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A Clustering Scheme for Hierarchical Control in
Multi-hop Wireless Networks

Suman Banerjee, Samir Khuller

Abstract—In this paper we present a clustering scheme to create a hier-
archical control structure for multi-hop wireless networks. A cluster is de-
fined as a subset of vertices, whose induced graph is connected. In addition,
a cluster is required to obey certain constraints that are useful for manage-
ment and scalability of the hierarchy. All these constraints cannot be met
simultaneously for general graphs, but we show how such a clustering can
be obtained for wireless network topologies. Finally, we present an efficient
distributed implementation of our clustering algorithm for a set of wireless
nodes to create the set of desired clusters.
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works, Hierarchy

I. INTRODUCTION�
APID advances in hardware design have greatly reduced
cost, size and the power requirements of network elements.

As a consequence, it is now possible to envision networks com-
prising of a large number of such small devices. In the Smart
Dust project at UC Berkeley [1] and the Wireless Integrated Net-
work Sensors (WINS) project 1 at UCLA researchers are at-
tempting to create a wireless technology, where a large number
of mobile devices, with wireless communication capability, can
be rapidly deployed and organized into a functional network.

Hierarchical structures have been used to provide scalable so-
lutions in many large networking systems that have been de-
signed [2], [3]. For networks composed of a large number of
small, possibly mobile, wireless devices, a static manual config-
uration would not be a practical solution for creating such hi-
erarchies. In this paper, we focus on the mechanisms required
for rapid self-assembly of a potentially large number of such de-
vices. More specifically, we present the design and implementa-
tion of an algorithm that can be used to organize these wireless
nodes into clusters with a set of desirable properties.

Typically, each cluster in the network, would select a “cluster-
representative” that is responsible for cluster management —
this responsibility is rotated among the capable nodes of the clus-
ter for load balancing and fault tolerance.

A. Target Environment

While our clustering scheme can be applied to many network-
ing scenarios, our target environment is primarily wireless sen-
sor networks [4], and we exploit certain properties of these net-
works to make our clustering mechanism efficient in this envi-
ronment. These networks comprise of a set of sensor nodes scat-
tered arbitrarily over some region. The sensor nodes gather data
from the environment and can perform various kinds of activi-
ties depending on the applications — which include but is not
limited to, collaborative processing of the sensor data to produce
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an aggregate view of the environment, re-distributing sensor in-
formation within the sensor network, or to other remote sites,
and performing synchronized actions based on the sensor data
gathered. Such wireless networks can be used to create “smart
spaces”, which can be remotely controlled, monitored as well as
adapted for emerging needs.

B. Applicability

The clustering scheme provides an useful service that can be
leveraged by different applications to achieve scalability. For ex-
ample, it can be used to scale a service location and discovery
mechanism by distributing the necessary state management to
be localized within each cluster. Such a clustering-based tech-
nique has been proposed to provide location management of de-
vices for QoS support [5]. Hierarchies based on clustering have
also been useful to define scalable routing solutions for multi-
hop wireless networks [6], [7], [8] and [9].
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Fig. 1. An example of a three layer hierarchy

The design of our clustering scheme is motivated by the need
to generate an applicable hierarchy for multi-hop wireless envi-
ronment as defined in the Multi-hop Mobile Wireless Network
(MMWN) architecture [5]. Such an architecture may be used to
implement different services in a distributed and scalable man-
ner. In this architecture, wireless nodes are either switches or
endpoints. Only switches can route packets, but both switches
and endpoints can be the source or the destination of data. In
wireless sensor networks, all sensor devices deployed will be
identical, and hence we treat all nodes as switches, by MMWN
terminology. Switches are expected to autonomously group
themselves into clusters, each of which functions as a multi-hop
packet radio network. A hierarchical control structure is illus-
trated in Figure 1 with the nodes organized into different lay-
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ers. An instance of the clustering scheme operates at each of the
layers to create a set of clusters at that layer. All nodes in the
network are joined to the lowest layer (Layer 0). Three of the
clusters of Layer 0 are shown in the figure. Nodes � , � and �
are the cluster representatives of these clusters. The representa-
tives of the clusters in a layer join the layer immediately above.
The instance of the clustering scheme operating at Layer 1, has
placed these nodes ( ���	� and � ) into one cluster. Node � is
the representative of this cluster at Layer 1, and hence is also
present in Layer 2 (the highest layer in this example). Connec-
tivity between adjacent clusters is provided by virtual gateways,
that essentially are pairs of peer switches, in the neighboring
clusters. Each virtual gateway comprises of multiple such peer
pairs. Other details on routing and addressing schemes within
and outside the cluster may be found in [5].
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Fig. 2. A routing scheme using a clustering-based hierarchical structure would
be most useful in a slowly changing mobility domain

The MMWN architecture is “not currently designed to oper-
ate effectively in a network comprised of highly mobile nodes”
[5]. Hence, a routing scheme created using the clustering-based
hierarchical control infrastructure, like MMWN, is most effec-
tive in a slower mobility domain than a flat routing scheme us-
ing on-demand routing solutions for highly mobile environments
like Dynamic Source Routing (DSR) [10], Ad-hoc On-Demand
Distance Vector routing protocol (AODV) [11] and Temporally
Ordered Routing Algorithm (TORA) [12], as shown in Figure
2, but would have the benefits of scalability of a hierarchical
scheme.

We hypothesize that topology changes in wireless sensor net-
works will also be slow and infrequent. Once a cloud of sen-
sor devices is deployed, they would mostly stay stationary. New
nodes will occasionally join the network, by drifting into the
vicinity of the existing network, or some existing nodes will drift
away or disappear (e.g., due to loss of power). The clustering
scheme needs to maintain clusters across such topology changes
and we address such issues in Section IV.

C. Desired goals of the clustering scheme

To create the hierarchical control structure described above,
we postulate the following desirable properties that should be
present in the clustering mechanism that runs at each layer of the
hierarchy. Similar clustering goals have been specified in related
clustering work for wireless networks in [13], [14].
 Each cluster is connected. This is an obvious requirement to
localize and restrict cluster traffic to within the cluster.
 All clusters should have a minimum and maximum size con-
straint. Typically a cluster member maintains complete state in-
formation about all other members within its cluster. Hence, a
maximum cluster size constraint limits per cluster state to within
what can be efficiently maintained by the cluster members. Ide-
ally, we want all clusters to be of the same size, so that no cluster

is overburdened, or under-burdened with processing and storage
requirements of cluster maintenance. Small clusters are ineffi-
cient use of resources at the nodes, while large clusters increase
the overhead. For ease of the clustering scheme design, we set
the minimum cluster size to be half the maximum size.

Each of such k-1 vertices and
the center vertex make a cluster
of size k.

Fig. 3. Clustering in a star graph with one central vertex and �
��� radial vertices


 A node in any layer of the hierarchy belongs to a constant num-
ber of clusters in that layer. Ideally, we would want a node to be-
long to only a single cluster in a layer. However, it is apparent,
that for connected clusters with sizes bounded as described in the
previous goal, such a requirement cannot always be met. Some
nodes in the network that have very high degree, might need to
be included in multiple clusters. For example, in the star graph
(shown in Figure 3), any cluster that has size greater than one,
needs to include the central node to maintain cluster connectiv-
ity. The central node in the star graph will therefore, belong to
each cluster in the network. However, we are able to leverage
special properties of the communication graph of wireless net-
works to guarantee a small constant upperbound for the number
of clusters to which a node belongs to 2.
 Two clusters (in any layer) should have low overlap. All nodes
common to two clusters, will have to maintain cluster state and
carry intra-cluster traffic for both the clusters. Ideally, clusters
should have no overlap. But as discussed above, since in some
topologies, some nodes might have to belong to more than a sin-
gle cluster, zero overlap is not possible. Our clustering scheme
guarantees that no two clusters in a layer will have an overlap of
more than one node.
 Clusters should be stable across node mobility. The cluster-
ing scheme should scalably adapt to new nodes drifting into the
network, existing nodes disappearing from the network (due to
power loss) and other node such node migration scenarios. Such
events should cause only a very localized re-clustering (if at all
necessary) so that the previous desired goals are maintained. We
describe our cluster maintenance scheme for the distributed im-
plementation of clustering that handles node mobility in Sec-
tion IV-B.

D. Main contributions

In this paper we propose a clustering scheme to create a lay-
ered hierarchy, similar to that desired in MMWN [5], for wire-
less networks. We define our clustering problem in a graph the-
oretic framework, and present an efficient distributed solution
�
It should be noted, that in our clustering scheme, most of the nodes belong

to only a single cluster in each layer and the few that do not are within the small
constant bound as described.



3

that meets all desirable properties mentioned earlier. For arbi-
trary graph topologies, sometimes no solution may exist that can
satisfy all the requirements of a desirable solution. But in wire-
less network topologies, properties of the underlying communi-
cation graphs may be exploited to achieve desired solutions, as
we demonstrate in this paper.

The rest of the paper is structured as follows. We pose our
problem in a graph theoretic framework in Section II. We dis-
cuss the clustering algorithm in Section III. In Section IV, we
demonstrate how our clustering algorithm can be implemented
in a distributed environment as the sensor network. We evaluate
our clustering scheme through simulations in Section V. Finally,
we discuss related work in Section VI and conclude in Section
VII.

II. PROBLEM STATEMENT

We first define a generic network clustering problem as fol-
lows: Given an undirected graph ������������� , and a positive
integer � , such that, ��� �!�#"$�%" , for each connected compo-
nent, find a collection of subsets (clusters), �'&(�*)*)+),�-�/. of � , so
that the following conditions are met.
1. 021354 & � 3 �6� . All vertices are part of some cluster.
2. �879� 3;: , the subgraph of � induced by � 3 is connected.
3. �8�<"$� 3 ">=@?A� . This is the size bound for the clusters.
4. "$� 3�B �DCE"DF@G%�	�+� . Two clusters should have up to a small con-
stant number of common vertices. We show, later in the section,
why all clusters cannot be guaranteed to be non-overlapping and
yet meet the other requirements. 3

5. " HI�KJA�*"IFLGM�	�*� , where HN�OJ>�P�LQ>� 3 " J!R<� 3�S , i.e.. a vertex
belongs to a constant number of clusters.

We note that there may not be a feasible solution to the above
problem for any general graph. Requirement (5) would be vi-
olated in a star graph (a graph with a single center vertex andTVU � radial vertices, and there is an edge between the cen-
ter vertex and each radial vertex as in Figure 3). For �XWY? ,
any cluster in the star graph would include the center vertex,
for the cluster to be connected. Hence, for the center vertex, Z ,
we would have " HN�OZ-�*"8F[GM�*\ ]'� , violating requirement (5) of
the problem statement. However, the underlying graph struc-
ture for a network of wireless nodes has certain useful proper-
ties that can be exploited. A wireless node ^ , can communi-
cate with another node � , if and only if, � lies within the trans-
mission radius, _a` , of node ^ . The underlying graph, in this
case, would have a directed edge ^#bc� . For our algorithm,
we only consider bi-directional edges. So, a valid edge in the
graph reflects the fact that both the nodes are within each other’s
transmission range, i.e., de�f^M�	�g� , the distance between the nodes
^ and � is at most hjilk'�K_a`m�	_onp� , for them to have an edge in
the graph. This is in conformance with the assumptions made
for most MAC protocols for wireless environments, including
MACA [15], MACAW [16], IEEE standard 802.11 [17], FAMA
[18] and RIMA [19].

We first consider the case when all nodes in the network have
the same transmission range. In this case, the underlying com-
munication graph, is a Unit Disk graph – defined in [20], [21]
in terms of “distance” or “proximity” models, which consist of
q
Our clustering algorithm actually guarantees that r sAteu8s*v+r2wx� , i.e. two

clusters overlap in not more than one vertex.

a value _yW#z and an embedding of the vertices in the plane,
such that �K{|��JA� is an edge if and only if de�O{2��JA�}�Y_ . Here,
_ is the common transmission radius of all wireless nodes. For
such graphs, it can be seen that if a node has many neighbors,
i.e., a vertex has very high degree, then all these vertices have
to be within its transmission radius. These neighboring nodes
will, therefore, be relatively close to each other. As a conse-
quence many of these neighboring nodes will be within trans-
mission range of each other and will have edges between them-
selves in the communication graph. This would prevent the com-
munication graph from having dense “star-like” components em-
bedded in them. This is proved rigorously in Section III-C. We
exploit this feature to guarantee that each vertex in the graph is
in at most three clusters 4. This is not possible in general graph
topologies, as shown before.

Since the transmission range depends on the power available
at the node, in general, for a homogeneous set of sensor nodes,
the transmission radii would be close to each other. We also con-
sider the case where different nodes may have different trans-
mission radii. For such scenario, our clustering algorithm would
guarantee that no node is a member of more than GM�f~��>���+�|�'�f�� �e� � ���clusters, where _o���,� and _o��� � are the maximum and minimum
transmission radii respectively. We use the term Bounded Disk
graph to classify these underlying topologies 5. Hence, the al-
gorithm does not violate Requirement (5) even when orders of
magnitude difference exist between the transmission power of
the nodes.

If there are nodes with very small transmission radii, then the
bound on " HN�OJ>�+" may be large, but in general, nodes with very
small transmission radii would be nearly disconnected from the
rest of the network, and can be considered “dead” for all practical
purposes.

For the rest of the paper, we will focus only on communication
graphs that are either unit disk graphs (for wireless nodes with
identical transmission radii _ ) or bounded disk graphs (where
the transmission radii of the nodes are bounded between _ ��� �
and _o�I��� ) 6. Even for these graphs, to satisfy Requirements (2)
and (3), may lead to violation of Requirements (4) and (5), as
shown below.

Requirement (4) would be violated even in unit disk graphs as
shown in Fig. 4 for any clustering algorithm. The total number
of vertices in the tree is T . The zones A, B and C each have z/)�� T
vertices, the segments L1, L2 and L3 have z/)�zA� T vertices, while
the segment L4 has ze) ze� T vertices. If � , the lower bound of the
size of a cluster, is set at ze) ��� T , any cluster will have vertices
from at least two of the zones A, B and C. Also, from Condi-
tion (2), the upper bound of the size of a cluster is z/)�� T , and so
there must be at least two clusters to cover all the vertices. Let
us choose two such clusters, �o& and ��� , and let �o& have vertices
�
In this paper, we only illustrate the results for two-dimensional topologies.

The scheme works for any D-dimensional space, with the upper bound of �'���+�
being a function of only the dimensionality, � .�

From our algorithm and its proof, it will be apparent that one can construct
some specific Bounded Disk Graphs, for which some nodes will necessarily be-
long to � �¢¡¢£-¤*�-¥ �'�f�¥ �e� � �f� clusters, to meet the conditions of the problem statement.¦

Our clustering technique can also be applied to general graph topologies, if
we remove the Requirement (5), that each node belong to a constant number of
clusters. The upper bound on the number of clusters a node belongs to, for gen-
eral graphs, is the maximum degree of a node, which is usually low for many
topologies.
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Fig. 4. Violation of constant sharing between clusters (with size parameter § ),
even for disk graphs

from zones A and B (and maybe some other vertices too) and let
��� have vertices from zones B and C (and some other vertices as
might be necessary). To keep each cluster connected, we must
have all vertices in segment L2 belong to both the clusters. This
would mean " � & " B " � � ">W<" ¨I?E"©�xze) z>� T , i.e., overlap, which is
linear in the number of vertices.

Hence, we modify our Requirement (3) as follows :

3(a). ª¬«,�D"�� 3 ">=@?A� .
3(b). ª¬« except one �j�<"$� 3 " , we allow one single cluster in the
entire graph to have size smaller than � .
Under such a relaxation, it is possible to cluster the graph in
Fig. 4, by making � & include zones A and B and the segments
L1, L2 and L4, and ��� include zone C and segment L3.

Hence, our exact problem can be refined as stated below :
Given a disk graph �­�X��������� , and a positive integer, � , such
that, �j�®�}�¯"$�%" , for each connected component of � , find a
collection of subsets � & �+)*)*)	�°� . of � , so that

1. 0 .354 & � 3 �6� .
2. �879� 3 : , the subgraph of � induced by the vertices � 3 , is con-
nected.
3. The sizes of the subsets are bounded as follows :

(a) ª¬«,�D"�� 3 ">=@?A� .
(b) ª¬«±� except one �,�²�³"�� 3 " , i.e., we allow one single cluster

in the entire graph to be smaller than � .
4. "$� 3 B � C "DFxG%�	�+�
5. " HI�KJA�*"IFLGM�	�*� , where HN�OJ>�P�LQ>� 3 " J!R<� 3 S , i.e.. a vertex
belongs to a constant number of subsets.

Next, we state and prove the algorithm, first for unit disk graphs,
when all nodes have the same transmission radius, _ . Sub-
sequently, we show how the same algorithm can be applied
for bounded disk graphs, where nodes have varying transmis-
sion radii, but with Requirement (5) modified as " HN�OJA�*"´F
GM�µ~l�>�/�*�|�E�µ��|�/� � �,� .

III. SOLUTION

We first outline the algorithm as it applies to a connected
graph. In this section we first outline the clustering algorithm as
it applies to a connected graph (or to each connected component
of the graph, if it is not connected).

A. Overview of the Solution

The algorithm proceeds by finding a (rooted) spanning tree
of the graph. One could use a Breadth-First-Search tree, or any
other tree. The main advantage of a BFS tree is that it has a ra-
dius, which is bounded by diameter of the graph.

The algorithm runs in linear time. Let ¶ be this rooted span-
ning tree, and ¶·�OJA� denote the subtree of ¶ rooted at vertex J .
We use " ¶·�OJA�*" to denote the size of the subtree rooted at J . Let
�M�KJA� be the set of children of J in ¶ .

We assume that "$�%">W@?A� , else we can treat the entire graph as
one cluster. First we identify a node { such that " ¶·�K{E�*">W@� such
that for each JMR¸�M�O{'� we have " ¶·�OJ>�+">=@� . It is clear that such
a node always exists. Let �M�K{E� consist of ¹ nodes J>&+�*)+)*)��	J 1 .

If we do not worry about Requirement (5), then it is easy
to create a set of clusters from the subtree ¶·�K{E� . This can be
achieved by partitioning the set of subtrees Q+¶·�KJ>&º�°�+)*)*)	�,¶·�OJ�»�� S
where J>&+�*)*)+)���J�» are the children of { in the tree, appropriately
as described below. The partitions are, by definition, disjoint and
each partition consists of a set of subtrees, such that the number
of all vertices in the subtrees comprising the partition lies be-
tween � U � and ?A� U ? . Each partition is created by adding
subtrees sequentially to it until the size lies between � U � and
?A� U ? . Addition of a single subtree cannot increase the partition
size to more than ?A� U ? , since each subtree has size at most � U � .
Only one single partition (the last partition) may have size less
than � U � . The vertex { is added to each of the partitions to en-
sure that they are connected. All the partitions are connected and
each partition that now meets the desired size bound between �
and ?>� U � (all partitions except possibly the last one) are defined
to be clusters. All the vertices put into clusters are deleted from
the tree. Vertex { is not deleted if the last partition did not meet
the size bounds and hence, not made a cluster. These steps are
repeated to create all clusters.

In fact, this algorithm can be implemented via a post-order
traversal of ¶ . When we are visiting a vertex, we can check the
size of the subtree rooted at that vertex. If the subtree has size
W@� then we can trigger the above scheme. Once we output a set
of clusters and consequently, delete the vertices that belong to
these clusters, we can update the size of the current subtree and
continue with the post-order traversal at the parent of this vertex.

The main problem with the above scheme is that { may belong
to many clusters (in the worst case, proportional to the degree of
{ even though this bound is unlikely to be achieved in practice).
We will now make use of the properties of the disk graphs that
arise in this application to avoid this problem.

We will prove that for any six vertices that are adjacent to { ,
there exists a pair of them with an edge between them. Using
these edges, we can connect the subtrees rooted at children of {
to each other to create the clusters, without using vertex { (ex-
cept in a small number of clusters). In the pseudo-code descrip-
tion of the procedure GRAPHCLUSTER, this can be observed as
the second condition to enter the while loop at Line 7. This will
guarantee that vertex { belongs to at most a constant number of
clusters. It is easy to see that the intersection of clusters will also
have at most one vertex.
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B. Detailed Description of Algorithm

We use the following notation :
 ¶ : A BFS tree of graph � .
 root �µ¶a� : Root of the BFS tree.
 ¶·�K¼E� : Subtree of ¶ , rooted at vertex ¼ .
 ClusterSet : The set of clusters created by the algorithm.
 UnpChildren : Variable used to store the set of remaining chil-
dren (i.e. that has not been deleted) that are yet to be processed
at a vertex.
 PartialClusterSet : Set of temporary clusters that have size =
� .
 Empty set is denoted by ½ .

Proc. 1 : GRAPHCLUSTER( ���	� )
1: ¶¿¾ BFS tree of � ; ClusterSet ¾ ½
2: for {ÀR­� , in post-order traversal of ¶ do
3: if �-" ¶·�K{E�*">W@�/� then

Q ASSERT : " ¶·�OJ>�+"Á=Â�
��JÃR Children �K{E� S
4: PartialClusterSet ¾ ½

UnpChildren ¾ Children �K{E�
5: while Ä/JÃR UnpChildren do
6: TempCluster ¾Å¶·�KJA�

Remove J from UnpChildren
7: while �º" TempCluster "Á=Â�/�jÆ

�OÄ/¼ R UnpChildren, s.t. ¼ has an
edge to Ç¿R Children �O{'� B TempCluster) do

8: TempCluster ¾
TempCluster 0À¶·�K¼E�

9: Remove ¼ from UnpChildren
10: end while
11: if �-" TempCluster ">WÈ�e� then
12: ClusterSet ¾

ClusterSet 0XQ TempCluster S
13: Remove all subtrees in TempCluster
14: else

Q ASSERT : No such ¼ is found S
15: PartialClusterSet ¾

PartialClusterSet 0 TempCluster
16: end if
17: end while
18: MERGEPARTIALCLUSTERS( {2�	�
�

PartialClusterSet, ClusterSet �
19: if � Children �O{'���É½Ê�8Æ

�O{ has been assigned to some cluster) then
20: Remove { from the tree
21: end if
22: end if
23: end for
24: if PartialClusterSet Ë�Ã½ then

Q ASSERT : "PartialClusterSet "©�<� S
Q Let Ì�R PartialClusterSet S

25: ClusterSet ¾ ClusterSet 0´QDÌ#0´Q root �f¶a� S>S
26: end if

The algorithm creates a BFS tree and traverses the the tree in
post-order. Figure 5 shows the processing for a vertex, { , in the
tree. The vertex J has already been visited. Since " ¶·�KJA�+"�W®� ,

Proc. 2 : MERGEPARTIALCLUSTERS �K{|���
��Ì�� ClusterSet �
1: ��¾ ½
2: while �KÌ­Ë�Í½Ê� do
3: Pick an arbitrary partial cluster, Î from Ì
4: �Ï¾Ð�L0ÉÎ ; Remove Î from Ì
5: if �-" �j"DW@�/� then
6: ClusterSet ¾ ClusterSet 0XQ(�L0XQ({ SAS
7: Remove all subtrees in � ; ��¾ ½
8: end if
9: end while

Cluster formed at v
has been deleted from the tree
during processing at v
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Fig. 5. Example operation at a vertex × for the GRAPHCLUSTER procedure

cluster, ^ , has been created rooted at J and deleted from the
tree (Line 4 of the GRAPHCLUSTER procedure). Hence, at the
time { is being processed, there are seven remaining children
of { : ¼2�	Øe�fÎ2�	Ù���Ú/��ÛD��Ü and the remaining subtree size of ¶·�O{'� is
�E)�Ý>�IÞß� , that included { . The two clusters, � and � are formed
first without including { in any of these clusters (They both sat-
isfy the if condition on Line 11 of procedure GRAPHCLUSTER),
and are placed into clusters on Line 12. When MERGEPARTIAL-
CLUSTERS is called (Line 18), there are three partial clusters, the
subtrees rooted at vertices ¼2�	Ø and Ú . In MERGEPARTIALCLUS-
TERS, the cluster à is formed using the partial clusters from the
subtrees rooted at ¼ and Ø , and vertex { is used to connect the
two subtrees, which do not share a common edge. Finally, a sin-
gle partial cluster (the subtree rooted at vertex Ú ) is left. Vertex
{ is added to this partial cluster to form the partial cluster á , and
this is the only subtree that remains in the tree, and each of the
other vertices have been placed into some cluster and deleted.
Hence, when processing is done at the parent vertex of { , the
subtree rooted at { comprises of only the vertices in the partial
cluster, á .

If a single partial cluster is left in the tree after the entire post-
order traversal, it is made into a cluster of size less than � in Lines
24-26 of procedure GRAPHCLUSTER.

C. Proof of Correctness

We now outline the proof of correctness of the algorithm de-
scribed above. We use the following standard graph-theoretic
terminology :
 The Neighborhood, â²�O{'� , of a vertex { , is the set of vertices
that have an edge to the vertex { in the graph.
 A set of vertices that have no edges between any pair of ver-
tices in the set is termed an Independent Set.
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 The Maximum Independent Set, ãÉäAH , of vertices is an inde-
pendent set with maximum size.

LEMMA III.1. For unit disk graphs, the maximum independent
set, �KãÉäAH�� , in the neighborhood, âå�O{'� , of a vertex { has at most
5 vertices.

v v

v

v
v

2 3

4

5
6

uR

v1

Fig. 6. Every six neighbors of a vertex have at least one edge

Proof. The proof follows from simple geometric arguments. Let
the distance parameter of the unit disk graph be _ . Consider a
vertex, { , s.t. " â²�O{'�+"eW<æ . Let us assume that there is an Inde-
pendent Set of size six in the neighborhood, âå�O{'� . Let these six
vertices be J & �*)+)*)���JDç with the vertex indices labeled in a cyclic
order as shown in Figure 6. Since, J 3 Rèâ²�K{E�°�	de�K{|��J 3 �·�À_ .
Consider vertices J 3 and J C , such that they are successive vertices
from this Independent Set in the cyclic order, i.e. éê�Ã«K�KëPìDd�æA�°Þ
� . If �KJ 3 ��J�CD�8íRî� , then de�KJ 3 ��J�CD�oïÍ_ . Also, _ WÍde�O{2�	J 3 � and
_ÀW<de�O{2��J C � . So, d/�KJ 3 ��J C �oï<d/�K{|��J 3 � and de�K{|��J C � . Hence, inð {EJ 3 J C �-�KJ 3 ��J C � is the largest side, and so ñ { is the largest angle,
which must be ï òó . Hence, ô ç354 & ñ J 3 {'J C ï@æ�õ8òóP�@?Aö , a con-
tradiction. Hence, Ä/« , such that de�OJ 3 �	J C �N�@_ , i.e., �OJ 3 ��J C �÷R�� .

OBSERVATION 1. When the algorithm terminates, each vertex
is part of some cluster.

OBSERVATION 2. Each cluster formed by the algorithm is con-
nected.

OBSERVATION 3. Only one cluster may have size =³� and all
other clusters have sizes between � and ?A� .
OBSERVATION 4. Any pair of clusters has only one common
vertex.

OBSERVATION 5. The number of partial clusters, created on
exiting the while loop of Lines 5-17 of procedure GRAPHCLUS-
TER, is five.

Proof. Each partial cluster in the PartialClusterSet, has at least
one child of { in the tree, since TempCluster (Line 8 of procedure
GRAPHCLUSTER), comprises of subtrees of { rooted at some
children of { . A partial cluster is added to PartialClusterSet in
line 15 of procedure GRAPHCLUSTER. Let there be at least six
partial clusters ÌI&D�*)+)*)��	Ì ç numbered in the sequence in which
they are created. Let J & )*)+)KJDçøR Children �O{'� be vertices, in
these six different partial clusters respectively. A partial cluster
is added to PartialClusterSet if the inner while loop (Lines 7-10)

exits when the second condition on line 7 of procedure GRAPH-
CLUSTER is false. So, at the time Ì 3 was put in PartialCluster-
Set (Line 15 of procedure GRAPHCLUSTER), there would have
been no edge from any child of { in Ì 3 to any other unprocessed
child of { . These include all children of { in partial clusters Ì'C ,
for é!ï³« . In particular, for éîï¯«,�°�OJ 3 ��J�CD�ùíRÍ� , i.e. J & )+)*)�JDç
form an independent set of vertices. This contradicts Lemma
III.1. Hence, there can be up to five partial clusters.

OBSERVATION 6. During the processing pass (Lines 3-22) of
vertex Ç in the post-order traversal of GRAPHCLUSTER, it is ei-
ther deleted in that pass (being put in some cluster(s)) or is left
in the tree, and is placed in only one more cluster during the sub-
sequent processing pass of some ancestor { of Ç .

Proof. Let us assume that a vertex Ç is not deleted during its pro-
cessing pass in the post-order traversal. Then, if Ç is not deleted
by the time some ancestor { of Ç is being processed, Ç will be
part of some subtree rooted at a child of { . Each of the subtrees
rooted at children of { is placed in only one single cluster and
deleted from the tree, or is not assigned to any cluster during the
processing pass of { . Since this is true at each ancestor of Ç ,
eventally Ç will be assigned to a single cluster at some ancestor
and get deleted.

OBSERVATION 7. A vertex J , is part of up to three distinct clus-
ters [Requirement 4].

Proof. A vertex that is part of multiple clusters, would have to
satisfy the if condition in Line 3 of GRAPHCLUSTER. If this if
condition fails, the vertex is not placed into any cluster during its
processing pass of the post-order traversal, and will be placed in
only a single cluster subsequently (due to Observation 6). It can
be observed that all other vertices will be put into a single clus-
ter. The vertex that satisfies the if condition in Line 3 would not
be placed in any cluster created on Line 12 ofGRAPHCLUSTER

in the same pass of the for loop (Lines 2-23) of the post-order
traversal. These clusters comprise only of subtrees rooted at chil-
dren of { in the tree. In this pass { may only be placed in the
clusters created out of the partial clusters (Line 6 of MERGEPAR-
TIALCLUSTERS called from GRAPHCLUSTER). From observa-
tion 5, there are only five partial clusters. Each partial cluster
has size =®� . Hence, at least two such partial clusters needs to
be merged in Line 4 of MERGEPARTIALCLUSTERS to create a
cluster in Line 6. Hence, the maximum number of clusters cre-
ated out of the five partial clusters in Line 18 (of GRAPHCLUS-
TER) is two. If an additional partial cluster is still left in tree after
processing of { in the post-order traversal, this entire partial clus-
ter along with vertex { will be placed further in only one more
cluster (Observation 6). Consequently, the vertex { can be a part
of up to three clusters.

Thus, when the algorithm terminates, all the requirements for
the problem statement is satisfied.

LEMMA III.2. If _o�I��� and _o��� � are the maximum and min-
imum radii respectively, then the maximum independent set in
â²�K{E� has cardinality at most GM�µ~l�>�·�|�E�µ��|�/� � � .
Proof. Let ä��K{E� be the largest independent set in the subgraph
induced by Q({ S 0Iâå�O{'� . We define a “moat” ú*�K«f� for «2WÈz , which
is the annulus defined by circles of radii Z 3 _ ��� � and Z 35û & _ ��� � ,
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Fig. 7. Two vertices ü and ý in the neighborhood, þmtµ�l×A� of × that are part of the
maximum independent set in the subgraph induced by þmtµ�l×A�*ÿm��×A� have an
angular separation, � ��� ¦ . They belong to the same moat �,���;� , and there

are ¡¢£-¤*�º¥ �E�µ�¥ �/� � � such moats.

centered at { (see Figure (7). (Note that the constant, Z is cho-
sen to be

� � as a scale factor, for ease of proof using geometric
properties.) Let â 3 �K{E� be the neighbors of { that are in moat ú*�O«µ� .
Note that, any vertex, J Rîâ 3 �O{'� , must have a transmission ra-
dius, _	��W@Z 3 _ ��� � . This condition is needed for �K{|��JA� to be an
edge in the graph. We will prove that within each â 3 �O{'� there
are at most 11 vertices in ä��K{E� . Since the number of moats that
contain vertices from â²�K{E� is G%�f~��A� � �'�f��|�e� � � , the result follows.

Let Î|��Ù be two vertices that are in â 3 �O{'� . Without loss of gen-
erality, let _m» � _�
 . The distance between Î and Ù is at least
hPi�ke�O_ » ��_ 
 �p�Ã_ » since there is no edge between Î and Ù . We
can “shrink” the circle centered at Î with radius _ » until { is on
the boundary of the circle (see Figure 7). This new radius satis-
fies _
�» �Í_m» and _	�» W<Z 3 _ ��� � . Notice that the distance from
{ to Ù is at most Z 35û & _o��� �¸�<Z-_ �» . Draw a circle centered at {
with radius Z°_ �» . Notice that Ù is inside this circle, but outside
the circle centered at Î with radius _ �» . This implies that Ù is in
the crescent shaped shaded region.

Under these circumstances, the angle between Î and Ù at { is
ï ò ç , and by the same arguments as in Lemma III.1, there cannot
be more than 11 vertices in the moat ú*�O«µ� .

As a consequence of Lemma III.2, the procedure GRAPH-
CLUSTER would be applicable for Bounded Disk graphs, so that
each vertex will be a part of GM�f~��A���*� �E�µ��|�e� � �,� clusters.

D. Algorithm Complexity

The tree computation of Line 1 GRAPHCLUSTER, takes
GM�-" �j" � . The computation at each vertex { , in post-order traver-
sal, is GM�Kd������m�O{'��� . i.e. the degree of { in the tree. Hence, the
total cost for the entire post-order traversal is ô��pd���� � �O{'�²�
GM�-"��8" � . Hence, the complexity of the algorithm is GM�-" �j"�Þ¸"��8" � .

IV. DISTRIBUTED IMPLEMENTATION

The algorithm that is described in Section III-B, is a cen-
tralized solution to the clustering problem. In the distributed
scheme, each wireless node in the network runs an identical pro-
tocol. The protocol has two phases : Cluster Creation and Clus-
ter Maintenance. The cluster creation phase of the protocol is
invoked very infrequently, when the existing clustering falls be-
low a quality threshold. Cluster maintenance is an inexpensive

phase of the protocol that handles node mobility and other usual
dynamics of the network.

A. Cluster Creation

This is a simple distributed version of the centralized GRAPH-
CLUSTER algorithm. It can be initiated by any node in the net-
work (the initiator will be the root of the BFS tree). If multiple
nodes initiate Cluster Creation at the same time, simple tie break-
ing heuristics (e.g. initiator with least ID) is imposed to allow
only one instance to proceed; the rest are not propagated.

There are two parts to cluster creation : Tree Discovery and
Cluster Formation. The messages for Cluster Formation are pig-
gybacked on the messages for the Tree Discovery component.

Tree Discovery : This is a distributed implementation of cre-
ating a BFS tree. Each node, { , transmits a tree discovery bea-
con, which indicates its shortest hop-distance to the root, Û . The
beacon contains the following fields : Q src-Id, parent-Id, root-Id,
root-seq-no, root-distance S . If any neighbor, J of { on receiving
this beacon, discovers a shorter path to the root through { , it will
update its hop-distance to the root appropriately and will choose
{ to be its parent in the tree as indicated in Figure 8. As shown,
node � originally at distance � from the root ^ , receives a bea-
con from node à , at distance � from the root and consequently
chooses à to be its new parent. This decreases the distance of �
from the root to ? .

B

C

D

F

E

A

B

C

D

F

E

A

src−Id = D
parent−Id = A
root−Id = A

root−distance = 1

Fig. 8. Periodic tree discovery beacon transmitted by a node during the Tree
Discovery part of the Cluster Creation phase to distributedly create a BFS
tree. The relevant beacon fields are indicated.

The parent-Id field will be initially NULL, and change as the
appropriate parent in the BFS tree is discovered. The root-
distance field reflects the distance in hops from the root of the
tree. The root-Id is used to distinguish between multiple simul-
taneous initiators of the Cluster Creation phase of which only one
instance is allowed to proceed. The root-seq-no is used to distin-
guish between multiple instances of the Cluster Creation phase
initiated by the same root node at different time instants. The
Q root-Id, root-seq-no S pair, therefore, uniquely identifies a Clus-
ter Creation phase instance.

Cluster Formation : To create the clusters on the BFS tree,
each node needs to discover its subtree size and the adjacency
information of each of its children in the BFS tree, as explained
below. For this purpose, a cluster formation message is pig-
gybacked onto the tree discovery beacon by each node and has
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the following fields : Q subtree-size, node-adjacency S . The sub-
tree size information is aggregated on the tree from the leaves
to the root. The subtree size at a node, { is given by �¸Þ
ô ��� Children � ��� subtree-size �OJA� . When a node, Ç , detects that
its subtree size has crossed the size parameter, � , it initiates clus-
ter formation on its subtree (this is the condition tested in Line
3 of GRAPHCLUSTER). If the entire subtree ¶·�OÇo� is of size
=<?A� it creates one single cluster for the entire subtree, or else,
it will create a set of clusters by appropriately partitioning the
children subtrees into these clusters. This information is sub-
sequently propagated down the child subtrees as cluster assign-
ment messages to the relevant nodes. The partitioning of child
subtrees into clusters is implemented as specified in Lines 4-21
of GRAPHCLUSTER. To do this, node Ç needs to know the ad-
jacency information of its children in the tree. This is avail-
able as the neighborhood information, â²�K{E� carried in the node-
adjacency field of the cluster formation message from each child,
{ . In its subsequent cluster formation messages to its parent,
node Ç does not include all the nodes which it has assigned
to different clusters. This is equivalent to the deletion of these
nodes from the tree in Lines 13 and 20 of GRAPHCLUSTER and
Line 7 of MERGEPARTIALCLUSTERS). An example is shown
in Figure 9. The subtrees � and à rooted at node J in Figure 9

� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �k/2

u

3k/2

3k/2
7k/4

A

B

C D

v

subtree−size = 0

subtree−size = k/2

Fig. 9. Cluster formation messages are piggybacked onto the tree discovery bea-
cons. Only the subtree-size field is shown here. The subtree size reported by
a node, × , to its parent include only those subtree nodes that have not been
put into any cluster at × .

has been put into two separate clusters, i.e. there is no node in
the subtree of node J , which has not been put into some cluster.
Hence, J reports a subtree size of zero to its parent, { , in the tree.
Node { has assigned the entire subtree � into a single cluster but
has not assigned subtree ^ to any cluster. It, therefore, reports
the size of this subtree to its parent 7. This subtree will be as-
signed a cluster by a node upstream of { . When a node detects
that its children and their subtree sizes have not changed for the
last max-consecutive-static-subtree messages from its children,
it terminates the cluster formation phase for all the clusters that
it has assigned. To do so, it sends a terminate cluster message
down the subtrees of these clusters. This procedure happens at
each node of the tree. Clusters are, therefore, created from the
leaves of the tree towards the root akin to the post-order traver-
sal of the tree. The phase terminates when all the nodes have re-
ceived cluster terminate messages.

The tree discovery beacons are transmitted by each node once
every Ì units of time, over the duration of the cluster creation
�
Node × is also included in this subtree.

phase. The period Ì should be chosen depending on the average
connectivity of a node in the network and the bandwidth avail-
able from the wireless interface. With an average degree of four
for a network of low bandwidth ( �*zAz Kbps) sensor devices, as-
suming the beacons are 100 bits in length, we can choose Ì as ��z
ms to ensure that the collision probability of beacons is less than
z/)�� . The average number of beacons sent by a node for the entire
cluster creation phase is approximately bounded by the diameter
of the network. Hence, for a very large network of �*z/��zAz>z sensor
nodes distributed on a square grid,with the above properties, an
average sensor nodes will send about �+z>z beacons and the whole
network will take less than � seconds for the entire cluster cre-
ation phase.

As the cluster creation phase ends, only the cluster informa-
tion needs to be retained by the clusters. The BFS tree does not
need to be maintained any further.

During the cluster creation phase, a few nodes may be missed
(could be due to transient channel errors over the duration of the
cluster creation phase). Such nodes will be able to join some
cluster during the Cluster Maintenance phase, discussed next.

B. Cluster Maintenance

Once the cluster creation phase generates a set of clusters, the
cluster maintenance phase is invoked to perform small incremen-
tal changes to the clusters to handle node mobility, as new nodes
arrive and existing nodes depart from the network (battery might
run out). For the Cluster Maintenance phase, we relax the upper
bound of the cluster size to �A� . Hence, clusters in the mainte-
nance phase can have sizes between � and �A� 8.

New node joins : A sensor node, J , on joining the net-
work,establishes its set of neighbors, â²�OJ>� . If any node {¯R
â²�KJA� belongs to some cluster of size =³�>� U � then we add J
to the cluster that { belongs to. This also ensures that we main-
tain connectivity in the cluster and the size requirement.

However, it is possible that all neighbors belong to clusters
of size �>� U � . In this case, we add J to one such cluster, thus
making its size, �A� . Hence this cluster is split into two sepa-
rate clusters. The splitting process involves the use of the same
distributed implementation described in Cluster Creation phase.
However, in this scenario, it is even simpler, since as soon as a
cluster is identified to have size W@� , the remaining ?A� nodes can
immediately be put into another cluster. Note, this splitting in-
volves only the nodes in this cluster of size �A� being split. Hence,
this splitting effort has constant communication and time re-
quirements unlike the clustering of the entire network, for which
it is proportional to the diameter of the network. It can also be
observed, that once a cluster is split, in this manner, it would re-
quire at least � other nodes joining one of the clusters (in the
worst case) before another split would be necessary.

Triggering re-clustering : A cluster is split into two when it
reaches the �>� size upper bound, as a new member joins. How-
ever, it might be necessary to share a node, ¼ , by both the new
clusters created (to ensure connectivity of each cluster). As
a consequence " HN�O¼'�+" would increase. There are cases when

 
At the end of cluster creation, however, all the clusters had size between §

and !-§ . Hence, at the end of cluster creation, if a small cluster of size "P§ exists
(there can be only one such cluster), it is merged with another cluster of size "
!-§ .
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" HN�O¼'�+" decreases too. However, by a pathological sequence of
joins by other nodes to the set of clusters HN�O¼'� , the value of
" HN�O¼'�+" can increase without bounds. We consider a clustering
to be of “poor” quality, when an estimated average of " HN�O¼'�+"
exceeds a specified threshold. This triggers the cluster-creation
phase to re-create a “good” clustering. This estimation can be
done periodically at each node by randomly sampling a small
subset of its nearby nodes. Network-wide flooding solutions are
not used to gather this estimate. In the event multiple nodes
trigger re-clustering simultaneously, the cluster creation phase
chooses only one of these re-clustering initiators to proceed and
inhibits all the others, as already described. For a relatively
slowly changing network topology, like the wireless sensor net-
works, the gap between successive invocations of the cluster-
creation phase will very high.

Existing node leaves : When a node leaves, it may cause
the cluster(s) it belongs to, become disconnected. However, it
may be shown (using the same arguments as in Lemma III.1 and
III.2), that the number of remaining connected components of a
cluster, due to a node leaving, will be bounded (using the same
bounds as before for the Maximum Independent Set in the neigh-
borhood of a single node). Any such connected component, that
has its size W³� , is made a cluster. Each component that has a
size =È� , will cease to be a cluster, and each node in the compo-
nent will attempt to join one of its its neighboring clusters – the
same mechanism of a node joining a cluster, applies for each of
these nodes.

Link outages and network partitions : A link outage does
not alter the number of nodes in the cluster. It may split the
cluster into disconnected components, hence is equivalent to the
cluster maintenance mechanism, when an existing node leaves.
When a network partition happens, there may be two sets of clus-
ters on each side of the partition. When the partitions join again,
no special mechanisms are needed.

V. EXPERIMENTAL RESULTS

We simulated the operations of our clustering scheme on a set
of wireless sensor nodes. For the simulation, we generate ar-
bitrary wireless topologies. We randomly place a set of nodes
in a 1000 unit õ 1000 unit grid, and vary the connectivity for
the topology, by appropriately choosing a uniform transmission
radii for all the nodes. No intelligent channel access scheme
(e.g. using RTS-CTS messages) has been used for these simula-
tions. Hence, messages collisions happened infrequently leading
to packet losses. This, however, does not affect the correctness
of the clustering protocol as no hard state is maintained at the
nodes. The maintained soft state times out when a sequence of
consecutive beacons are lost due to collisions or errors. While
channel acquisition based access schemes would improve the
simulation results, the nature of the results would be unaffected.

Nodes arbitrarily join and leave the topology. Each node ran
an instance of the cluster creation phase of the protocol. In the
experiments reported here, we chose Ì , the average time gap be-
tween successive beacons transmitted by a node, to be �*zAëjÜ .

Time to Stabilize : A wireless node is said to stabilize into a
final cluster, during the cluster creation phase, when it undergoes
no further changes in its cluster membership during this phase,
and stops transmitting cluster creation beacons. In Figure 10, we
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Fig. 10. Cumulative fraction of nodes stabilized into their final clusters during
the cluster creation phase with time, in a wireless network for different con-
nectivity (the graph diameter changes) of the topology

Transmit Avg. Cluster Dia. for different sizes
Radius (Diameter) �%$ – !%$ !%$ – &�$ !�' – '%$ &�$ – (�$

60.0 (24) 4.8 7.8 9.1 11.2
71.0 (21) 4.4 7.6 8.2 10.7
84.9 (16) 4.2 6.8 7.3 10.0
101.1 (13) 3.4 5.1 5.9 7.1

Fig. 11. Cluster diameter for varying connectivity of nodes in the topology and
varying cluster sizes

plot results from a set of experiments, on a 700-node topology.
The cluster creation phase is initiated by one node at random, at
time � second into simulated time. The x-axis shows the sim-
ulated time elapsed. The y-axis indicates the cumulative frac-
tion of the nodes that have stabilized. As the connectivity of the
topology is increased the diameter of the graph decreased, and
the cluster creation phase takes lesser time to complete. For a
highly connected graph (with diameter �+z ), the cluster creation
phase completes in �+�>z ms (it is expected to be upper bounded by
( ?
õ diameter of the graph õ avg. inter-beacon period), which
is ?>zAz ms in this case), but for a low connectivity graph (diame-
ter ?D� ) it takes much longer ( ?A�>z ms). Operations of the cluster
maintenance phase involves mostly a single cluster at a time, and
hence involve much smaller time scales.

Cluster Diameter : In general, it is desirable to have clusters
of low diameter. In Figure 11, we show the average diameter of
the different clusters for the 700-node topology. The cluster di-
ameters increase with increasing cluster size and with decreasing
connectivity (i.e. increased transmission radius of the individual
nodes) of the topology, as would be expected.

We ran experiments on networks with up to 1100 nodes using
our simulator. All clusters, as expected, meet the desired cluster
size bounds. Only in a few experiments did we see a node having
to belong to multiple clusters during the cluster creation phase.

VI. RELATED WORK

Some routing solutions for the Internet have used hierarchies
to provide scalability, e.g. OSPF protocol [22] and ATM PNNI
[23]. Additionally, in some cases, ATM PNNI [23], [24] splits
the network into clusters, called peer-groups, and only summa-
rized information e.g., of cost of traversal, of the peer-groups is
exported to the remaining network.
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Krishnan et al [13] have explored different graph partitioning
schemes for Internet-like graphs. Their target problem is, as a
consequence, somewhat different from ours.

In mobile wireless environments, the Zone Routing Protocol
(ZRP) [25], has the weak notion of groups, called zones, which
are used to limit the propagation of updates. The notion of clus-
tering has also been used previously for hierarchical routing for
packet radio networks in [26] and [27]. In [6], [7] clustering
algorithms are described for multi-hop mobile radio network,
where the clusters are chosen such that the cluster-heads form
a dominating set in the underlying graph topology. This makes
the number and size of the clusters, largely dependent on the
graph topology. They use it primarily for “spatial reuse” of chan-
nel spectrum. A similar mechanism is used in Cluster Based
Routing Protocol (CBRP) [28] and a more generalized approach
is used in [8] for mobile ad-hoc networks. Das et al [9] de-
velop a distributed implementation of approximation algorithms
to compute the connected dominating set of a graph [29], to cre-
ate a routing ‘spine’ and describe a clustering scheme to create
two layered hierarchies. Krishna et al [30] defines a clustering
scheme, where each cluster is required to be a clique. These
mechanisms are possible by allowing small clusters to exist as
may be needed.

VII. CONCLUSIONS

In this paper, we demonstrate how certain geometric proper-
ties of the wireless networks can be exploited to perform cluster-
ing with some desired properties. Generic graph algorithms de-
veloped for arbitrary graphs would not exploit the rich geometric
information present in specific cases, e.g. the wireless network
environment. Even without exact knowledge of node location in
different environments, understanding various special properties
of the communication graph can lead to better and efficient algo-
rithms.
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