
Key Management for Secure Internet Multicast
using Boolean Function Minimization Techniques

Isabella Chang Robert Engel
Dilip Kandlur Dimitrios Pendarakis Debanjan Saha

IBM T.J. Watson Research Center
fichang,rengel,kandlur,dimitris,debanjan g@watson.ibm.com

Abstract—

The Internet today provides no support for privacy or authentication
of multicast packets. However, an increasing number of applications will
require secure multicast services in order to restrict group membership
and enforce accountability of group members. A major problem asso-
ciated with the deployment of secure multicast delivery services is the
scalability of the key distribution protocol. This is particularly true with
regard to the handling of group membership changes, such as member
departures and/or expulsions, which necessitate the distribution of a new
session key to all the remaining group members.

As the frequency of group membership changes increases, it becomes
necessary to reduce the cost of key distribution operations. This paper
explores the use of batching of group membership changes to reduce the
frequency, and hence the cost, of key re-distribution operations. It focuses
explicitly on the problem of cumulative member removaland presents an
algorithm that minimizes the number of messages required to distribute
new keys to the remaining group members. The algorithm is used in con-
junction with a new multicast key management scheme which uses a set
of auxiliary keys in order to improve scalability. In contrast to previous
schemes which generate a fixed hierarchy of keys, the proposed scheme
dynamically generates the most suitable key hierarchy by composing dif-
ferent keys. Our cumulative member removal algorithm uses Boolean
function minimization techniques, and outperforms all other schemes
known to us in terms of message complexity.

I. I NTRODUCTION

The Internet today supports a basic form of multicast ser-
vice. Receivers can join and leave a multicast group, identi-
fied by a Class D IP address, by sending IGMP messages to
their local routers [8]. To send datagrams to a multicast group,
a sender need not be a member of the group. It can simply
address the datagrams to the group address. It is the respon-
sibility of the multicast capable routers to communicate with
each other using multicast routing protocols and deliver the
datagrams to all members of the group. The multicast group
is an open group and senders do not know the identities of
the receivers in the group. Likewise, receivers do not have
any mechanisms available to authenticate the identity of the
senders.

Support for privacy and authentication in multicast distri-
bution can be useful in a number of applications where it is
important to restrict the set of receivers and/or authenticate
the data source. Applications such as pay-per-view distribu-
tion of digital media, pay-per-use multi-party games, and re-
stricted conferences fall in the category where the receiver set

needs to be restricted to legitimate subscribers. In addition,
for applications such as multicast distribution of stock market
information it is also important to authenticate the data source.

To add secure services on top of IP multicast, each secure
multicast group is usually associated with one or more trusted
servers responsible for managing membership to the group.
We refer to these servers as group controllers, or simply con-
trollers, in this paper. In order tojoin a secure multicast ses-
sion, either as a sender or as a receiver, a client has to request
access to the group from the controller responsible for the ses-
sion. Upon receiving a request from a client to join a secure
multicast session, the controller examines the client creden-
tials, in the form of a login name and password or a digital
certificate. If the client is permitted to join the group, the con-
troller provides it with the requisite keys as well as the mul-
ticast address where the client should listen for future control
and data messages. The keys sent to the client include the ses-
sion key which is shared by all members of the session and
possibly, auxiliary keys, depending upon the key distribution
algorithm.

The group controller is also responsible for handling client
de-registration and removal. De-registration is initiated by a
client and is important in applications such as pay-per-view
where a client leaving a group would like to ensure that it is
no longer charged for usage. Removal of a group member can
be initiated by that member’s domain controller and is impor-
tant in cases where the member in question loses the access
control privileges for the multicast group, due to lack of au-
thentication, credit, etc.

Client de-registration and removal pose a complex scala-
bility problem for multicast key management. To illustrate
the problem, consider a secure multicast group consisting ofn

members, sharing a session key which is used for data trans-
missions. Now, assume one member of the group has to be
removed. The session key has to be changed and communi-
cated toall remaining(n � 1) members of the group. This
will guarantee that the removed member cannot decrypt any
future group communication and, furthermore, it cannot send
any legitimate data to the group. However, communicating
the new session key in ascalable and secure fashion, to the
(n � 1) remaining members of the group is a non-trivial task.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

The simplest solution is to use a separate secure unicast con-
nection from the controller to each remaining group member;
this assumes that for each client there exists a unique key that
is shared between the client and the controller. While sim-
ple, this solution suffers from poor scalability since it requires
(n� 1) secure unicast connections and(n) secret keys.

The topic of key management for multiparty communica-
tion has been studied in the literature [10], [11], [3], [5]. How-
ever, with the exception of [4], [17] the scalability problem
associated with frequent key changes in a large group has not
been addressed. In Iolus [4] the scalability problem is ad-
dressed by dividing a large group into multiple subgroups and
employing a hierarchy of group security agents. The scheme
proposed in [17] uses a hierarchy of keys to solve the scalabil-
ity problem. In this scheme, a key update requiresO(logN)
messages whereN is the size of the group. Each client has to
maintain a key ring ofO(logN) keys and the controller has to
manage a tree ofO(N) keys.

Our approach is similar to the scheme proposed in [17] in
the sense that it uses a smart distribution of keys to achieve
good scaling. However, instead of using a fixed hierarchy of
keys, we dynamically generate the most suitable key hierar-
chy by composing different keys. As in [17], our scheme
requires the controller to sendO(logN) messages to expel a
single member from a group of sizeN . However, in multicast
groups of large size and frequent membership changes, the
modification and distribution of new session keys is an expen-
sive operation, especially when it is used for each individual
member departure. Instead, it is more likely that new keys will
be generated at periodic intervals of time and/or in response to
a significant number of member departures or expulsions.

This paper focuses explicitly on the problem ofcumulative
member removaland proposes a scheme that can be used to
find the minimum number of messages required to distribute
new keys to the remaining group members. Using Boolean
function minimization techniques, our scheme outperforms all
other schemes known to us in terms of message complexity in
removing multiple group members simultaneously. A further
advantage of our scheme is that the controller has to maintain
only O(logN) keys as opposed toO(N) in [17]. A detailed
comparison of our approach and the approach proposed in [17]
is presented in section IV. Note that both our scheme and the
one of [17] can be used in conjunction with Iolus [4].

The rest of the paper is organized as follows. In section II
we present our key management and distributionscheme. Sec-
tion III contains an analysis of the proposed scheme. A com-
parison of our approach with other schemes proposed in the
literature can be found in section IV. Finally, in section V we
draw our conclusions.

II. K EY MANAGEMENT SCHEME

In our scheme each member of the group is associated with
a unique user ID (UID) which is a binary string of lengthn.

Consequently, a UID can be written asXn�1Xn�2 : : :X0,
whereXi can be either0 or 1. Using boolean notation,Xi

can be written as�xi or xi depending on whetherXi is 0 or 1.
The length of the UID depends upon the size of the multicast
group. For example, in a group with more than 4 and up to 8
members we can use 3 bit UIDs.

When a member with UIDXn�1Xn�2 : : :X0 registers
with the group controller to join a session it receives the com-
mon session key,SK. The session key is shared by all cur-
rent members of the group and is used to encrypt/decrypt data
messages sent to the multicast group. Additionally, the mem-
ber receives a set ofn auxiliary keysKn�1;Kn�2; : : : ;K0,
whereKi is written aski if Xi = 1 and�ki if Xi = 0 1. The
auxiliary keys are used to update session keys in a secure man-
ner. These keys are drawn from a set ofn key pairs. Each key
pair corresponds to a bit in the UID. Each member receives ex-
actly one key out of every key pair. The controller manages all
the auxiliary keys, namelyfk0; �k0; k1; �k1; : : : ; kn�1; �kn�1g.
Figure 1(a) shows an example of keys possessed by different
members in a group of size8. The square leaf nodes in the tree
represent the members in the group. As shown in the figure,
each member is identified by a unique 3-bit UID. The round
nodes in the tree represent the keys in the system. Notice that
there are three levels in the tree, each corresponding to a bit
position in the UID. Each member possesses all the keys on
the branch from the leaf representing its UID to the root of the
tree. For example, memberc5 (UID 101) possesses the aux-
iliary keys k2,�k1, andk0 in addition to the session keySK
which is shared by all members.

In general, both the session and the auxiliary keys change
whenever a group member de-registers or is to be removed,
so that it can no longer send to or receive messages addressed
to the group. We term the event of such change of keys as
group re-keying. Since group re-keying takes place in discrete
times, we denote the session key asSK(r) and the auxiliary
keys aski(r) or �ki(r), wherer is thecurrent round number.
We define a round to be the sequence number, starting from
0 at the time the multicast session is created, of an interval in
which the session key remains unchanged.

A. Individual Member Removal

Whenever a member of a multicast group is to be expelled,
e.g., because its subscription has expired, a new session key
needs to be distributed to every member except the one leaving
to make sure that the expelled member can no longer receive
and send data addressed to the group. Similarly, if a member
voluntarily leaves the multicast group, the session key might
also have to be updated, depending on the re-keying policy of
the group controller. This can be useful for sessions where
members pay according to the duration of their membership
in the group.

1Note that valueski and�ki are not complements of each other, they are two
unrelated keys.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

k k k

k 0

1 1 1

k 2

SK

1k

k 0

k 2

k 0 k 0 k 0k 0 k 0 k 0

c0 c1 c2 c3 c4 c5 c6 c7
000 001 010 011 100 101 110 111

k 0

k 1 k 1

k 2

SK

1k

k 0

k 2

1k

k 0 0k k 0k 0 k 0 k 0

c0 c1 c2 c3 c4 c5 c6 c7
000 001 010 011 100 101 110 111

(a) Key distribution (b) Departure ofc5

Fig. 1. Key distribution and update in a group of size8.

In order to update session keySK(r), the controller com-
putes a new session keySK(r+1). The new session key is en-
crypted with the keys that are “complementary” to the ones of
the departing member. For example, assume that the departing
member’s UID is101. Therefore, it possesses keysk2; �k1; k0.
The new session key is encrypted and sent in 3 different mes-
sages,fSK(r+1)g�k0 , fSK(r+1)gk1 , fSK(r+1)g�k2 , where
fLgM means that the stringL is encrypted with keyM , and is
multicast to the entire group. Although the departing member
receives all the messages, it can not decrypt them, since every
message is encrypted with a key that the departing member
does not possess. It is also guaranteed that every other mem-
ber of the group can decrypt at least one message. This is due
to the fact that the UID of every other member differs from the
UID of the departing member in at least one bit position, and
therefore their key sets differ as well in at least one key. This
differing key(s) can be used for decryption.

Figure 1(b) shows a visual interpretation of the re-keying
scheme described above using the example in Figure 1(a). In
the figure, the keys corresponding to the solid round nodes
correspond to the keys possessed by the departing member
c5. The hatched round nodes represent the complementary
set, that is, the keys not possessed byc5. Note that the branch
from c5 to the root of the tree has only solid round nodes. Ev-
ery other branch has at least one hatched node. Hence, if the
new session is encrypted individually with the keys not pos-
sessed by memberc5, all members except forc5 will be able
to decrypt at least one of the messages.

A simple analysis of this key distribution algorithm shows
that for a group ofN members the number of keys that need
to be maintained by the controller is of the orderO(logN)
and that the number of messages that need to be sent out to
update the session key after the removal of a single member
is O(logN), with each message encrypted with one key. Al-
ternatively, we can pack the three encrypted keys in one sin-

gle message. Packing multiple encrypted payloads in a single
message reduces the overhead if the message has to be signed
by the controller to ensure authenticity.

Clearly, in this scheme the departing member is excluded
from learning the new session key. To make sure that it can
not use its auxiliary keys to decrypt future session key updates,
auxiliary keys are updated as well. To update keyKi(r), a one
way hash functionf is used that yields the updated auxiliary
key as followsKi(r+1) = f(Ki(r); SK(r+ 1)). This guar-
antees that only a member that is in possession of the new
session keySK(r + 1) can obtain the updated auxiliary key
Ki(r+1). Since the departing member does not know the new
session keySK(r + 1), it is excluded form the future updates
of the session key.

B. Removal of Multiple Members

The key update procedure described in the previous sec-
tion can be appliedk times successively to removek members
from the multicast group. However, a more efficient strategy is
to aggregate the removal of several members from the group.
This can be useful for policies where key updating is done
only in certain intervals to save resources, or when several
members are expelled/depart either simultaneously or within
a very small time interval.

In this section we present a systematic approach to the
problem of removing members in the same round. In gen-
eral, consider a set of clients,S = fc0; c1; : : : ; cN�1g, where
N = 2n. The user ID (UID) of a clientc is written,
in binary form, as ann-bit ID u(c) = Xn�1Xn�2 : : :X0,
whereXi; i = 0; 1; : : : ; n � 1 is either 0 or 1. At any
point in time, membership in the secure multicast group
can be determined by a Boolean functionm() of the UID.
That is, ifm(X0; X1; : : : ; Xn�1) = 1, the client with UID
Xn�1Xn�2 : : :X0 is in the group. Otherwise, that client is to
be excluded from the group.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

k 0

k 1 k 1

k 2

SK

1k

k 0

k 2

1k

k 0 k 0 k 0k 0 k 0 k 0

c0 c1 c2 c3 c4 c5 c6 c7
000 001 010 011 100 101 110 111

Fig. 2. Example of multiple members departing in the same round.

Group re-keying can be achieved by updating the session
and auxiliary keys for all but the clients for whichm(u) = 0.
To this extent, re-keying information has to be encrypted with
keys unknown to the excluded clients. For scalability and effi-
ciency reasons, it is desired that re-keying requires a minimum
number of messages sent to the group and/or that a minimum
number of encryption operations are performed. Intuitively,
this is achieved by encrypting re-keying information with keys
common to subsets of the remaining members.

Consider the example in Figure 1. Suppose that membersc0
with UID 000 andc4 with UID 100 have to be removed from
the group. The objective of re-keying is to provide the new
session key, denoted bySK(l+1), to the remaining members,
Sr = fc1; c2; c3; c5; c6; c7g. Note that, in general, the set of
the actual remaining group members is a subset ofSr since
not all UIDs may be assigned. UIDs that are not assigned can
be treated as “don’t care” conditions without any impact in
the procedure. In this example, it is sufficient to multicast the
following two messages containing the encrypted new session
key, fSK(l + 1)gk0 andfSK(l + 1)gk1. The first message
can be decrypted only byc1; c3; c5; c7 and the second only by
membersc2; c3; c6; c7. Hence, the combination of these two
messages coversSr and is thus sufficient for group re-keying.

Figure 2 shows a visual interpretation of the re-keying
scheme described above. The solid round nodes represent the
keys possessed by eitherc0 or c4. Clearly, these keys may not
be used to encrypt the new session key. However, as men-
tioned above, the keysk0 andk1 cover the remaining set of
members. Hence, two messages, each containing the new ses-
sion key encrypted individually withk0 andk1 is sufficient to
update the keys for the rest of the group.

Observe that instead of sending out a total of2 � 3 = 6
messages, as would have been required if re-keying were per-
formed sequentially, we only need 2 messages by aggregat-
ing the removal of both members. This number is in fact one
less than the number of messages required to remove a single

member. Intuitively, the number of messages is reduced when
the UIDs of the remaining group members, have one or sev-
eral bits in common that are different from the excluded mem-
bers’ UIDs. In the above example, membersc2; c3; c6; c7 all
have the same value in bitX1 of their UID which is different
from the value ofX1 for the excluded members. This trans-
lates into a key,k1 which is known to these members but not
to the excluded ones (they possess�k1). Similarly, members
c1; c3; c5; c7 have the same value for bitX0 and all possessk0
while the excluded members possess�k0 and can not decrypt
the message.

Thus, the problem of cumulative group member removal
becomes one of grouping the remaining members that share
common bits in their UIDs (and hence common keys) which
are different from those of the removed members, in an effi-
cient and systematic way. Formally, this problem is equivalent
to theminimizationof the Boolean membership functionm().
For the example presented above, the membership function
can be written as:

m(X2; X1; X0) = �X2
�X1X0 + �X2X1

�X0 + �X2X1X0

+X2
�X1X0 +X2X1

�X0 +X2X1X0 ;

where+ represents logical OR and multiplication represents
logical AND. In other words, the membership function evalu-
ates to1 for the UIDs of all members of the group. The form
of equation 1 suggests a straightforward solution for re-keying
the group: multicast6 messages, one for each term of the sum,
where each message is encrypted with a key which is a func-
tion of the keys corresponding to that term. Such a function
could be a one way hash function applied to all the elementary
keys, that yields the composite key with which the message
is encrypted. For example, term�X2

�X1X0 corresponds to a
message encrypted with a key derived from keys�k2; �k1; k0. It
is obvious that each one of these messages can be decrypted
by one and only one of the remaining group members; there
is no aggregation and no utilization of keys which might be
common among different remaining members.

Therefore, the need for simplification and aggregation
arises. Similar problems have been addressed for many years
in the area of switching theory and logical design. The objec-
tive there is to minimize Boolean functions so that the com-
plexity of digital circuits can be reduced. In the context of
logical design, a+ operation corresponds to an OR gate and
a multiplication to an AND gate. Typical objectives include
the minimization of total number of gates and/or number of
circuit stages.

We borrow from the results of logical design to construct a
more efficient re-keying process. First, we define some of the
terms we use in subsequent discussions.

� Literal: A variable or its complement, e.g.,x1, �x1, x2,
�x2, etc.

� Product Term: Series of literals related byAND, e.g.,
�x1�x2x3, �x1x2�x3, etc.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

� Minterm: A product term which contains as many literals
as there are variables in the function. In equation 1, all
products are minterms.

� Sum term: Series of literals related by OR, e.g.,x1 + x3,
�x2 + x3.

� Normal term: Product or sum term in which no variable
appears more than once.

The standard form most usually considered in the simplifica-
tion of Boolean functions is the form known as thesum of
products expression (SOPE). In the context of logical design,
each product corresponds to an AND gate andeachliteral to
a gate input. In the context of the multicast group re-keying
problem, each product corresponds to a message andeachlit-
eral to a key which is used as input to a function that derives
the encryption/decryption key for the message. Many crite-
ria can be applied in optimizing a sum of products form. In
the context of logical design, a sum of products expression is
regarded as aminimalexpression if there exists (1) no other
equivalent expression involving fewer products, and (2) no
other expression involving the same number of products but
a smaller number of literals.

The rationale behind this definition of optimality is that typ-
ically the cost of an additional gate is several times that of an
additional input on an already existing gate and, hence, elim-
ination of gates is the primary objective of the minimization
process. Interestingly, the same definition of optimality is also
applicable to our problem. The argument in our case is that
the complexity of sending an additional message is far greater
that of adding an extra key ID in the message to indicate that
the key should be used as input in deriving a new key.

In deriving a minimal expression, the Karnaugh map [2]
representation of boolean functions can be used. Karnaugh
maps provide an intuitive visual technique that helps to iden-
tify product terms. However, for large number of variables
this method becomes hard to use since it is essentially a trial-
and-error method that relies on the ability to recognize pat-
terns. A systematic approach applicable to complex functions
was developed by Quine and improved by McCluskey. It pro-
vides a step by step approach on how to find out the minimum
number of SOPE, using a tabular method that can easily be
implemented on a computer. More details can be found in
[6]. The controller executes the Quine-McCluskey algorithm
to compute the messages that need to be sent out after multiple
members depart the group in the same round.

To understand how the boolean minimization applies to our
problem of key updates with a minimum number of messages,
consider the again the example in Figure 1. Assume that we
are currently in a state where the group has7 members and
all UIDs are assigned but101 (c5). Suppose, we now have to
removec0 andc4 from the group. Table I shows membership
functionm() for the group after the departure ofc0 and c4.
Note that the output for UIDs corresponding toc0 andc4 is
0. The output corresponding to all other members, except for

Input Output
(X2X1X0)

000 0
001 1
010 1
011 1
100 0
101 X
110 1
111 1

TABLE I

BOOLEAN MEMBERSHIP FUNCTION.

c5 is 1. Since the UID corresponding toc5 is not assigned in
this round, the output is set to “don’t care”and is indicated by
X. Intuitively, since the auxiliary keys were updated afterc5
left the group, it would not be able to decrypt the messages
encrypted with the new keys.

Figure 3(a) shows the Karnaugh map representation of the
membership function. Each field of the Karnaugh map corre-
sponds to a specific minterm and is marked 0, 1 or X. The next
step in the minimization procedure is to identify the largest
possible “rectangles” that contain only 1 and X as shown in
Figure 3(b). These rectangles are called prime implicants of
the function. By choosing the minimum number of prime im-
plicants the minimum SOPE of the function is obtained. For
this example, the function can be minimized tox1 + x0.

There is a straightforward analogy between minimizing
boolean functions and aggregating re-keying messages. The
interpretation of Figure 3 is as follows.

� The fields containing a0 correspond to the members that
have to be removed from the group.

� The fields containing a1 correspond to the remaining
members in the group that need to be updated with the
new session key.

� The fields containing anX correspond to UIDs that have
not been assigned yet.

Therefore, updating session and auxiliary keys after cumula-
tive removal of a set of group members reduces to finding the
minimum number of blocks in the Karnaugh table, so that all
1s are in a block, but none of the0s. Each block can then be
mapped into a message that is encrypted with the identifier of
the block and multicast out to the group.

Due to the minimal number of auxiliary keys that our key
management and distributionscheme maintains, it may be sus-
ceptible to collusion attacks. In a collusion attack, a set of
members previously removed from the group collude and by
combining their sets of keys may be able to obtain the cur-
rently valid set of keys, thereby being able to continue unau-
thorized receipt of group communication. Toillustrate this

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

0

0

1

X

1

1

1

1

00 01 11 10

0

1

X X01

X 2

(a) Karnaugh Map

0

0

1

X

1

1

1

1

00 01 11 10

0

1

X X01

X 2

(b) Prime Implicants

Fig. 3. Karnaugh map minimization of membership function.

problem, consider a group of 8 members in which two mem-
bers, with IDs 000 and 111 respectively, are to be removed in
the same round. As can be easily observed, these members can
mount a collusion attack since they collectively hold all auxil-
iary keys for this group. While it is impossible to eliminate the
risk of a collusion attack with less thanO(n) auxiliary keys,
it is possible to raise the bar with a larger auxiliary key space
and a sparse distribution of UIDs.

III. PROPERTIES ANDPERFORMANCE

In this section we analyze the performance of the proposed
key management scheme. We focus on the performance in
terms of the total number of messages required to update the
session key when multiple members leave the group. In sec-
tion III-A, we derive the worst case complexity for two cases:
first the departure oftwomembers of a secure multicast group
and then the departure ofN=2 = 2n�1 members. Then, in
section III-B we present an upper bound on theaveragenum-
ber of messages required for aggregate removal of an arbitrary
number of members.

A. Worst Case Performance

A.1 Cumulative Removal of 2 Group Members

We examine the case when new keys have to be distributed
after 2 clients,C1 andC2, are removed from a secure multi-
cast group. Assume the client IDs, in binary representation,
areXn�1Xn�2 : : :X0 andX

0

n�1X
0

n�2 : : :X
0

0, respectively.
Since clients are represented by ann-bit ID, there can be a
total of2n of them. Without loss of generality we assume that
Xn�1Xn�2 : : :X0 = xn�1xn�2 : : : x0; the discussion in this
section holds for any value of the UID ofC1.

We first assume that the Hamming distance between the two
UIDs is maximum, i.e., that

X
0

i = �Xi = �xi ; i = 0; 1; : : : ; n� 1;

where �x denotes the 2’s complement ofx. Hence, client
C1 posseses keyskn�1; kn�2; : : : ; k1; k0 and clientC2 keys
�kn�1; �kn�2; : : : ; �k1; �k0. As we will prove next, this is the
worst case in terms of messages that have to be sent to update
the remaining members.

We will show that at mostn messages are needed for group
re-keying. First, we claim that the followingn messages can

be used to distribute the new keying information to all the re-
maining group members.

fSK(r + 1)gf(kn�1;�kn�2)
; fSK(r + 1)gf(kn�2;�kn�3)

;

: : : ; fSK(r + 1)gf(k0;�kn�1)

Each of then terms in the above expression corresponds
to a single message which contains the new session key
SK(r+1) encrypted with a composite key. The composite key
used for this encryption is derived from a one-way function
f(:; :) of two keys. One straightforward option is to assume
f(K1;K2) = K1K2 i.e.,SK(r+1) is doubly encrypted with
both keys. Alternatively, one can employ a one-way function,
like a hash function, which computes a single key from its two
arguments, thus avoiding the extra cost of double encryption.

We now show that then messages of expression 1 are suf-
ficient for group re-keying. First, observe that neitherC1 nor
C2 are able to decrypt any of these messages, since each one
of them possesses one and only one of the two keys used to
encrypt each message. Next, we will show that every one of
the remaining members of the multicast group can decrypt at
least one of the aboven messages.

Lemma 1:ExcludingC1 andC2, every member of the se-
cure multicast group can decrypt at least one of thenmessages
of expression 1.

Proof. Consider an arbitrary remaining member of the
group,C, with UID yn�1yn�2 : : : y1, which is obviously dif-
ferent from the IDs ofC1 andC2. Letm be the highest order
bit in which the IDs ofC andC1 differ (there has to be such a
bit otherwiseC � C1), i.e.,

yi = xi; i = n� 1; n� 2; : : : ;m + 1

ym = �xm:

If m < n�1,C possesses bothkm+1 and�km and, therefore,
can decrypt the(n� (m + 1))th message in expression 1.

If m = n � 1, i.e.,yn�1 = �xn�1, let l be the lowest order
bit in which the IDs ofC andC1 match (there has to be such
a bit, otherwiseC � C2), i.e.,

yl = xl; 0 � l < n� 1

yi = �xi; i = l � 1; l� 2; : : : ; 0:

If l = 0,C possesses bothk0 and�kn�1, so it can decrypt the
nth message in expression 1. Otherwise,C possesses bothkl
and�kl�1, so it can decrypt the(n� l)th message in expression
1.

Theorem 1:Re-keying a secure multicast group of size2n

when two group members are to be removed requires at most
n messages.

Proof. If the IDs of the two users, denoted byC1 and
C2, differ in all bits (i.e., have maximum Hamming distance),
Lemma 1 applies.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

Otherwise, the IDs have at least one bit in common; let this
beXi. Observe that a message encrypted with the key that
corresponds to the complement ofXi, i.e.,ki if Xi = 0 or �ki if
Xi = 1, is sufficient to distribute the new keying information
to half (2n�1) of the group members, while excludingC1 and
C2. The remaining2n�1 � 2 members which also belong to
the group, together withC1 andC2, all haveXi as thei-th bit
in their IDs. Hence, this bit can be effectively ignored and thus
the problem reduces itself to that of removing 2 users from a
group of2n�1 members, whose IDs have(n � 1) bits.

This procedure can be applied recursively, yielding one
message for every common bit inC1 andC2. After the i-th
message,2n�i users are left, includingC1 andC2. Therefore,
for k common bits in the UIDs ofC1 andC2, the solution is
comprised of two steps.

� Generatek messages which convey the new keying infor-
mation to2n � 2n�k clients.

� Re-key a group of2n�k clients whose IDs are of size
(n � k) bits and where the Hamming distance between
the IDs of the two users removed is maximum. As shown
in Lemma 1 this problem is solved with(n�k) messages.

Summing over the two steps, this solution requiresn mes-
sages. If we assume, without loss of generality that the com-
mon bits are thek first, as follows,

C1 = xn�1xn�2 : : :x(n�k)x(n�(k+1)) : : :x0 ;

C2 = xn�1xn�2 : : :x(n�k)�x(n�(k+1)) : : : �x0 ;

then these messages can be expressed as follows:

fSK(r + 1)gf(�kn�1)
; fSK(r + 1)gf(�kn�2)

;

fSK(r + 1)gf(�kn�k); fSK(r + 1)gf(k(n�(k+1)) ;
�k(n�(k+2)))

;

: : : ; fSK(r + 1)gf(k0;�k(n�(k+1)))
:

Note that ifk = n � 1, thek first messages are sufficient,
as can be easily verified.

A.2 Aggregate Removal of2n�1 Members

Consider a secure multicast group ofN = 2n members
where new keys have to be distributed afterN=2 = 2n�1

clients are removed from the group. We claim that the worst
case complexity corresponds to the case where the UIDs of the
N=2 remaining members are assigned such that the Hamming
distance between any two UIDs is 2 or larger. This means
that for any UIDXn�1Xn�2 : : :X0 of a remaining member,
all n UIDs which differ in only one bit were assigned to de-
parting members, or any remaining member is “encircled” by
departing members, as shown in the Karnaugh table of Figure
4. Intuitively, this means that no remaining member can be
grouped with another remaining member in the optimization
of the Boolean membership function. As a result, re-keying

1

1

1 1

10

0

0

X X0

X X3
00 01 11 10

00

01

11

10

1

2

1 0

1

0 1 0

0 0

Fig. 4. Worst case for aggregate removal of2
(n�1) members.

requires one message to be sent out for every remaining group
members, a total ofN=2 messages.

Now we will prove thatN=2 is the absolute worst case num-
ber in terms of update messages that need to be sent out for any
number of departing members.

To show this, first consider the case when the number of
departing members is greater or equal toN=2 and, thus, the
number of remaining members isN=2 or less. Clearly, the
number of messages required is no more than the number of
remaining members, since at worst one has to send out one
message to update a remaining member or one message per
minterm of the membership function. Hence, in this case the
number of messages required will be at mostN=2.

Now consider the case when the number of departing mem-
bers is less thanN=2 and, thus, the number of remaining mem-
bers is greater thanN=2. Looking at Figure 4, for every addi-
tional member which remains in the group or, equivalently, for
each additional minterm of the membership function, there ex-
ists (at least) one previously existing minterm of the function
with which it can be grouped. Grouping can be done in a sys-
tematic way so that every additional member is grouped with
one and only one of the existing ones. For example by pairing
with the member with the largest UID smaller than that of it-
self. This argument holds even if the existingN=2 minterms
are not placed as shown in Figure 4, since moving any of the
minterms shown to any other position in the table will reduce
the number of messages by 1.

B. Average Case Performance

It is interesting to study the average number of messages
required for the aggregate removal of anarbitrary number of
members from a multicast group.

In the logic minimization literature, theaverage number of
productsin theminimum sum-of-products expressions (SOPE)
of Boolean functions has been studied extensively. As men-
tioned earlier, for switching functions, the average number of
products in SOPE’s is equal to the average number of AND
gates in minimum AND-OR two level circuits, while in our
context it is equal to the average number of messages required

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

for re-keying.

Sasao in [1] derives an upper bound on the average number
of products in the minimum SOPE’s that are claimed to be the
tightest reported to date. The bound considersp-valued input
two-valued output functions, a more general case than the case
of p = 2 which has been considered throughout this paper.

For reasons of completeness, we now present the result,
adapted from [1]. We begin by introducing the concept of
VP-equivalence relation and proceed with the theorem stating
the upper bound.

Definition 1: The relation� satisfying the following condi-
tions, wheref is an-variablep-valued input two valued output
function, is called VP-equivalence relation.

1. f � f .

2. If f1 = f(: : : ; Xi; : : : ; Xj; : : :) and
f2 = f(: : : ; Xj ; : : : ; Xi; : : :), thenf1 � f2 (permuta-
tion of input variables).

3. Let � : P ! P be an arbitrary one-to-one mapping,
whereP = f0; 1; : : : ; p�1g is the set of truth values that
Xi; i = 1; 2; : : : ; n take values in. Iff1 = (: : : ; Xi; : : :)
andf2 = (: : : ; �(Xi); : : :), thenf1 � f2 (permutation of
values in a variable).

Forp = 2, VP-equivalence is called NP-equivalence.

Theorem 2:Let Up(n; u) be an upper bound on the aver-
age number of products in minimum SOPE’s forn-variable
p-valued input two-valued output functions for a givenu, the
number of elements inf�1(1) i.e., the number of minterms of
f (u is also called the weight off and denoted byjf j). Then

Up(n; u) =
pn�k

F (u)

pkX
j=1

c(j) �

�
w � pk

u� j

�
; (1)

where

c(j) =
X
jgij=j

�(gi) � t(gi) ;

and g1; g2; : : : g� are representative functions of VP-
equivalence classes,t(gi) is the number of products in a mini-
mum SOPE forgi, and�(gi) is the number of functions which
are VP-equivalent togi.

In equation 1,w = pn is the number of all possible dif-
ferentn-variablep-valued input two-valued output functions

andF (u) =

�
w

u

�
is the number of different functions with

weightu. The upper bound is a function of the variablek � n.
In general, the larger thek, the tighter the upper bound, but the
larger the computational complexity since the number of VP
equivalence classes. [1] contains representative examples of
thec(j) coefficients.

Proof. See [1].

IV. RELATED WORK

Several authors have addressed the problem of providing
security in multiparty communication. For an overview of the
various issues related to multicast security please refer to [13]
and [14]. Among the works closely related to the work pre-
sented here, GKMP [10], [11] is one of the most prominent. In
GKMP a group member is selected to be theGroup Key Con-
troller responsible for handling join requests and distributing
(new) keys. The Group Key Controller generates the group
keys in a joint operation with a selected group member. It
then contacts each valid group member and sends it the group
keys encrypted by a key mutually shared between the Group
Key Controller and that member. This approach suffers from
scalability problems since a single entity is involved in send-
ing the group keys to every member on a one by one basis,
encrypted with the specific shared key

Another prominent multicast key management protocol
SMKD [3] works in conjuction with the Core Based Tree
(CBT) [12] multicast protocol. It allows members to securely
join a CBT group tree. SMKD enhances the scalability by ex-
ploiting the implicit hierarchy of the CBT distribution tree and
the fact that routers on the delivery tree know the identities of
their tree neighbors. When a CBT tree is first constructed, the
tree root operates as group controller responsible for group key
generation and distribution. The ability to distribute the group
keys further is delegated to other routers as they join the de-
livery tree. SKMD achieves a high scalability but it does not
offer a satisfactory solution to the re-keying problem in the
case of frequent group membership changes. Furthermore, it
is vulnerable to breach of security by “corrupt” routers in the
distribution tree.

In Iolus [4] the scalability problem is addressed by dividing
a secure multicast group into multiple sub-groups organized
in a multi-level hierarchy. The main focus of that work is the
architecture of the group hierarchy and inter-group key man-
agement. In Iolus terminology, our work focuses more on the
key management within a single “subgroup”, a topic not ad-
dressed in [4].

In terms of addressing the scalability problem of group key
management, the scheme proposed in [17] is the one closest
to ours. In this scheme, clients are organized in a virtual hi-
erarchy as shown in figure 5(a). Each round node in the tree
represents a key with the label being the key ID. The label for
the root of each tree represents the session key of the group.
A client, represented by a square leaf node, possesses all the
keys on the branch from the leaf to the root of the tree. When
a client leaves or gets expelled from the group, all keys on
the branch from the leaf representing the client to the root are
compromised and have to be changed. However, updated keys
can now be multicast to the sub-groups instead of being uni-
cast to individual members of the group. For example, when
memberc5 leaves the group, keysK45,K4567, andK01234567

are updated. KeyK45 is encrypted with keyK4, keyK4567 is

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

encrypted with keyK67 and new keyK45, and keyK01234567

is encrypted with keyK0123 and new keyK4567 and multi-
cast to the entire group. In this scheme, a key update requires
O(logN) messages whereN is the size of the group. Note that
each client has to manageO(logN) keys and the controller
has to manage a tree ofO(N) keys. This scheme is similar
to our scheme in terms of message complexity for individual
member removal.

However, the number of different keys maintained by the
controller isO(n) compared toO(2log(n)) for our approach.
Since generating new keys can be expensive, this reduction
in the number of keys can be a significant advantage of our
approach. Keeping track of key assignment is also easier in
our case since there is a functional mapping of UIDs to keys.
Most importantly, our scheme is superior in minimizing the
number of messages when multiple members leave the session
in the same round. In the following, we explain this in more
detail.

Figure 5(b), shows the distribution of keys among the mem-
bers in a group of 8 in our scheme. We can show that the key
hierarchy in Figure 5(a) is a special case of a number of key
hierarchies that can be dynamically generated in our scheme.
This can be accomplished by defining a mapping between the
two hierarchies that can be used to compute the key hierarchy
with 15 different composite keys of figure 5(a) from the set
of 6 elementary keys andSK of figure 5(b). In the mapping
R : C ! E defined below,E is the set of keys in figure 5(b),
C is the set of keys in figure 5(a), andf is an one-way hash
function.

E = fk2; �k2; k1; �k1; k0; �k0;SKg

C = fK0;K1;K2;K3;K4;K5;K6;K7;K01;K23;

K45;K67;K0123;K4567;K01234567g

R = fK0 ! f(�k2; �k1; �k0);K1 ! f(�k2; �k1; k0);

K2 ! f(�k2; k1; �k0);K3 ! f(�k2; k1; k0);

K4 ! f(k2; �k1; �k0);K5 ! f(k2; �k1; k0);

K6 ! f(k2; k1; �k0);K7 ! f(k2; k1; k0);

K01 ! f(�k2; �k1);K23 ! f(�k2; k1);

K45 ! f(k2; �k1);K67 ! f(k2; k1);

K0123 !
�k2;K4567 ! k2;K01234567! SKg

Clearly, this mapping can easily be extended for larger
groups and key hierarchies. Note, that there are many differ-
ent mappings fromE toC. For example, we can swap any key
pair ki/�ki with kj/�kj or ki with �ki. Or, we can easily redraw
the key graph from Figure 5(b) by swapping the keys on the
different levels without affecting the keys the members pos-
sess, while the composite key hierarchy has a fixed hierarchy
of keys. These additional degrees of freedom translate into an
increased number of key hierarchies that can be formed. This
flexibility can be exploited in reducing the number of mes-

sages that need to be sent out to expel/remove multiple mem-
bers in the same round.

For example, to remove membersc0, c3, andc5, using the
scheme proposed in [17], [5] the controller needs to send
9 messages (fK01gK1

, fK23gK2
, fK45gK4

, fK0123gK01
,

fK0123gK23
, fK4567gK45

, fK4567gK67
fK01234567gK0123

,
fK01234567gK4567

, where the controller always uses the new,
updated key to encrypt). To remove the same members in
our scheme it is enough to send out 4 messages (fSKgk2�k0 ,
fSKg�k2�k1k0 , fSKgk2k1 , fSKgk1�k0) that can be computed
using the Karnaugh map.

V. CONCLUSION

In this paper, we presented an efficient key management
and distribution scheme for secure multicast, that scales ex-
tremely well in terms of group size and dynamics. For a mul-
ticast group ofn members the number of keys that need to be
maintained by the group controller isO(log(n)) and the mes-
sage complexity associated with updating keys when a single
member departs the group is alsoO(log(n). When removal
of multiple group members in the same round is desired, we
use boolean minimization in order to find the minimum num-
ber of messages needed to update keys . In terms of mes-
sage complexity in removing multiple members in the same
round, our scheme outperforms all other schemes known to
us. In fact, depending on the identity of the specific members
leaving the group, the number of messages required to update
keys is at times less than the number of messages required
to expel a single member. In many secure multicast applica-
tions, such as pay-per-view events, members join and leave
the group in bursts. In these applications, efficient removal of
multiple members in the same round is critically important.
Even in applications such as multi-party games, where mem-
bership changes are spread over time, aggregation of multiple
departures into a single key update event is important for per-
formance reasons. The efficiency of our scheme in aggregat-
ing key updates due to multiple departures can translate into a
tremendous performance advantage.

This work can be extended in many ways. We are in the
process of analyzing the average case overhead of the algo-
rithm using simulations. The proposed scheme is being used
within a toolkit for secure Internet multicast services that we
have developed. We continue to benchmark and optimize var-
ious components of the toolkit, including the key distribution
algorithm. We plan to use the toolkit to enhance a number of
multicast applications with security, such as synchronization
of web caches and proxies,updating of distributed databases
and multi-party games.

VI. A CKNOWLEDGMENT

We would like to thank Tsutomu Sasao from the Kyushu
Institute of Technology for his discussions on minimizing sum
of product expressions (SOPE).

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

K

K

K

K K K K

K K K K K K K

c0 c1 c2 c3 c4 c5 c6 c7

01234567

0123 4567

01 23 45 67

0 1 2 3 K4 5 6 7

k k k

k 0

1 1 1

k 2

SK

1k

k 0

k 2

k 0 k 0 k 0k 0 k 0 k 0

c0 c1 c2 c3 c4 c5 c6 c7
000 001 010 011 100 101 110 111

(a) Key hierarchy in [17] (b) Key hierarchy in our scheme

Fig. 5. Comparison of key hierarchies in our scheme and in the scheme proposed in [17].

REFERENCES

[1] Tsutomu Sasao, “Bounds on the Average Number of Products in
the Minimum Sum-of-Products Expressions for Multiple-Valued Input
Two-Valued Output Functions”,IEEE Transactions on Computers, Vol.
40, No. 5, pp. 645–651, May 1991.

[2] M. Karnaugh, “The Map Method for Synthesis of Combinational Logic
Circuits”, Transactions AIEE, Communications and Electronics, Vol.
72, pp. 593-599, November 1953.

[3] A. Ballardie, “Scalable Multicast Key Distribution” RFC 1949, May
1996.

[4] Suvo Mittra, “Iolus: A Framework for Scalable Secure Multicasting”,
Proceedings of ACM SIGCOMM’97, Cannes, France, pp. 277–288,
1997.

[5] Debby M. Wallner, Eric J. Harder, Ryan C. Agee, “Key Management for
Multicast: Issues and Architectures”,InformationalRFC, draft-wallner-
key-arch-00.txt, July 1997.

[6] E. J. McCluskey Jr., “Minimization of Boolean Functions”,Bell System
Tech. Journal, Vol. 35, No. 6, pp. 1417-1444, November 1956.

[7] C. Huitema, “Routing in the Internet”, Prentice Hall, 1995.
[8] Steve E. Deering, “Host Extensions for IP Multicasting”, RFC 1112,

August 1989.
[9] Steve E. Deering, “Multicast Routing in Datagram Internetworks”,

Ph.D. Thesis, Stanford University, December 1991.
[10] H. Harney, C. Muckenhirn, “Group Key ManagementProtocol (GKMP)

Architecture”, RFC 2094, July 1997.
[11] H. Harney, C. Muckenhirn, “Group Key ManagementProtocol (GKMP)

Specification”, RFC 2093, July 1997.
[12] A. Ballardie, P. Francis, J. Crowcroft, “Core Based Trees: An Architec-

ture for Scalable Inter-Domain Multicast Routing”,Proceedings of the
ACM SIGCOMM’93, San Francisco, CA, September 1993.

[13] Ran Canetti, Juan Garay, Daniele Micciancio, Moni Naor, Benny
Pinkas, “Issues in Multicast Security: A Taxonomy of Secure Multi-
cast Protocols and Efficient Authentication Schemes”,draft manuscript,
1998.

[14] Ran Canetti, Benny Pinkas, “A Taxonomy of Multicast Security Issues”,
Internet Draft, May 1998.

[15] Alan O. Freier, Philip Karlton, Paul C. Kocher, “The SSL Protocol
Version 3.0”,Internet Draft, draft-freier-ssl-version3-02.txt, November
1996.

[16] W. Yeong, T. Howes, S. Kille, “Lightweight Directory Access Protocol”,
RFC 1777, March 1995.

[17] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam, “Secure Group
Communications Using Key Graphs”,Proceedingsof ACM SIGCOMM,
Vancouver, British Columbia, September1998.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

