s location and maintainig his privacy in this prosese both important. A successful attack in this
scenario, for example, could be that an attacker conviteektalization system that he is present within
the conference hall while being physically present at sedfit location.

We assume a reasonable and practical threat model for catidacvalidation problem. We restrict our-
selves to the case where the attacker has a single wiretestge to send/receive traffic. This is justified
for the following reason: consider a case where the attacd®s a network of monitoring nodes who com-
municate among themselves. Firstly, it would be considarbdeach of physical security if an attacker
is able to place such nodes around and let them communickte.aAeasonably good wireless intrusion
detection system would be able to monitor extraneous tiafflve system. Finally, if an attacker is indeed
able to place such nodes such as monitors and proxies ank iammmunicate with them fast enough,
its clear that a localization system that does not use detideardware would not be able to thwart such
an attack. In fact, its is nearly impossible for a localiaatsystem to distinguish between a legitimate user
and a proxy device that possesses all the necessary cedddéotact as the user.

Although our threat model and thus the proposed problem dodwes not tackle sophisticated attacks,
we argue that in fact attacks where its hard to detect abridsateaviour either through survelliance or
wireless monitoring are in fact the toughest to defend againhus, in this paper, we restrict ourselves
to attacks where an adversary uses his/her laptop to phssaure some information over time in an
inconspicuous mannerAnd he uses this to either (i) spoof his location to the syster (ii) determing
another legitimate client’s location. We realize that aegting signal strength based systems with strong
cryptographic primitives or timing constraints [6] will hprovide the answer. This is because even if a
wireless transmission from a client that is part of a loelan protocol is fully protected (through strong
cryptographic mechanisms), the signal strength of thastrassion still provides sufficient information
to the system (and the attacker): source, destination aedgh of transmissidn This is sufficient for
both the system and the attacker to realize their respegpbiats.

!Note that, conceptually, the source and destination of aélless packets have to be sent in the clear.



Concept of congruity: We illustrate the concept of congruity through a thoughtezkment shown in
Figure 1(a). There are five nodes in this wireless envirorinpassibly belonging to different networks.
Nodes/N; and N5 are 802.11 access points (APS); the rest are laptop usexs sAbwn is the transmission
range of the AP-noded; and N5. Now suppose only one AP-node was present,/saySince the nodes
N;_4 are all in close vicinity of each other, they would experiesanilar ‘behavior’ of the wireless chan-
nel. By ‘behavior’, we mean the following: suppose alongsédch node was a passive observer, who
made a log of all possible events or observations reportetidwireless card used by that node. What
events could such observers log ? To be precise, this woplelhdieon the amount of information that the
wireless interfaces export back to the host operating systelay, but the following events would com-
monly available: packet receptions (with or without bivdeerrors) for both data, management (beacon
messages) and control frames (such as RTS, CTS, ACK) andvalisas of the medium being idle due
to contention related backoffs (start, end and duratioheidle-times) — channel idle-time.

Now if two observers (at different nodes, sady and N3;) were to compare their logs, they would find a
large number of similar entries. This would happen becaosie dbservers more-or-less have the same
local wireless environment; that is, they have very similar setedfhbors, contending stations, or sources
of interference. Thus, they experience very similar eventsehavior of the wireless medium. Now if
AP-nodeN5 were to join this experiment (with its range as shown in Feglifa)), this would increase the
entropy of the network and change the local wireless enaemnt for some of the nodes. In particular,
nodes/N, and N3 would find greater similarities than nodas andN,. This is because the transmissions
made by/N; would not reach nodé/, and such events would increase the differences in theieotisp
logs. Through similar reasoning, we can find that out of aleipairs, nodesV; and N5 will have the
least number of similarities because of the differencehéiriocal wireless environment.

Thus, based on the above thought-experiment, we concladdvib nodes that are closer to each other
in terms of their position in the overall distribution of tinreless nodes in a given environment (that
possibly belong to different networks), will experiencereasingly similar behavior as quantified by our
passive observer thought-experiment on these nodes. Awthes get farther apart, they will each have
an increasingly different local wireless environmentt ibathey will interfere, contend and communicate
with a different set of wireless nodes, and thus, they wit@&asingly differ in their observations. We call
this concept of two nodes experiencing similarities in tie@dvior of the wireless medium asreless
congruity. Although the concept of congruity is not previously expldrwe note that prior work in [7]
uses similar concepts in a very different problem domain.

From our discussion, it follows that two nodes that arsufficientvicinity will have a very similar local
wireless environment, and will thus experience good cahgre further support this conjecture through
experiments in a rich indoor library environment consigtai over 150 nodes, in Section Ill. The next
guestion is in order to achieve good congruity, how closeukhtwo nodes be? To answer this, we
consider the reverse question: If we somehow ‘measure’ atetmine that two nodes have congruity, to
what degree are they in the physical vicinity of each otheln® dnswer depends on the density and the
entropy of the wireless network. Going back to our thougttegiment of Figure 1, before AP-nodé
was added to the network, nodas and N, were observing good congruity. The addition of nade
increased the entropy and the density of the network and ¢hiigiher degree of vicinity was needed for
good congruity. Only noded, and N5 could experience good congruity, while the congruity betma,
and NV, decreased due to insufficient vicinity between them. It carsden that a dense network will be
able to distinguish between small physical separationsdet wireless nodes when compared to sparse
one. We support this further through experiments in Sedtlon



In order to better understand how congruity relates to apatinity, we study this property in an idealized
setting. Assume a large area populated with wireless naaiésmly spread around, with a per unit area
density ofp. Assuming uniform transmit power and receiver radio charastics, any node in this region
will receive transmissions from another node located attraba distancea? (say). This environment
is shown in Figure 1(b). Assume that nodes get roughly ego@ahces to transmit using the 802.11
distributed coordination function. Consider two nodes A & Say we measure the congruity between A
and B as the number of packets they receive in common ovetarcatterval of time. Asymptotically, this
value will be proportional to the number of nodes that ardvexdommon region between A and B. This is
equal to the area of intersection between the circles niigitipy the node density. The inset plotin Figure
1(b) shows the congruity as a function of the separation &etwA and B through elementary geometric
analysis. The degradation in congruity with distance magipear to be close to linear (inset in Figure
1); this is precisely given by the expression (obtainedughosimple mathematic@)R?sin~'(d/2R) —
d(R? — d*)'/? = O(R) which computes the desired area of intersection in Figus (&(is the separation
between A and B). From this analysis, two key properties oél@ss congruity follow:

Robustness. If congruity between two wireless nodes A and B is zero, theythen separated by a
certain minimum distance, called tl®ngruity DistanceD,. This property can be proved easily through
contradiction — if such a minimum distance did not exist tlitewould be possible for two nodes in
maximum possible vicinity of each other to receive a totdifferent set of transmissions each. Practically
this is hard to happen for the reasoning given above and treiproperty follows. For the example
environment of Figure 1(b)D. is O(R). Likewise if the congruity is non-zero, A and B are separated
by a certain maximum distande.. The actual value oD, is a function of the network topology, radio
propagation and such wireless characteristics. We calltti@ security property for the reason that there
exists apractical and finitevalue of D, for every network environment. The value bf places a strict
limit on the chances for an adversary to successfully gueswireless events at a specific location — the
adversary cannot predict the events for a wireless netwaKa@cation that is distancB. apart from the
adversary’s current location.

Accuracy : Accuracy refers to how well can congruity predict physicetahces. From the analysis
above and as shown in the inset plot of Figure 1(b), we seerinear degradation of the metric with
distance. In general, the exact nature of this relation diol@pend on the network topology and other
characteristics. Building localization algorithms thake full advantage of congruity and its relation to
physical proximity requires further thought and reseavefyefer to this later in Section IV. The goal of
this paper is to discuss the security properties of wiratesgruity within the research community.

Design of a congruity metric: A ‘metric’ function to measure congruity on a fine-grainedisas an
essential ingredient for building localization algorithiaround it. While designing such a function would
require careful analysis and remains as a research chalfenfuture work (Section V), for the purposes
of this paper we use a simple yet efficient function: we compuutngruity between two nodes A and
Bas(A,B) = MJF]NV% Here, N, (V) is the number of packets received by A(B) during a fixed
duration of time. N 45 is the number of packets that were commonly received by bodamd\B during
this fixed observation time. For the homogeneous setting/shio Figure 1, we note that the congruity
function ((A, B) closely approximates the theoretical estimate shown ag#e plot in Figure 1. We

shall use this later in Section Il to study congruity in ériwireless environment.

Design of a secure localization system: A practical system based on congruity can be built in the fol-
lowing manner. The target wireless installation is equippéth a certain set of monitors, or receivers,
which constantly receive packets and crediagerprintof the sequence of transmissions received. These



monitors are placed at locations which need to be authéatic®®ne way of creating such a fingerprint
would be use a suitable locality-preserving hash funct&jn The fingerprint preserves information on
the set of packets received along with their sequence oriaglm a concise form. These fingerprints are
sent to a central server periodically using a secure metBindgilarly, a wireless nodes or clients compute
this fingerprint and communicate them to the central serveclvcomputes its congruity with each of the
monitors. The monitors that exhibit non-zero congruityhite client give a strong sense of its location.
The exact value of the congruity could also be used to futtigrgulate the client’s location coordinates.
This is a straightforward and simple design of a system basecbngruity, and it might be possible to
combine this effectively with existing approaches [9], [3], [4], [10], [11], [12] to get additional benefits
(Section IV).

[1I. AN INITIAL EMPIRICAL EVALUATION

We present results from two sets of experiments — first in akualding ( 30 nodes) which studies the
localization prospects, and second in a rich library emriment (150 nodes) which study the robustness
prospects for congruity.

Lab experiments. First, we study how physical separation impacts congréiyure 1(c) shows our ex-
periment setup where a mobile node X moves through threévpasenitors A, B and C. All four nodes
make observations on the wireless medium. The experimesnpedormed in an office building which
hosts a 802.11b/g wireless LAN built off 30 APs. No artifidiaffic was injected; all measurements were
thus based off the everyday network usage traffic on the @gseL AN. Figure 1(d) shows the results.
From the plot, it is evident that as the separation to a mo(stech as A) increases the corresponding con-
gruity (denoted by X, A)) decreases and reaches zero after a certain distance.iJtisa® can act as an
estimate for the network’s congruity distance metric. Thesd is also reflected in the congruity measure-
ments of(X, B) and(X, C'). Also by comparing the values 0K, A), (X, B), (A, B) we observed that
triangle inequality was satisfied which allows practicadteyns to use congruity as a distance metric. The
gradual degradation in the congruity values also illustretw well physical separation affects congruity.
Thus, by designing better congruity metrics combined woitalization algorithms, it might be possible
to get good localization accuracy with congruity.

Library environment: We conducted experiments in a rich library environment amiig about 150
wireless nodes. About 10% of these nodes were access pAi$3, (the rest were laptops. During the
experiment about 11% of the nodes were mobile, the rest watiersary (including the APs). Figure 2(a)
shows the floor-plan and the landmarks where data was cedléshaded circle). As shown, the library
consists of three large rooms. We noticed that due to goeddirsight, two nodes could communicate
with each other as long as they were in the same room. Thesistlown acted as the landmarks where
we captured wireless traffic. The experiment was perfornsdguthe following methodology: Using
two laptops at any point of time, we selected two of theser@atts and collected wireless traces. These
traces were used to compute the congruity distance betwese selected landmarks. By repeating this
setup for a comprehensive set of tuples, we covered theeesgtirof landmarks shown in Figure 2(a).

Figure 2(b) plots the results. The X-axis shows three setlat# — tuples in the same, adjacent and non-
adjacent rooms. The Y axis (shown in log-scale) is the cabgnuetric computed between two landmark
points. The results show that the congruity metric exhigded security properties. The congruity be-
tween adjacent rooms is an order of magnitude lower thanafhatples within the same room. Also in
the case of non-adjacent rooms the congruity is four ordensagnitude lower. The inset plot of Figure
2(b) magnifies on the values for adjacent versus non-adjg§aeseparation of one-room) rooms. This es-
sentially implies that one-in-ten-thousand packets wasnaon between two points separated by a room
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Fig. 2. Experiments in two operational wireless environtaen

in between. Also about 3.6 packets were common in every 180Regps for two tuples in adjacent rooms
while 80 % of the packets were common for tuples in the sammrokhis gives us a sense of the diffi-
culty that an attacker will have in making an educated gubesitethe wireless transmissions received at
a different location. Using a sensitive receiver here wjljigegate significant additional interference from
nearby sources and will actually hamper an attackers chasfqaredicting the wireless transmissions.

The first set of results show promise for localization while second results show its robustness. These
observations provide us with a positive indication that wghhbe able to converge onto a suitable metric
or an algorithm for robust localization. This could be eittteough congruity, signal strength or maybe
an appropriate combination of these metrics.

IV. RESEARCHCHALLENGES AHEAD

In this paper, we have proposed congruity as a property ofvingless medium that could act as the
basis for designing localization systems which exhibitusihess in the face of malicious intent. There
are a number of interesting and challenging issues thatinemefore such a design can be accomplished.
Firstly, we need to understand the various factors thataffengruity and to what extent. Factors such as
hidden terminals, artificial reduction in node density duegage of non-overlapping channels, mobility of
users, and lack of sufficient traffic could have a negativecafbn congruity. Second, we need to build fast
methods (with practical convergence times) to estimatedngruity in a dynamic wireless environment.
Finally, we need to also evaluate how congruity could bereded to non-802.11 networks and whether
we could indeed take advantage of diversity in the undeglyiireless technologies.
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