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Abstract

We consider an overlay architecture (called OMNI) where service providers deploy a set of service

nodes (called MSNs) in the network to efficiently implement media-streaming applications. These MSNs

are organized into an overlay and act as application-layer multicast forwarding entities for a set of clients.

We present a decentralized scheme that organizes the MSNs into an appropriate overlay structure that

is particularly beneficial for real-time applications. We formulate our optimization criterion as a “degree-

constrained minimum average-latency problem” which is known to be NP-Hard. A key feature of this

formulation is that it gives a dynamic priority to different MSNs based on the size of its service set.

Our proposed approach iteratively modifies the overlay tree using localized transformations to adapt with

changing distribution of MSNs, clients, as well as network conditions. We show that a centralized greedy

approach to this problem does not perform quite as well, while our distributed iterative scheme efficiently

converges to near-optimal solutions.

I. I NTRODUCTION

In this paper we consider a two-tier infrastructure to efficiently implement large-scale media-streaming

applications on the Internet. This infrastructure, which we call theOverlay Multicast Network Infrastructure

(OMNI), consists of a set of devices called Multicast Service Nodes (MSNs [1]) distributed in the network

and provides efficient data distribution services to a set of end-hosts1. An end-host (client) subscribes with

a single MSN to receive multicast data service. The MSNs themselves run a distributed protocol to organize

themselves into an overlay which forms the multicast data delivery backbone. The data delivery path from

the MSN to its clients is independent of the data delivery path used in the overlay backbone, and can be

built using network layer multicast application-layer multicast, or a sequence of direct unicasts. The two-tier

OMNI architecture is shown in Figure 1.

In this paper, we present a distributed iterative scheme that constructs “good” data distribution paths on the

OMNI. Our scheme allows a multicast service provider to deploy a large number of MSNs without explicit
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Fig. 1. OMNI Architecture.

concern about optimal placement. Once the capacity constraints of the MSNs are specified, our technique

organizes them into an overlay topology, which is continuously adapted with changes in the distribution of

the clients as well as changes in network conditions.

Our proposed scheme is most useful for latency-sensitive real-time applications, such as media-streaming.

Media streaming applications have experienced immense popularity on the Internet. Unlike static content,

real-time data cannot be pre-delivered to the different distribution points in the network. Therefore an efficient

data delivery path for real-time content is crucial for such applications. The quality of media playback

typically depends on two factors: access loads experienced by the streaming server(s) and jitter experienced

by the traffic on the end-to-end path. Our proposed OMNI architecture addresses both these concerns as

follows: (1) being based on an overlay architecture, it relieves the access bottleneck at the server(s), and (2)

by organizing the overlay to have low-latency overlay paths, it reduces the jitter at the clients.

For large scale data distributions, such as live webcasts, we assume that there is a single source. The source

is connected to a single MSN, which we call the root MSN. The problem of efficient OMNI construction

is as follows:

Given a set of MSNs with access bandwidth constraints distributed in the network, construct a

multicast data delivery backbone such that the overlay latency to the client set is minimized.

Since the goal of OMNIs is to minimize the latencies to the entire client set, MSNs that serve a larger

client population are, therefore, more important than the ones which serve only a few clients. The relative

importance of the corresponding MSNs vary, as clients join and leave the OMNI. This, in turn, affects the

structure of the data delivery path of the overlay backbone. Thus, one of the important considerations of the

OMNI is its ability to adapt the overlay structure based on the distribution of clients at the different MSNs.

Our overlay construction objective for OMNIs is related to the objective addressed in [3]. In [3] the authors
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propose a centralized greedy heuristic, called the Compact Tree algorithm, to minimize the maximum latency

from the source (also known as the diameter) to an MSN. However the objective of this minimum diameter

degree-bounded spanning tree problem does not account for the difference in the relative importance of

MSNs depending on the size of the client population that they are serving. In contrast we formulate our

objective as the minimum average-latency degree-bounded spanning tree problem which weights the different

MSNs by the size of the client population that they serve. We propose an iterativedistributedsolution to

this problem, which dynamically adapts the tree structure based on the relative importance of the MSNs.

Additionally we show how our solution approach can be easily augmented to define an equivalent distributed

solution for the minimum diameter degree-bounded spanning tree problem. This is an extended version of

an earlier paper by the same authors [4].

The rest of the paper is structured as follows: In the next section we formalize and differentiate between

the definition of these problems, and pose an Integer Programming based centralized solution. In Section III

we describe our distributed solution technique which is the main focus on this paper. In Section IV we

study the performance of our technique through detailed simulation experiments. In Section V we discuss

other application-layer multicast protocols that are related to our work. Finally, we present our conclusions

in Section VI.

II. PROBLEM FORMULATION

In this section we describe the network model and state our solution objectives formally. We subsequently

propose an Integer Programming based solution which is useful is evaluating the quality of results obtained

by our distributed solution to this problem. We also outline the practical requirements that our solution is

required to satisfy.

A. System Model and Problem Statement

The physical network consists of nodes connected by links. The MSNs are connected to this network at

different points through access links.

The multicast overlay network is the network induced by the MSNs on this physical topology. It can be

modeled as a complete directed graph, denoted byG = (V, E), whereV is the set of vertices andE = V ×V

is the set of edges. Each vertex inV represents an MSN. The directed edge from nodei to nodej in G

represents the unicast path from MSNi to MSN j in the physical topology The latency of an edge〈i, j〉 in

the overlay graph corresponds to the unicast path latency from MSNi to MSN j, and is denoted byli,j .

The data delivery path on the OMNI will be a directed spanning tree ofG rooted at the source MSN, with

the edges directed away from the root. Consider a multicast application in which the source injects traffic

at the rate ofB units per second. We will assume that the capacity of any incoming or outgoing access link
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is no less thanB. Let the outgoing access link capacity of MSNi be bi. Then the MSN can send data to

at mostdi = bbi/Bc other MSNs. This imposes an out-degree bound at MSNi on the overlay tree of the

OMNI 2.

The overlay latencyLi,j from MSN i to MSN j is the summation of all the unicast latencies along the

overlay path fromi to j on the tree,T . The latency experienced by a client (attached to MSNi) consists

of three parts: (1) the latency from the source to the root MSN,r, (2) the latency from the MSNi to itself,

and (3) the overlay latencyLr,i on the OMNI from MSNr to MSN i. The arrangement of the MSNs affects

only the overlay latency component, and the first two components do not depend on the OMNI overlay

structure. Henceforth, for each client we only consider the overlay latencyLr,i between the root MSN and

MSN i as part of our minimization objective in constructing the OMNI overlay backbone.

We consider two separate objectives. Our first objective is to minimize is the average (or total) overlay

latency of all clients. Letci be the number of clients that are served by MSNi. Then minimizing the average

latency over all clients translates to minimizing the weighted sum of the latencies of all MSNs, whereci

denote the MSN weights.

The second objective is to minimize the maximum overlay latency for all clients. This translates to

minimizing the maximum of the overlay latency of all MSNs. LetS denote the set of all MSNs other than

the source. Then the two problems described above can be stated as follows:

P1: Minimum average-latency degree-bounded directed spanning tree problem:Find a directed spanning

tree,T of G rooted at the MSN,r, satisfying the degree-constraint at each node, such that
∑

i∈S ciLr,i is

minimized.

P2: Minimum maximum-latency degree-bounded directed spanning tree problem:Find a directed spanning

tree,T of G rooted at the MSN,r, satisfying the degree-constraint at each node, such thatmaxi∈S Lr,i is

minimized.

The minimum average-latency degree-bounded directed spanning tree problem, as well as the minimum

maximum-latency degree-bounded directed spanning tree problem, are NP-hard [6], [3]. For brevity, in the

rest of this paper, we will refer to these problems as themin avg-latency problemand themin max-latency

problem, respectively. Note that the max and the avg versions of the problem have very similar formulations.

We focus on the min avg-latency problem because we believe that by weighting the overlay latency costs

by the number of clients at each MSN, this problem better captures the relative importance of the MSNs

in defining the overlay tree. It should be noted, however, that the tree adaptation algorithms presented in

this paper for the min avg-latency problem can be easily applied to the min max-latency problem, by using

the max-operator instead of the sum-operator in making tree construction decisions. In this paper, we only

2Internet measurements have shown that links in the core networks are over-provisioned, and therefore are not bottlenecks [5].
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Term Meaning

ci Number of clients of MSNi

C Total number of clients aggregated over all MSNs

fi,j , xi,j Variables for the integer-program

li,j Unicast path latency from MSNi to MSN j

Lr,i Latency along the overlay path from the root MSNr to MSN i

N Total number of MSNs in the OMNI

TABLE I

GLOSSARY OF NOTATION.

present evaluation results for the avg version of the problem, and experimentation for the max case is left

as future work.

B. Integer-programming formulation:

Now we present a linear integer-programming formulation for the avg-latency problem. It is worth noting

here that developing a nonlinear integer-programming formulation for this problem is not difficult. However,

nonlinear integer-programs are usually harder to solve. In contrast,approximate(and sometimes exact)

solutions to linear integer-programs can be efficiently obtained using common integer-program solvers

(like CPLEX). In the linear integer-programming formulation described below, the number of variables

and constraints are also linear in the size of the OMNI, which makes the computation more feasible.

We should note that we do not use this programming formulation directly for developing our solution

approach (for reasons outlined in the next section). The formulation is nevertheless important since it allows

us to compute the optimal solution efficiently. We use this formulation to compute the optimal tree and

compare the performance of our distributed solution with the optimal tree thus obtained. We demonstrate

that the distributed approach yields a solution that is fairly close to the optimal solution of the integer-program

posed next.

For each edge〈i, j〉 ∈ E in graphG, define two variables: a binary variablexi,j , and a non-negative real

(or integer)3 variablefi,j , wherexi,j denotes whether or not the edge〈i, j〉 is included in the tree, andfi,j

denotes the total number of clients served through edge〈i, j〉.
Then the avg-latency problem can be formulated as:

minimize
1
C

∑

〈i,j〉∈E

li,jfi,j

3We definefi,j as real-valued variables rather than integer variables for reasons of efficiency of solving the integer-program.

However, in the optimal solution, the variablesfi,j will turn out to be integers.
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subject to:

∑

k∈V \{i}
fk,i −

∑

k∈V \{i}
fi,k = ci ∀i ∈ V \ {r} (1)

0 ≤ fi,j ≤ Cxi,j ∀〈i, j〉 ∈ E (2)
∑

〈i,j〉∈E

xi,j ≤ N − 1 (3)

xi,j ∈ {0, 1} ∀〈i, j〉 ∈ E (4)

In Constraint 3,N is the total number of MSNs. In Constraint 2 and in the objective function,C is the

total number of clients served by the OMNI. The objective function, as well as Constraint 1, follow from the

definition of the variablesfi,j . Constraint 2 ensures that the variablefi,j is zero if xi,j is zero. Constraint 3

is necessary to enforce the tree structure of the OMNI overlay. All the constraints together ensure that the

solution is a spanning tree rooted atr.

2

4

5

6

3

0

1

(root)

Fig. 2. An example graph. MSNi servesci clients,i = 1, ..., 6.

To get a clearer understanding of the above formulation, let us take a look at a feasible solution to

the above integer-program in a particular problem instance. Consider the 7-node graph shown in Figure 2.

Each node corresponds to an MSN, and MSN 0 is the root of the OMNI tree. Since this graph is a

complete graph, it has 21 bidirectional edges (i.e., one bidirectional edge corresponding to each pair of

MSNs). In the figure, however, we show only 9 of these edges. The total number of clients,C, is equal

to c1 + c2 + c3 + c4 + c5 + c6. Consider the OMNI tree formed by the six directed edges shown in the

figure. For this tree, the variablesxi,j and fi,j are obtained as follows. The variablexi,j is equal to 1 if

edge〈i, j〉 belongs to the OMNI tree, and is 0 otherwise. The variablefi,j is 0 if edge〈i, j〉 does not

belong to the OMNI tree. The non-zerofi,j variables are obtained as:f1,3 = c3, f4,6 = c6, f1,4 = c4 + c6,

f0,1 = c1 + c3 + c4 + c6, f2,5 = c5 and f0,2 = c2 + c5. It can be verified that these variables satisfy

the constraints of the above formulation. Moreover, note that the average latency of clients in this tree is

(1/C){c1l0,1 + c2l0,2 + c3(l0,1 + l1,3) + c4(l0,1 + l1,4) + c5(l0,2 + l2,5) + c6(l0,1 + l1,4 + l4,6)}, which is
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equal to 1
C

∑
〈i,j〉∈E li,jfi,j , the objective function of our formulation. Similarly, it can also be verified that

any feasible solution to our programming formulation represents an OMNI tree, with the objective function

denoting the average latency of clients for that tree.

C. Solution Requirements

Note that the integer-programming formulation posed above is a fairly complex problem. While this

formulation may be used to obtain the optimal tree for some small topologies (say up to 16 MSNs), it

is practically infeasible to use such an integer-programming solution in a large scale distributed network

environment. This motivates us to look for efficient heuristics for solving this problem. In this paper, we

describe an iterative heuristic approach that can be used to solve the min avg-latency problem. In the solution

description, we also briefly highlight the changes necessary to our distributed solution to better solve the

min max-latency problem that has been addressed in prior work [3].

The development of the our approach is motivated by the following set of desirable features that make

the solution scheme practical.

Decentralization: We require a solution to be to implementable in a distributed manner. It is possible to

think of a solution where the information about the client sizes of the MSNs and the unicast path latencies

are conveyed to a single central entity, which then finds a “good” tree (using some algorithm), and then

directs the MSNs to construct the tree obtained. However, the client population can change dynamically

at different MSNs which would require frequent re-computation of the overlay tree. Similarly, changes in

network conditions can alter latencies between MSNs which will also incur tree re-computation. Therefore

a centralized solution is not practical for even a moderately sized OMNI.

Adaptation: The OMNI overlay should adapt to changes in network conditions and changes in the

distribution of clients at the different MSNs.

Feasibility: The OMNI overlay should adapt the tree structure by making incremental changes to the

existing tree. However at any point in time the tree should satisfy all the degree constraints at the different

MSNs. Any violation of degree constraint would imply an interruption of service for the clients. Therefore,

as the tree adapts its structure towards an optimal solution using a sequence of optimization steps, none of

the transformations should violate the degree constraints of the MSNs.

Our solution, as described in the next section, satisfies all the properties stated above.

III. SOLUTION

In this section we describe our proposed distributed iterative solution to the problem described in Section II

that meets all of the desired objectives. In this solution description, we focus on the min avg-latency problem

and only point out relevant modifications needed for the min max-latency problem.
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A. State at MSNs

For an MSNi, let Children(i) indicate the set of children ofi on the overlay tree and letci denote the

number of clients being directly served byi. We use the termaggregate subtree clients(Si) at MSN i to

denote the entire set of clients served by all MSNs in the subtree rooted ati. The number of such aggregate

subtree clients,si = |Si| is given by:

si = ci +
∑

j∈Children(i)
sj

For example in Figure 1,sF = 3, sE = 5, sD = 1, sC = 6, sB = 8, andsA = 14. We also define a term

called aggregate subtree latency(Λi) at any MSN,i, which denotes the summation of the overlay latency

of each MSN in the subtree, from MSNi which is weighted by the number of clients at that MSN. This

can be expressed as:

Λi =





0 if i is a leaf MSN
∑

j∈Children(i) sjli,j + Λj otherwise

where,li,j is the unicast latency between MSNsi and j. In Figure 1, assuming all edges between MSNs

have unit unicast latencies,ΛF = ΛE = ΛD = 0, ΛC = 3, ΛB = 6, and ΛA = 23. The optimization

objective of the min avg-latency problem is to minimize the average subtree latency of the root,Λ̄r, (also

called the average tree latency)4.

Each MSNi keeps the following state information:

• The overlay path from the root to itself:This is used to detect and avoid loops while performing

optimization transformations.

• The value,si, representing the number of aggregate subtree clients.

• The aggregate subtree latency:This is aggregated on the OMNI overlay from the leaves to the root.

• The unicast latency between itself and its tree neighbors:Each MSN periodically measures the unicast

latency to all its neighbors on the tree.

Each MSN maintains state for all its tree neighbors and all its ancestors in the tree. If the minimum out-degree

bound of an MSN is two, then it maintains state for at mostO(degree+ log N) other MSNs.

We decouple our proposed solution into two parts — an initialization phase followed by successive

incremental refinements. In each of these incremental operations no global interactions are necessary. A

small number of MSNs interact with each other in each transformation to adapt the tree so that the objective

function improves.

4The maximum subtree latency,λmax
i at an MSN,i, is the overlay latency fromi to another MSNj which has the maximum

overlay latency fromi among the MSNs in the subtree rooted ati, i.e.λmax
i = max{Li,j |j ∈ Subtree(i)}. The optimization objective

of the min max-latency problem is to minimize the maximum subtree latency of the root.
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Procedure :CreateInitialTree(r, S)

SortedS ← Sort S in increasing order of dist. fromr

{ Assert:SortedS[1] = r }
i ← 1

for j ← 2 to Ndo

while SortedS[i].NumChildren= SortedS[i].DegBd

i + +

end while

SortedS[j].Parent ← SortedS[i]

SortedS[i].NumChildren+ +

end for

Fig. 3. Initial tree creation algorithm for the initialization phase.r is the root MSN,S is an array of all the other MSNs andN

is the number of MSNs.

B. Initialization

In a typical webcast scenario data distribution is scheduled to commence at a specific time. Prior to this

instant the MSNs organize themselves into an initial data delivery tree. Note that the clients of the different

MSNs join and leave dynamically. Therefore no information about the client population sizes is availablea

priori at the MSNs during the initialization phase.

Each MSN that intends to join the OMNI measures the unicast latency between itself and the root MSN and

sends aJoinRequestmessage to the root MSN. This message contains the tuple〈LatencyToRoot, DegreeBound〉.
The root MSN gathersJoinRequestsfrom all the different MSNs, creates the initial data delivery tree using

a simple centralized algorithm, and distributes it to the MSNs.

This centralized initialization procedure is described in pseudo-code in Figure 3. We describe this operation

using the example in Figure 4. In this example, all MSNs have a maximum out-degree bound of two. The

root, r, sorts the list of MSNs in an increasing order of distance from itself. It then fills up the available

degrees of MSNs in this increasing sequence. It starts with itself and chooses the next closest MSNs (1 and

2) to be its children. It next chooses its closest MSN (1) and assigns MSNs 3 and 4 (the next closest MSNs

with unassigned parents) as its children. Continuing this process, the tree shown in Figure 4 is constructed.

We can obtain the following worst-case result for the centralized algorithm:

Lemma 1: Assume that unicast latencies are symmetric, and follow triangle inequality. Also assume that

the degree bound of each MSN is at least 2. Then overlay latency from the root MSN toany other MSN,

i, is bounded by2 lr,i log N , whereN is the number of MSNs in the OMNI, andlr,i is the direct unicast
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Fig. 4. Initialization of the OMNI using ProcedureCreateInitialTree. r is the root MSN of the tree. The remaining MSNs are

labeled in the increasing order of unicast latencies fromr. In this example, we assume that each MSN has a maximum out-degree

bound of two.

latency from the root MSN,r, to MSN i.

Proof: Consider any MSNi in the OMNI constructed by our initialization procedure. Note that the MSNs

were added in the increasing order of their unicast latencies from the root MSN,r. Therefore, for any MSN

j that lies in the overlay path fromr to i, lr,j ≤ lr,i. Thus for any two nodesj and k on the overlay

path from r to i, lj,k ≤ lj,r + lr,k = lr,j + lr,k ≤ 2lr,i (using symmetry and the triangle inequality). Let

Ei ⊆ E be the set of edges in the overlay path fromr to i. Since the minimum out-degree of any MSN

is two, it follows that |Ei| ≤ log2 N . Let Ei ⊆ E be the set of edges on the overlay path fromr to

i. Thus, Lr,i, the latency along the overlay path from the root MSNr to MSN i, can be bounded as:

Lr,i =
∑

(j,k)∈Ei
lj,k ≤ 2lr,i|Ei| ≤ 2lr,i log2 N .

The centralized computation of this algorithm is acceptable because it operates off-line before data delivery

commences. An optimal solution to the min avg-latency problem is NP-Hard and would typically require

O(N2) latency measurements (i.e. between each pair of MSNs). In contrast, the centralized solution provides

a reasonable latency bound using onlyO(N) latency measurements (one between each MSN and the

root MSN). Note that thelog N approximation bound is valid for each MSN. Therefore this initialization

procedure is able to guarantee alog N approximation for both the min avg-latency problem as well as the

min max-latency problem.

The initialization procedure, though oblivious of the distribution of the clients at different MSNs, still

creates a“good” initial tree. This data delivery tree will be continuously transformed through local operations

to dynamically adapt with changing network conditions (i.e. changing latencies between MSNs) and changing

distribution of clients at the MSNs. Additionally new MSNs can join and existing MSNs can leave the OMNI

even after data delivery commences. Therefore the initialization phase is optional for the MSNs, which can

join the OMNI, even after the initialization procedure is done.
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Fig. 5. Child-Promote operation.g is the grand-parent,p is the parent andc is the child. The maximum out-degree of all MSNs

is three. MSNc is promoted in this example.
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Fig. 6. Parent-Child Swap operation.g is the grand-parent,p is the parent andc is the child. Maximum out-degree is three.

C. Local Transformations

We define a local transformation as one which requires interactions between nearby MSNs on the overlay

tree. In particular these MSNs are within two levels of each other. We define five such local transformation

operations that are permissible at any MSN of the tree. Each MSN periodically attempts to perform these

operations. This period is called thetransformation periodand is denoted byτ . The operation is performed

if it reduces the average-latency of the client population.

Child-Promote: If an MSN g has available degree, then one of its grand-children (e.g. MSNc in Figure 5)

is promoted to be a direct child ofg if doing so reduces the aggregate subtree latency for the min avg-latency

problem. This is true if:

(lg,c − lg,p − lp,c)sc < 0

For the min max-latency problem, the operation is performed only if it reduces the maximum subtree latency

at g which can be verified by testing the same condition as above.

If the triangle inequality holds for the unicast latencies between the MSNs, this condition will always be

true. If multiple children ofp are eligible to be promoted, a child which maximally reduces the aggregate
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Fig. 7. Iso-level-2 Swap operation.g is the grand-parent,p andq are siblings.x andy are swapped.
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Fig. 8. Aniso-level-1-2 Swap operation.p is the parent ofc. x andy are swapped.

(maximum) subtree latency for the min avg-latency (min max-latency) problem is chosen.

Parent-Child Swap: In this operation the parent and child are swapped as shown in Figure 6. Note

grand-parent,g is the parent ofc after the transformation andc is the parent ofp. Additionally one child

of c is transferred top. This is done if and only if the out-degree bound ofc gets violated by the operation

(as in this case). Note that in such a case only one child ofc would need to be transferred andp would

always have an available degree (since the transformation frees up one of its degrees). The swap operation

is performed for the min avg-latency (min max-latency) problem if and only if the aggregate (maximum)

subtree latency atg reduces due to the operation. Like the previous case, if multiple children ofp are eligible

for the swap operation, a child which maximally reduces the aggregate (maximum) subtree latency for the

min avg-latency (min max-latency) problem is chosen.

Iso-level-2 Swap:We define an iso-level operation as one in which two MSNs at the same level swap

their positions on the tree. Iso-level-k denotes a swap where the swapped MSNs have a common ancestor

exactly k levels above. Therefore, the iso-level-2 operation defines such a swap for two MSNs that have

the same grand-parent. As before, this operation is performed for the min avg-latency (min max-latency)

problem between two MSNsx andy if and only if it reduces the aggregate (maximum) subtree latency (e.g.

Figure 7).
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Fig. 9. Example where the five local operations cannot lead to optimality in the min avg-latency problem. All MSNs have maximum

out-degree bound of two.r is the root. Arrow lengths indicate the distance between MSNs.

Iso-level-2 Transfer: This operation is analogous to the previous operation. However, instead of a swap,

it performs a transfer. For example, in Figure 7, Iso-level-2 transfer would only shift the position of MSN

x from child of p to child of q. MSN y does not shift its position. This operation is only possible ifq has

available degree.

Aniso-level-1-2 Swap:An aniso-level operation involves two MSN that are not on the same level of the

overlay tree. An aniso-level-i-j operation involves two MSNsx andy for which the ancestor ofx, i levels

up, is also the ancestor ofy, j levels up. Therefore the defined swap operation involves two MSNsx and

y where the parent ofx is the same as the grand-parent ofy (as shown in Figure 8). The operation is

performed if and only if it reduces the aggregate (maximum) subtree latency atp for the min avg-latency

(min max-latency) problem.

Following the terminology as described, theChild-Promoteoperation is actually theAniso-level-1-2

transferoperation.

D. Probabilistic Transformation

Each of the defined local operations reduce the aggregate (maximum) subtree latency on the tree for the

min avg-latency (min max-latency) problem. Performing these local transformations will guide the objective

function towards a local minimum. However, as shown in the example in Figure 9, they alone cannot

guarantee that a global minimum will be attained. In the example, the root MSN supports 4 clients. MSNs

in level 1 (i.e. 1 and 2) support 3 clients each, MSNs in level 2 support 2 clients each and MSNs in level

3 support a single client each. The arrow lengths indicate the unicast latencies between the MSNs. Initially

lp,y + lq,x < lp,x + lq,y and the tree as shown in the initial configuration was formed. The tree in the initial

configuration was the optimal tree for our objective function. Let us assume that due to changes in network

conditions (i.e., changed unicast latencies) we now havelp,y + lq,x > lp,x + lq,y. Therefore the objective

function can now be improved by exchanging the positions of MSNsx andy in the tree. However, this is an
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iso-level-3 operation, and is not one of the local operations. Additionally it is easy to verify that any local

operation to the initial tree will increase the objective function. Therefore no sequence of local operation

exists that can be applied to the initial tree to reach the global minima.

Therefore we define a probabilistic transformation step that allows MSNs to discover such potential

improvements to the objective function and eventually converge to the global minima. In each transformation

period,τ , an MSN will choose to perform a probabilistic transformation with a low probability,prand.

If MSN i chooses to perform a probabilistic transformation in a specific transformation period, it first

discovers another MSN,j, from the tree that is not its descendant. This discovery is done by a random-walk

on the tree, a technique proposed in Yoid [7]. In this technique, MSNi transmits aDiscovermessage with

a time-to-live (TTL) field to its parent on the tree. The message is randomly forwarded from neighbor to

neighbor, without re-tracing its path along the tree and the TTL field is decremented at each hop. The MSN

at which the TTL reaches zero is the desired random MSN.

Random Swap:We perform the probabilistic transformation only ifi andj are not descendant and ancestor

of each other. In the probabilistic transformation, MSNsi andj exchange their positions in the tree. For the

min avg-latency (min max-latency) problem, let∆ denote the increase in the aggregate (maximum) subtree

latency of MSNk which is the least common ancestor ofi and j on the tree (in Figure 9, this is the root

MSN, r). k is identified by theDiscovermessage as the MSN where the message stops its ascent towards

the root and starts to descend. For the min avg-latency problem,∆ can be computed as follows:

∆ = (L′k,i − Lk,i)si + (L′k,j − Lk,j)sj

where,L′k,i andL′k,j denote the latencies fromk to i andj respectively along the overlay if the transformation

is performed, andLk,i andLk,j denotes the same prior to the transformation. Each MSN maintains unicast

latency estimates of all its neighbors on the tree. TheDiscovermessage aggregates the value ofLk,j on

its descent fromk to j from these unicast latencies. Similarly, a separateTreeLatencymessage fromk to

i computes the value ofLk,i. (We use a separate message fromk to i since we do not assume symmetric

latencies between any pair of MSNs.) TheL′ values is computed from theL values and pair-wise unicast

latencies betweeni, j and their parents. Thus, no global state maintenance is required for this operation.

We use a simulated annealing [8] based technique to probabilistically decide when to perform the swap

operation. The swap operation is performed: (1) with a probability of1 if ∆ < 0, and (2) with a probability

e−∆/T if ∆ ≥ 0, whereT is the “temperature” parameter of the simulated annealing technique. In the min

avg-latency (min max-latency) problem The swap operation is performed with a (low) probability even if

the aggregate (maximum) subtree latency increases. This is useful in the search for a global optimum in the

solution space. Note that the probability of the swap gets exponentially smaller with increase in∆.
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Fig. 10. Join operation for a new MSN. At each level there are three choices available to the joining MSN as shown. For each

MSN, the maximum out-degree bound is 3.

E. Join and Leave of MSNs

In our distributed solution, we allow MSNs to arbitrarily join and leave the OMNI overlay. In this section,

we describe both these operations in turn.

Join: A new MSN initiates its join procedure by sending theJoinRequestmessage to the root MSN.

JoinRequestmessages received after the initial tree creation phase invokes the distributed join protocol (as

shown in Figure 10). At each level of the tree, the new MSN,n, has three options.

1) Option 1: If the currently queried MSN,p, has available degree, thenn joins as its child. Some of

the current children ofc (i.e. 1 and 2) may later join as children ofn in a later Iso-level-2 transfer

operation.

2) Option 2:n chooses a child,c, of p and attempts to split the edge between them and join as the parent

of c. Additionally some of the current children ofc are shifted as children ofn.

3) Option 3: n re-tries the join process from some MSN,c.

Option 1 has strict precedence over the other two cases. If option 1 fails, then we choose the lowest cost

option between 2 and 3. The cost for option 2 can be calculated exactly through local interactions between

n, p, c and the children ofc. The cost of option 3 requires the knowledge of exactly where in the tree

n will join. Instead of this exact computation, we compute the cost of option 3 as the cost incurred ifn

joins as a child ofc. This leads to some inaccuracy which is later handled by the cost-improving local and

probabilistic transformations.

Leave: If the leaving MSN is a leaf on the overlay tree, then no further change to the topology is required5.

Otherwise, one of the children of the departing MSN is promoted up the tree to the position occupied by

the departing MSN. We show this with an example in Figure 11. When MSN 3 leaves, one of its children

(4 in this case) is promoted. For the min avg-latency (min max-latency) problem the child is chosen such

5The clients of the leaving MSNs need to be re-assigned to some other MSN, but that is an orthogonal issue to OMNI overlay

construction.
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that the aggregate (maximum) subtree latency is reduced the most. The other children of the departing MSN

join the subtree rooted at the newly promoted child. For example, 5 attempts to join the subtree rooted at 4.

It applies the join procedure described above starting from MSN 4, and is able to join as a child of MSN 7.

Note that MSNs are specially managed infrastructure entities. Therefore it is expected that their failures

are rare and most departures from the overlay will be voluntary. In such scenarios the overlay will be

appropriately re-structured before the departure of an MSN takes effect. It is also worth noting here that

in the distributed adaptation schemes described above, we require that a node does not simultaneously

participate in more than one transformation at a given time. This prevents the occurrence of a race condition

due to simultaneous transformations.

IV. SIMULATION EXPERIMENTS

We have studied the performance of our proposed distributed scheme through detailed simulation exper-

iments. Our network topologies for these experiments were generated using the Transit-Stub graph model
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Fig. 14. Varying the temperature parameter for simulated-annealing (16 MSNs).

of the GT-ITM topology generator [9]. All topologies in these simulations had10, 000 nodes (representing

network routers) with an average node degree between3 and4. MSNs were attached to a set of these routers,

chosen uniformly at random. As a consequence unicast latencies between different pairs of MSNs varied

between 1 and 200 ms. The number of MSNs was varied between 16 and 512 for different experiments.

In our experiments we compare the performance of our distributed iterative scheme to these other schemes:

• The optimal solution: We computed the optimal value of the problem by solving the integer-program

formulated in Section II-B, using the CPLEX tool6. Computation of the optimal value using an IP

requires a search over aO(MN ) solution space, whereM is the total number of clients andN is the

number of MSNs. We were able to compute the optimal solution for networks with up to 100 clients

and 16 MSNs.

• A centralized greedy heuristic solution: This heuristic is a simple variant of the Compact Tree algorithm

proposed in [3]. It incrementally builds a spanning tree from the root MSN,r. For each MSNv that is

not yet in the partial treeT , we maintain an edgee(v) = {u, v} to an MSNu in the tree;u is chosen

to minimize a cost metricδ(v) = (Lr,u + lu,v)/cv where,Lr,u is the overlay latency from the root of

the partial tree tou and cv is the number of clients being served byv. At each iteration we add one

MSN (sayv) to the partial tree which has minimum value forδ(v). Then for each MSNw not in the

tree, we updatee(w) andδ(w).

The centralized greedy heuristic proposed in [3] addresses the min max-latency problem. Our simple

modification to that algorithm only changes the cost metric and is the equivalent centralized greedy

heuristic for the min avg-latency problem as described in Section II.

6Available from http://www.ilog.com.



18

200

220

240

260

280

300

320

340

0 2 4 6 8 10 12 14

A
ve

ra
ge

 T
re

e 
La

te
nc

y 
(m

s)

Time (units of Transformation Period)

Overlay of 256 MSNs (p = 0.10 T = 10.0)

Greedy

No Initialization
With Initialization

Fig. 15. Effect of the initialization phase (256 MSNs).

206

208

210

212

214

216

0 5 10 15 20 25 30 35

A
ve

ra
ge

 T
re

e 
La

te
nc

y 
(m

s)

Time (units of Transformation Period)

Overlay of 256 MSNs (T = 10.0, Initialization used)

No random swap
p = 0.02
p = 0.05
p = 0.10

Fig. 16. Varying the probability of performing the random-swap

operation for the different MSNs (256 MSNs).

182

183

184

185

4000 5000 6000 7000 8000 9000 10000 11000 12000

A
ve

ra
ge

 T
re

e 
La

te
nc

y 
(m

s)

Time (units of Transformation Period)

Overlay of 256 MSNs (p = 0.10, Initialization used)

T = 5.0
T = 10.0
T = 20.0

Fig. 17. Varying the temperature parameter for simulated annealing (256 MSNs).

A. Convergence

We first present convergence properties of our solution for OMNI overlay networks. Figures 12, 13 and 14

show the evolution of the average tree latency,Λ̄r, (our minimization objective) over time for different

experiment parameters for an example network configuration consisting of 16 MSNs. The MSNs serve

between 1 and 5 clients, chosen uniformly at random for each MSN. In these experiments the set of 16

MSNs join the OMNI at time zero. We use our distributed scheme to let these MSNs organize themselves

into the appropriate OMNI overlay. The x-axis in these figures are in units of the transformation period

parameter,τ , which specifies the average interval between each transformation attempt by the MSNs. The

ranges of the axes in these plots are different, since we focus on different time scales to observe the interesting

characteristics of these results.
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Figure 12 shows the efficacy of the initialization phase. When none of the MSNs make use of the

initialization phase, the initial tree has̄Λr = 158.92 ms. In contrast, if the initialization phase is used

by all MSNs, the initial tree has̄Λr = 133.18 ms, a 16% reduction in cost. In both cases, however, the

overlay quickly converges (within< 8 transformation periods) to a stable value ofΛ̄r ≈ 124.5 ms. The

optimal value computed by the IP for this experiment was 113.96 ms. Thus, the cost of our solution is about

9% higher than the optimal. We ran different experiments for different network configurations and found

that our distributed scheme converges to within5 − 9% of the optimum in all cases. A greedy approach

to this problem does not work quite as well. The centralized greedy heuristic gives a solution with value

151.59 ms, and is about 21% higher than the converged value of the distributed scheme. In both these cases

we had chosen the probability of a random-swap,prand, at the MSNs to be 0.1 and theT parameter of

simulated-annealing to be 10.

In Figure 13 we show how the choice ofprand affects the results. The initialization phase is used by MSNs

for all the results shown in this figure. The local transformations occur quite rapidly and quickly reduces

the cost of the tree for all the different cases. Theprand = 0 case has no probabilistic transformations

and is only able to reach a stable value of 129.51 ms. Clearly, once the objective reaches a local minimum

it is unable to find a better solution that will take it towards a global minimum. Asprand increases, the

search for a global minimum becomes more aggressive and the objective function reaches the lower stable

value rapidly. Figure 14 shows the corresponding plots for varying theT parameter. A higherT value in

the simulated-annealing process implies that a random swap that leads to cost increment is permitted with

a higher probability. For the moderate and high value ofT (10 and 20), the schemes are more aggressive

and hence the value of̄Λr experiences more oscillations. In the process both these schemes are aggressively

able to find better solutions to the objective function. The oscillations are restricted to within 2% of the

converged value.

Figures 15, 16, and 17 show the corresponding plots for experiments with 256 MSNs. Note that for the

256 MSN experiments, the best solution found by different choice of parameters hasΛ̄r = 181.53 ms. Our

distributed solution converges to this value after 7607 transformation period (τ ) units. Since our distributed

solution converges to within 15% of the best solution within 5 transformation periods, the time to convergence

really depends on the choice of the transformation period. In a deployed scenario, the transformation period

is expected to be fairly large (say about 30 secs or so) but can be adaptively set to lower values if network

and topology properties change quickly.

Figure 17 shows the effect of the temperature parameter for the convergence. As before the oscillations

are higher for higher temperatures, but are restricted to less than 1% of the converged value (the y-axis is

magnified to illustrate the oscillations in this plot). This experiment also indicates that a greedy approach does

not work well for this problem. The solution found by the greedy heuristic for this network configuration
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Number Distributed Centralized Greedy/Iterative

of MSNs Iterative Scheme Greedy Scheme Ratio

16 146.81 174.32 1.17

32 167.41 231.64 1.34

64 182.60 258.88 1.40

128 194.49 291.44 1.49

256 191.51 289.67 1.51

512 171.77 262.94 1.53

TABLE II

COMPARISON OF THE BEST SOLUTION(IN MS) OF THE AVERAGE TREE LATENCY OBTAINED BY OUR PROPOSED DISTRIBUTED

ITERATIVE SCHEME AND THE CENTRALIZED GREEDY HEURISTIC WITH VARYINGOMNI SIZES, AVERAGED OVER 10 RUNS

EACH.

is 43% higher than the one found by our proposed technique.

We present a comparison of our scheme with the greedy heuristic in Table II. We observe that the

performance of our proposed scheme gets progressively better than the greedy heuristic with increasing size

of the OMNI overlay.

The control overhead of our approach is quite low. Under stable conditions based on our experiments,

the number of control messages sent by each MSN in a transformation period (say about 30 seconds) is

proportional to its degree in the overlay structure. Even under very drastic join-leave scenarios like the one

shown in Figure 19 (note that in this experiment, 64 MSNs join/leave simultaneously in an OMNI with 248

MSNs), the total number of control messages exchanged across all MSNs is observed to be quite small. For

the case in Figure 19, the number of messages exchanged is about 200, over 10 transformation periods. For

all practical purposes, this overhead is negligible.

B. Adaptability

We next present results of the adaptability of our distributed scheme for MSN joins and leaves, changes

in network conditions and changing distribution of client populations.

MSNs join and leave: We show how the distributed scheme adapts the OMNI as different MSNs join and

leave the overlay. Figure 18 plots the average tree latency for a join-leave experiment involving 248 MSNs.

In this experiment, 128 MSNs join the OMNI during the initialization phase. Every 1500 transformation

periods (marked by the vertical lines in the figure), a set of MSNs join or leave. For example, at time 6000,

64 MSNs join the OMNI and at time 7500, 64 MSNs leave the OMNI. These bulk changes to the OMNI

are equivalent to a widespread network outage, e.g. a network partition. The other changes to the OMNI

are much smaller, e.g. 8-32 simultaneous changes as shown in the figure. In each case, we let the OMNI
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converge before the next set of changes is effected. In all these changes the OMNI reaches to within 6% of

its converged value of̄Λr within 5 transformation periods.

In Figure 19 we show the distribution of the number of transformations that happen in the first 10

transformation periods after a set of changes. (We only plot these distributions for 5 sets of changes —

initial join of 128 MSNs, 8 MSNs join at time 1500, 64 MSNs join at time 6000, 64 MSNs leave at time

7500, and 8 MSNs leave at time 12000.) The bulk of the necessary transformations to converge to the best

solution occur within the first 5 transformation periods after the change. Of these a vast majority (more than

97%) are due to local transformations.

These results suggest that the transformation period at the MSNs can be set to a relatively large value

(e.g. 1 minute) and the OMNI overlay would still converge within a short time. It can also be set adaptively

to a low value when the OMNI is experiencing a lot of changes for faster convergence and a higher value

when it is relatively stable.

Changing client distributions and network conditions: A key aspect of the proposed distributed scheme

is its ability to adapt to changing distribution of clients at the different MSNs. In Figure 20, we show a

run from a sample experiment involving 16 MSNs. In this experiment, we allow a set of MSNs to join the

overlay. Subsequently we varied the number of clients served by MSNx over time and observed its effects

on the tree and the overlay latency to MSNx. The figure shows the time evolution of the relevant subtree

fragment of the overlay.

In its initial configuration, the overlay latency from MSN 0 to MSNx is 59 ms. As the number of clients

increases to 7, the importance of MSNx increases. It eventually changes its parent to MSN 4 (Panel 1),

so that its overlay latency reduces to 54 ms. As the number of clients increases to 9, it becomes a direct
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child of the root MSN (Panel 2) with an even lower overlay latency of 51 ms. Subsequently the number of

clients of MSNx decreases. This causesx to migrate down the tree, while other MSNs with larger client

sizes move up. This example demonstrates how the scheme prioritizes the MSNs based on the number of

clients that they serve.

The proposed techniques are fairly resilient to message losses and node failures. Note that our proposed

method is completely distributed and relies on periodic control messages for all actions. So loss of a message

will only lead to temporary inaccuracies. The effect of a node failure will be similar to that of the join-leave

experiments discussed above. The results of these experiments demonstrate the relatively quick convergence

of the proposed scheme in response to bulk failures of the MSNs that are part of the OMNI.

We also performed similar experiments to study the effects of variable unicast latencies on the overlay

structure. If the unicast latency on a tree edge between parent MSNx and one of its children, MSNy, goes

up, the distributed scheme simply adapts the overlay by finding a better point of attachment for MSNy.

Therefore, in one of our experiments, we picked an MSN directly connected to the root and increased its

unicast latencies to all other MSNs (including the root MSN). A high latency edge close to the root affects a

large number of clients. In this experiment, our distributed scheme adapted the overlay to reduce the average

tree latency by moving this MSN to a leaf position in the tree, so that it cannot affect a large number of

clients. Therefore, our approach is fairly robust to latency variations in the Internet.

V. RELATED WORK

A number of other projects (e.g. Narada [10], NICE [11], Yoid [7], Gossamer [2],Overcast [12],ALMI [13],

Scribe [14], Bayeux [15], multicast-CAN [16], ZIGZAG [17]) have explored implementing multicast at

the application layer. However, in these protocols the end-hosts are considered to be equivalent peers and

are organized into an appropriate overlay structure for multicast data delivery. Additionally, none of these
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protocols explicitly optimize the end-to-end latencies to the clients. In contrast, our work in this paper

describes the OMNI architecture which is defined as a two-tier overlay multicast data delivery architecture.

In the OMNI formulation, weexplicitly take into account the access bandwidths at the nodes, and the

end-to-end latencies to the clients.

A dynamic tree adaptation algorithm for multicast communication has been proposed in [18]. However, this

work focusses on network layer multicast, and therefore the optimization goal is to attain an approximately

optimal steiner tree. In contrast, our work is focussed on overlay multicast, and attempts to solve the degree-

constrained avg/max latency problem. In [19], the authors present a discussion on the use of path diversity

in overlay networks to improve end-to-end delay and losses. However, unlike our work, the approach in [19]

does not provide an iterative, decentralized tree update procedure that explicitly seeks to optimize the average

or maximum latency. Our work is closely related to [20], which presents a family of algorithms for adapting

an overlay multicast tree with the goal of minimizing overall cost or delay. However, while the authors

in [20] compare the performance of their switch-tree algorithms with the shortest-path tree latency, they

do not demonstrate the convergence of their algorithms to the optimal or near-optimal solutions of the

degree-constrained avg/max latency problem.

An architecture similar to OMNI has also been proposed in [1] and their approach of overlay construction

is related to ours. In [3] and [1] the authors proposed centralized heuristics to two related problems —

minimum diameter degree-limited spanning tree and limited diameter residual-balanced spanning tree. The

minimum diameter degree-limited spanning tree problem is same as the min max-latency problem. The

focus of our paper is the min avg-latency problem, which better captures the relative importance of different

MSNs based on the number of clients that are attached to them. In contrast to the centralized greedy solution

proposed in [3], we propose an iterative distributed solution to the min avg-latency problem and show how

it can be adapted to solve the min max-latency problem as well. Scattercast [2] defines another overlay-

based multicast data delivery infrastructure, where a set of ScatterCast Proxies (SCXs) have responsibilities

equivalent to the MSNs in the OMNI architecture. The SCXs organize themselves into a data delivery tree

using the Gossamer protocol [2], which as mentioned before, does not organize the tree based on the relative

importance of the SCXs. Clients register with these SCXs to receive multicast data.

VI. CONCLUSIONS

We have presented an iterative solution to the min avg-latency problem in the context of the OMNI

architecture. Our solution is completely decentralized and each operation of our scheme requires interaction

between only the affected MSNs. This scheme continuously attempts to improve the quality of the overlay

tree with respect to our objective function. At each such operation, our scheme guarantees that the feasibility

requirements, with respect to the MSN out-degree bounds, are met. Finally, our solution is adaptive and
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appropriately transforms the tree with join and leave operations of MSNs, changes in network conditions

and distribution of clients at different MSNs.
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