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Abstract

Trends in enterprise WLAN usage and deployment

point to the need for tools that can capture interference

in real time. A tool for interference estimation can not

only enable WLAN managers to improve network per-

formance by dynamically adjusting operating parameters

like the channel of operation and transmit power of ac-

cess points, but also diagnose and potentially proactively

fix problems. In this paper, we present the design, imple-

mentation, and evaluation of a Passive Interference Esti-

mator (PIE) that can dynamically generate fine-grained

interference estimates across an entire WLAN. PIE in-

troduces no measurement traffic, and yet provides an ac-

curate estimate of WLAN interference tracking changes

caused by client mobility, dynamic traffic loads, and

varying channel conditions. Our experiments conducted

on two different testbeds, using both controlled and real

traffic patterns, show that PIE is not only able to provide

high accuracy but also operate beyond the limitations of

prior tools. It helps with performance diagnosis and real-

time WLAN optimization, we describe its use in multiple

WLAN optimization applications: channel assignment,

transmit power control, and data scheduling.

1 Introduction

Radio interference remains a key performance bottle-

neck for enterprise WLANs [25]. In spite of significant

progress in planning, deploying, and managing enter-

prise WLANs, administrators today have very tools that

can help them understand how much interference exists

in their network, and how interference patterns evolve

over time. Building an on-line tool for enterprise-wide

WLAN interference estimation is particularly challeng-

ing, because interference is highly dynamic in nature.

Each time a new client arrives, departs, moves, or

changes its traffic pattern, the number of other nodes in

the network it interferes with (and the degree to which it

interferes) changes. Further, wireless channel conditions

are never static but continuously evolve with changes in

the environment, e.g., even with the opening or closing

of a door, people walking, etc.

The goal of this paper is to answer the following

question: Given an enterprise WLAN consisting of

a number of Access Points (APs) and mobile clients,

∗Vivek Shrivastava worked on this project as a PhD student at UW-
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compute its real-time conflict graph, i.e., identify the

precise set of nodes that interfere with each other and

the degree to which they do so at any specified point of

time.

Applications of interference estimation: This prob-

lem of interference estimation is fundamental to under-

standing the behavior of any wireless network. Further,

interference estimates and the conflict graph serve as im-

portant inputs to many WLAN configuration problems,

e.g., channel assignment for each AP, transmit power se-

lection, and even emerging strategies for data scheduling

across the enterprise WLAN [22].

A number of research efforts have made significant

progress toward this tool building goal. Prior techniques

for interference estimation mainly employ active prob-

ing (interference maps [15] and micro-probing [3]) and

suffer from three main problems: a) they incur moder-

ate to significant measurement overhead and cannot be

employed to continuously obtain interference informa-

tion across time, b) they offer limited visibility into the

root cause of interference, c) they often require specific

client modifications. While some recent work has also

explored the potential for passive interference estimation,

it is mostly limited to offline trace collection and analysis,

and thus cannot be employed in real time.

In this paper, we explore an alternate design for a prac-

tical online interference estimation mechanism, one that

does not impose any active measurement traffic on the

WLAN. It is completely passive in nature, and estimates

interference by simply observing ongoing traffic at the

different APs. Specifically, we present the design, imple-

mentation, and detailed evaluation of a Passive Interfer-

ence Estimator (PIE) system.

Our work is inspired by two key passive WLAN mon-

itoring approaches proposed earlier: Jigsaw [8, 9] and

WIT [13]. These systems provide us with two useful

building blocks: (i) a platform for capturing wireless traf-

fic and merging traces collected from different vantage

points and (ii) specific tools to infer interesting proper-

ties about the 802.11 network from such merged traffic

traces. However, both these research efforts stop short of

addressing our goal of designing a real-time interference

estimation tool. The key features of PIE are:

1. It captures dynamic interference information

quickly and robustly: PIE captures interference infor-

mation across the entire WLAN within a few hundred

milliseconds. It can effectively identify the real interfer-

1



ers when multiple overlapping transmitters are present.

2. It uses real traffic patterns: PIE is passive; it esti-

mates interference using actual traffic patterns in the net-

work, capturing the effects of bit rate adaptation, varying

packet sizes, and traffic burstiness.

3. It has low overhead and causes no downtime: Be-

ing passive, PIE does not take away wireless bandwidth

resources from users.

4. It does not require client modifications: The PIE

mechanism is implemented at the APs and a central con-

troller placed within the enterprise wired network. No

client modifications are required.

PIE relies on the accurate timestamping of transmis-

sions by the AP. These timestamps could be reported ac-

curately by the firmware of the AP’s wireless card. How-

ever, most off-the-shelf wireless cards do not expose this

functionality and hence in our current implementation

we use a second card at the AP to gather accurate times-

tamps of wireless transmissions.

Key contributions

This paper makes the following key contributions:

•We identify the key requirements for a practical inter-

ference estimation mechanism. We then carefully design

PIE to meet those requirements and report various design

choices to infer interference in real time.

• We evaluate the accuracy and agility of PIE using

both controlled experiments as well as by playing back

real traffic traces. For 95% of the links, PIE achieves

accuracy comparable to the state-of-the-art technique of

bandwidth tests (see §2). We further show that PIE can ef-

ficiently track the changing interference patterns caused

by client mobility, variable transmission rates and vary-

ing traffic loads. Results from our playback of real traces

indicate that PIE can converge to the correct interference

estimate within 540 ms, 700 ms and 900 ms for heavy,

medium and low traffic load periods. This represents up

to 300× of speed up over bandwidth tests.

• Demonstrate the utility of PIE in interference miti-

gation mechanisms: We show the usefulness of PIE by

integrating it with three interference mitigation mecha-

nisms 1) Centralized scheduling, 2) Transmit power con-

trol and 3) Channel assignment. We show that real-time

conflict information provided by PIE can enhance the

performance of such mechanisms and outperform band-

width tests under dynamic settings.

• Employ PIE to uncover performance issues in two

production WLANs: We use PIE to monitor two produc-

tion WLANs. We show that PIE can correctly infer sub-

tle performance issues like asymmetric channel access

and hidden terminal problems.

The rest of the paper is organized as follows. §2 dis-

cusses the current state of art in wireless interference es-

timation. The fundamental principles behind PIE are de-

scribed in § 3. We present the design and operation of

PIE in §4. We evaluate and validate our mechanism in

§5. Finally we conclude in §6.

Interference Microprobing CMAP
PIE

maps [15] [3] [24]
No client mods ×

√
×

√

Online ×
√ √ √

Zero downtime
√

×
√ √

Real traffic × × √ √
No wireless × × × √

control traffic

Table 1: Comparing PIE with other interference estimation mech-
anisms.

2 Related work

We classify prior interference estimation and wireless

monitoring efforts into the following categories.

Interference estimation tools : Bandwidth test mech-

anisms [16, 15] systematically transmit a simultaneous

burst of traffic along each pair of AP-client links and

observe how the aggregate throughput differs from the

throughput achieved by each link operating in isolation.

Recently, Ahmed et al. [3, 4] proposed the use of micro-

experiments, each lasting less than a millisecond, to de-

tect different kinds of conflict between WLAN nodes.

Such mechanisms require network downtime and must

rely on certain traffic pattern to test the interfering links,

which may be deviant from real traffic scenarios.

CMAP [24] is a technique designed to solve exposed

terminal problem using passive conflict graphs. However,

it requires the interferers to be in the communication

range of the receiver and will miss conflicts in which the

interferer is outside the communication range but inside

the interference range. Further, it requires driver level

modifications to both APs and clients. Given that CMAP

relies on modified clients, it is better able to infer uplink

conflicts as well. However, since the fraction of uplink

traffic might be limited (as reported for some enterprise

WLANs [22]), we take the penalty of missing some up-

link conflicts in order to avoid client modifications. Ta-

ble 1 presents a comparison of our design of PIE with

some prior proposed interference estimation tools.

Wireless monitoring studies: Researchers have recently

conducted several studies to understand the performance

of different 802.11 networks using trace collection, fol-

lowed by empirical analysis. Each system is designed to

analyze specific aspects of an 802.11 wireless network,

ranging from physical and link-level behavior [21, 2, 24],

client coverage [7], to understanding the performance of

TCP/IP in wireless environments [9]. However, most of

these mechanisms are geared towards offline analysis of

wireless traces to derive interesting measures for their tar-

get 802.11 network. Recently, a short paper [6] proposed

a machine learning approach to infer high-level interfer-

ence. However, the proposed technique provides limited

visibility and does not capture all types of interference.

2



Finally, WIT [13] and Jigsaw [8] are interesting mea-

surement studies that have influenced some of the design

decisions in PIE . In WIT, traces are captured using 5

sniffers in a wireless network and a state machine based

learning approach is proposed to study the performance

of the 802.11 MAC protocol in a practical deployment.

Jigsaw deploys a large wireless monitoring infrastruc-

ture consisting of 150 sniffers to monitor a production

WLAN and performs a cross-layer analysis to diagnose

performance problems. Both these mechanisms present

excellent insights into the functioning of a 802.11 net-

work, but unlike PIE, they do not focus on evaluating

the accuracy and agility of their interference estimation

mechanisms, especially under interference settings that

can arise due to client mobility and the use of bit rate

adaption mechanisms. Also, they do not discuss the inte-

gration of their interference estimation mechanisms with

applications like power control and channel assignment.

3 Interference estimation in PIE

Interference in an enterprise WLAN can be broadly clas-

sified into two categories: (a) sender-side interference

caused by carrier sensing between two transmitters, and

(b) receiver-side interference caused by collision at the

receiver. While carrier sensing determines how the trans-

mitters share the wireless medium, collision-induced in-

terference determines whether transmissions are success-

fully decoded at the intended receiver. The goal of PIE is

to identify both of these interference properties in a non-

intrusive manner. We now explain the intuition behind

PIE with the help of a simple example.

Intuition behind PIE: Consider a scenario from an en-

terprise WLAN (shown in Figure 1) where APs A and B
are far enough apart such that they cannot carrier sense

(CS) each other. Assume that two clients CA and CB are

associated to APs A and B respectively. Suppose some

downlink packets are being enqueued and being transmit-

ted by APs A and B, for transmission to their respective

clients, CA and CB . The APs follow the regular 802.11

carrier sensing mechanism, and transmit to their clients

whenever possible.

In PIE, APs A and B periodically send their frame

transmission timestamps to the controller. Further, the

frames are tagged with their reception status indicating

whether this frame transmission was successful or not

(i.e., whether the AP has received an ACK for this frame

or not). The controller parses these timestamps and iden-

tifies the four scenarios shown in Figure 1(b). Looking

at scenarios 1 and 2, the controller observes that frame

transmissions from A and B (denoted by PA and PB)

overlap in both directions, indicating that A and B do

not defer to each other, and hence are not within car-

rier sense range. Additionally, the controller can also

infer that whenever a transmission for client CB over-

T1

t∆

T2

T1

T1

T1

T1

T2

T2

T2

T2

No CS

One-way CS

One-way CS

Mutual CS

t∆

1)

2)

3)

4)

Cases

Figure 2: Detecting the carrier sense relationship between two
links on the basis of timestamps of transmissions by the two trans-
mitters A and B. Timestamps refer to the MAC timestamp of wire-
less frames as reported by the wireless card.

laps with a transmission by AP A, then CB is not able to

decode the transmission (i.e., PB is lost). On the other

hand, transmissions for CA are not lost despite overlap-

ping transmissions by AP B. Hence the controller con-

cludes that AP A interferes with link (B, CB) but B does

not interfere with (A, CA). The controller can then use

this information to efficiently mitigate interference for

CB . For example, it can perform downlink data schedul-

ing [22] and allocate different time slots to (A, CA) and

(B, CB). Alternatively, the controller can also assign dif-

ferent channels to APs A and B, thereby allowing both

transmissions to proceed simultaneously without any in-

terference. As this example demonstrates, having accu-

rate interference estimates could enable the controller

to improve client performance in an enterprise WLAN

by employing interference mitigation mechanisms effec-

tively. We now give a detailed explanation of how PIE

identifies these interference properties in a non-intrusive

manner.

3.1 Estimating carrier sense (CS)

interference
PIE identifies the carrier sense relationships based on the

order in which competing transmitters access the wire-

less channel. Figure 2 shows the possible order of chan-

nel access for different carrier sensing relationships. As

shown, there can be four cases of channel access:

(a) Overlapping frame transmissions (Cases 1, 2 and

3): Case 1) When two competing transmitters are not in

carrier sensing range, they can access the channel in any

order and hence the controller would observe that their

frames overlap in both directions. Case 2,3) In case of

one-way carrier sensing, the frames will only overlap in

one direction. For example, if T1 ← T2 (i.e., T1 car-

rier senses T2) then T1 will defer for T2’s transmissions.

However, T2 will not defer for T1’s transmissions, and

would transmit even if T1’s frame is still in air. Hence

the controller should only observe overlaps when T1’s

transmission is already in the air and is overlapped by a

later T2 transmission.

(b) Non overlapping transmissions (Case 4): If both

the transmitters can mutually carrier sense each other,
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Figure 1: Overview of PIE, showing the overall infrastructure, the feedback processing performed at the Controller and the integration
of PIE with channel assignment and scheduling. The detection of conflict between AP B and client C2A i) places the two APs in separate
channels when channel assignment is performed, or ii) serializes the transmissions between AP A and B.

the controller should not see any overlaps as carrier sens-

ing will serialize their frame transmissions. However, we

note that non-overlapping transmissions may also be ob-

served in scenarios where the two transmitters do not si-

multaneously contend for the channel, and transmit their

frames one after another due to their specific traffic pat-

terns. In such a scenario, it is difficult to make any infer-

ence regarding carrier sense relationship of the two trans-

mitters. In order to distinguish the cases where transmit-

ters are actually contending for the medium, we use the

mechanism outlined in [13]. The controller labels a pair

of frames as being transmitted by c̈ontending” transmit-

ters if their starting timestamps are within a time interval

γ, where γ is the total time that can be spent by compet-

ing transmitters performing back-off. Although all traf-

fic within the γ interval may not contend for the channel,

this heuristic was shown to be effective for practical set-

tings [13]. We use a value of γ = 28 + 320µs (DIFS

+ Max back-off period for 802.11g). The pseudo-code

for estimating carrier sense properties in PIE is shown in

Algorithm 1 (Procedure ComputeCS).

3.2 Estimating collision induced

interference

PIE identifies collision-induced interference at the re-

ceiver by computing the probability of a frame loss at the

receiver when it overlaps with a simultaneous transmis-

sion from a competing transmitter. Intuitively, the extent

of interference is directly proportional to the probability

of losing overlapping frames. Note that this allows PIE

to maintain a continuous interference model, where the

extent of interference can be any value between 0 and 1.

Such a model is better suited for realistic environments

where the binary model of interference may not suffice.

On the basis of this observation, in PIE, we use the Link

Algorithm 1 PIE : CS and INT computation

Procedure ComputeCS:
Inputs: number of frames in contention nc, number of case (3)
overlaps nf , and number of case (2) overlaps nr , cs threshold δt

(δt = 0.8 in our implementation)
no = nf + nr

nn = nc − no

if ( nn

nc

> δt) then

/* case 4 (A and B sense each other) */
return nn

nc

else if ( no

nc

> δt) then /* sufficient overlaps to compute prob */

if ( nr

nc

> δt) then

/* cases 3 (A senses B) */
return nr

nc

else
/* case 1 (A and B do not sense each other) */
return nn

nc

else
/* inconclusive (wait for more samples) */
return −

Procedure ComputeINT:
Inputs: total number of frames np, number of frames lost nl, num-
ber of overlapping frames no, number of overlapping frames lost
nol, overlapping packets threshold βt (βt = 20 in our implementa-
tion)
if (no > βt) then

liso = (nl − nol)/(np − no) /*loss in isolation*/

lint = nol/no /*loss under interference */
LIR = (1 − lint)/(1 − liso)
return LIR

else
/* inconclusive (wait for more samples) */
return (−)

Interference Ratio (LIR) described below, as the metric

to quantify interference for a link.

Link Interference Ratio (LIR): For a pair of interfer-

ing links, LIR captures the loss in performance observed

when the two links are interfering, as opposed to operat-

ing in isolation. Consider a link (A, B) and its interferer

C. We measure DAB, the delivery probability of the link

(A, B) in isolation (A is active, C is inactive). We then

measure DC
AB

, the delivery probability of the link when
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interferer C is also active with A. The LIR is given by:

LIR = DC

AB/DAB (1)

LIR takes values between 0 and 1. LIR of 0 means

that link (A, B) cannot deliver frames in the presence of

C, while LIR of 1 means that C does not impact link

(A, B). LIR values between 0 and 1 indicate the extent

of interference on link (A, B) by interferer C. When A
and C are in carrier sense range, LIR will be equal to 1,

since the interferer C is able to share the channel with

the transmitter A without causing any decrease in the de-

livery ratio of link (A, B) 1. The pseudo-code for esti-

mating interference is shown in Algorithm 1 (Procedure

ComputeINT). PIE requires a certain threshold of over-

lap packets (βt) to accurately estimate the loss rate under

interference. We use βt = 40 for our implementation as

it is the smallest threshold that yields stable interference

estimates under diverse experimental scenarios.

Handling simultaneous overlaps from multiple inter-

ferers: A client packet may overlap with multiple si-

multaneous transmissions from potential interferers. In

such a scenario, the packet overlap and its subsequent

loss or success is attributed to each overlapping interferer.

Further transmission diversity will allow PIE to observe

events that will distinguish the true interferer from the

nodes that happened to transmit at the same time (fu-

ture overlapping transmissions by false interferers will

not lead to loss). As we show later in our evaluation

in §5.1.3, there is significant diversity in wireless trans-

missions in realistic settings to allow PIE to operate effi-

ciently in practice.

4 PIE Design and Operation

In this section, we describe the design and operation of

PIE. A schematic overview of the overall design can be

seen in Figure 1. PIE has the following three compo-

nents.

Sniffing at the APs: In our current implementation of

PIE sniffing of the wireless medium is limited to the

APs in the enterprise WLAN. This allows us to avoid

the additional overhead associated with the deployment

and management of extra sniffers in the enterprise build-

ing. However, sniffing solely at the APs might result in

reduced coverage of uplink client traffic, as compared to

a dense sniffer deployment (e.g., as in Jigsaw [8]). In or-

der to overcome this limitation, we employ the finite state

mechanisms outlined in [13] (based on 802.11 states) to

infer some of the missing client transmissions. We note

1Note that this measure of LIR differs slightly from the interfer-
ence metric proposed in [16], that relies on effective throughput and
not delivery probability. However, throughput based LIR is ambiguous
for carrier sensing scenarios, where a LIR value of 0.5 could mean 50%
loss or carrier sensing. Hence we use delivery probability as it provides
greater clarity into the LIR values in all scenarios.

that even with such mechanisms, it is difficult to cap-

ture all uplink client transmissions using monitors at the

AP, and hence PIE may not be able to detect all uplink

conflicts accurately. However, we accept this penalty of

missing some uplink client conflicts in order to avoid de-

ploying additional monitors.

PIE requires accurate timestamp information for accu-

rate interference estimation. However, due to limitations

of the existing Atheros driver and firmware, it is difficult

to extract the exact time at which a packet is transmitted

over the medium2. In order to overcome this problem, in

our implementation of PIE, APs are equipped with two

radios: one radio is used for normal packet transmissions

and receptions, while the other radio is used for captur-

ing packets on the wireless medium. The Atheros driver

timestamps every frame that is received over the interface

using an on-board 64-bit microsecond resolution timer.

Thus a second radio that captures packets can record the

exact timestamp of the packet transmission. Moreover,

the proximity of the two radios ensures that the second

radio receives the majority of frames transmitted by the

AP due to capture effect.

Synchronization of clocks at the APs: PIE needs the

APs to synchronize their clocks so that the controller can

compare their packet transmission reports and determine

the extent of overlap between any two transmissions re-

ported by the APs. Further, time synchronization should

be tight to allow accurate 802.11 analysis, on the order

of 20-30 µs [8]. Prior mechanisms for 802.11 analy-

sis [8, 9, 13, 26] synchronized the APs by finding com-

mon beacon packets in their transmission reports. How-

ever, performing such offline synchronization at the con-

troller can be time consuming, and impractical for a real

time interference estimation mechanism. To synchronize

the clocks across the APs, we use the time synchroniza-

tion protocol implemented by the Atheros driver [1]. As

part of the protocol, the AP embeds a 64-bit microsec-

ond granularity time stamp in every beacon frame, and

the nodes that listen to the AP adjust their local clock

based on this broadcast timestamp [12]. In order to make

this synchronization seamless, we set up a virtual ad hoc

interface on the second radio of each AP. Now all the APs

that join the ad hoc network, synchronize themselves in

real time using the beacons of the reference AP for the

network. This approach has two key benefits:1) it is an

online mechanism, meaning the nodes synchronize their

clocks every time beacons are received from neighboring

nodes, and, 2) it is transitive in nature, and works as long

as the network is not partitioned.

2This is because once the driver passes the packet to the firmware,
a variable delay is introduced based on the length of the firmware
transmit queue and the amount of time the radio performs carrier
sensing/back-off. Further, retry and other 802.11 packets (like beacons)
are handled solely by the firmware, making timestamp estimation more
challenging.
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Section Objective Topology Observation

§ 5.1.1 Accuracy of PIE for 2-link (Hidden / Exposed / PIE is accurate within ±0.1 of ground

canonical topology Normal) topology truth for 95% of scenarios

§ 5.1.2 Accuracy of PIE under client mobility, 2-link (Hidden) topology PIE is able to track the changing

variable bit rates and packet sizes interference patterns in real-time (∼ 100 ms)

§ 5.1.3 Evaluate accuracy with multiple 15-node topology PIE is accurate when transmitters overlap

simultaneous transmitters less than 75% of time

§ 5.2.2,5.3 Convergence time of PIE under real 15-node topology Median convergence time is 400, 600, 720 ms

trace-based traffic replay for heavy, medium and light client traffic

§ 5.4.1,5.4.2 Performance of channel assignment, 15-node topology Outperforms bandwidth tests in dynamic cases

§ 5.4.3 power control & scheduling with PIE (1.25×, 1.50× gain in goodput, fairness)

§ 5.4.4 Performance diagnostics in 386 & 464 AP-client links 8-11% links suffer from hidden terminals and

two production WLANs 20% links show rate anomaly problems

Table 2: Summary of evaluation results.

Collecting and processing feedback from the APs: In

PIE the Controller periodically polls the APs for their

transmission reports. The granularity of polling is a

tunable parameter, which can be determined empirically.

Lower polling periods will enable PIE to update interfer-

ence estimates faster. On the other hand, increasing the

polling period allows APs to sample more packets per

transmission report, increasing the accuracy of interfer-

ence estimates. We evaluate this tradeoff in §5 and show

that a polling period of at least ∼100 ms is needed to

achieve good accuracy for PIE . Feedback processing at

the Controller takes O(m2n) time, where m is the num-

ber of APs and n is the number of packets per AP3.

Handling multi-rate links: The exact impact of an in-

terferer on a transmitter-receiver pair also depends on the

physical layer bit rate being used by the transmitter. PIE

tags the LIR value for each link-interferer pair with the

bit rate being used for packet transmission on the wire-

less link. During the computation of LIR values as de-

scribed in §3.2, overlap and isolation losses are recorded

separately for each physical layer data rate and then the

corresponding LIR value is computed for each rate. The

Controller maintains a two-level lookup table for LIR val-

ues, where the first level is indexed by the link-interferer

pair and the second level provides values for different

rates used by the link for the given interferer. This data

structure can also be extended for tagging conflicts with

the transmit power level of the interferer, allowing the

Controller to estimate the level of conflict under differ-

ent power levels.

Interaction with external interference: External inter-

ference can be caused by non-enterprise wireless traffic

and/or non-WiFi traffic (like microwaves). In the first

case, if the non-enterprise traffic source is visible to any

enterprise AP, its transmission timestamps would be re-

ported to the PIE controller, which could then use the

normal procedure to detect if the external source is caus-

ing any problems for the enterprise clients. In the sec-

ond case, when the external interferer is not visible (like

3Since the transmission report by each AP is already sorted, the
overhead of merging at the Controller is small.

a non-WiFi source or a hidden external WiFi source) to

any enterprise AP, PIE would not be able to identify the

source of interference.

5 Evaluation of PIE

We divide the evaluation section into three distinct sub-

sections. First, we demonstrate that PIE accurately cap-

tures interference in real time. We do so by comparing

PIE with bandwidth tests. Next, we measure the time

taken by PIE to converge to accurate interference esti-

mates, under both controlled traffic loads and realistic

trace replay on the wireless testbed. Lastly, we inte-

grate PIE with a number of real time WLAN optimiza-

tion mechanisms to offer evidence that PIE is useful for

real-time problem diagnosis on a WLAN.

We evaluate PIE on two different testbeds. We run our

central controller on a standard Linux PC (3.33 GHz dual

core Pentium IV, 2 GB DRAM) (in about 3,000 lines of C

code and a few hundred lines of Perl script), and Soekris

(Testbed 1) as well as VIA-based (Testbed 2) wireless

APs, modified slightly to improve path latencies. Each

node in the two testbeds is equipped with two Atheros

AR5212 chipset wireless NICs. We use saturated UDP

traffic for our experiments unless otherwise specified.

Summary: A summary of the results presented in this

section is shown in Table 2. Our results show that (i) PIE

accurately estimates LIR under different carrier sensing

and interference relationships, (ii) PIE can handle client

mobility, variable bit rates and packet sizes, (iii) PIE

is able to distinguish between multiple interferers when

overlap in transmissions is less than 75%, (iv) PIE con-

verges within 100 ms for saturated traffic, and within 400

ms, 600 ms and 720 ms when heavy, medium and light

activity traffic periods are replayed from a real trace, (v)

PIE enables WLAN applications to perform efficiently

in dynamic scenarios, (vi) PIE can identify performance

problems in hidden terminals and rate anomaly in pro-

duction WLANs.
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Figure 3: Scatter plots comparing the LIR values of PIE with the
ground truth computed using unicast bandwidth test for all possi-
ble combinations for carrier sensing and interference relationships
that can occur in a two link canonical topology. Packet size and
data rate was fixed at 1400 bytes and 6M respectively. Note that
for all scenarios, the value computed by PIE is close to the value
reported by bandwidth test, as indicated by the proximity of these
values to the x=y line in the plots.
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Figure 4: Distribution of error in predicting (a) Carrier Sense
probability, and (b) LIR value as compared to the ground truth
computed using unicast bandwidth tests, for the sixteen canonical
scenarios outlined in Figure 3.

5.1 Accuracy of PIE

We evaluate PIE’s accuracy using two different methods.

First, we construct all possible conflict scenarios using a

canonical two link topology. This experiment serves as

our controlled experiment that allows us to assess accu-

racy and focus on the underlying phenomena causing any

discrepancies between PIE and bandwidth tests. Second,

we generalize our findings across a large-scale testbed,

quantifying PIE’s overall accuracy. Overall accuracy is

further evaluated across a number of dimensions that take

into account diverse transmission rates, packets sizes, in-

terference scenarios, and density.

Metrics for comparison: Both experiments are evalu-

ated according to the Link Interference Ratio (LIR) de-

scribed in §3.2. LIR is the ratio of the frame delivery

probability 4 of a link (A, B) under interference from C
and in isolation (DC

AB
/DAB).

Compared schemes: We compare three approaches that

measure LIR with differing levels of overhead.

1) Unicast bandwidth tests (Ground truth): The

4802.11 ACK is included into frame delivery rate for unicast frames

conventional approach, is to use unicast bandwidth tests

(UBT) to determine the impact of an interferer on a

link [16]. In unicast bandwidth tests, A transmits unicast

packets to B in isolation and under interference from C.

We then report LIR as the ratio of frame delivery proba-

bilities under the two scenarios. This is an accurate test to

determine LIR as it uses unicast traffic, which takes into

account the impact of C on the receiver (data packet col-

lisions) and the sender (ack collisions). Henceforth, we

use the LIR value reported by unicast bandwidth tests as

the g̈round truth” in our experiments. Note that UBT in-

curs significant overhead – it takes O(n4) measurements

to compute a conflict graph for a n node topology, and

hence is not practical to use under dynamic wireless en-

vironments.

2) Broadcast bandwidth tests : In broadcast band-

width tests (BBT), broadcast traffic from A to B is used

to compute the frame delivery ratios, both in isolation

and under interference from C. This method was pro-

posed as a relatively fast way to measure interference re-

lationships among a large number of links [16]. Broad-

cast tests can compute the conflict graph for a topology of

n nodes using O(n2) measurements (as opposed to O(n4)

for UBT). However, broadcast tests do not take data-ack

collisions into account and hence may be inaccurate in

some scenarios.

3) PIE : PIE computes the LIR value in a passive fash-

ion by determining the conditional loss probability of

packets on link (A, B) that are interfered by interferer C.

A packet Pi on link (A, B) is considered to be interfered

if it overlaps with a transmission from interferer C that

leads to packet loss. The LIR in this case is computed by

passively observing the events in the wireless medium as

recorded at the controller. Psuedocode for PIE is shown

in Algorithm 1 (function ComputeINT).

In what follows, all experiments are performed using

802.11a (except the live WLAN measurements in §5.4.4),

to prevent interference from the co-located department

WLAN that uses 802.11g. Furthermore, the PIE mea-

surements are collected passively through the observa-

tion of the probe traffic generated by the bandwidth tests.

5.1.1 Static interference settings

We start by comparing the LIR generated by the three

mechanisms for different canonical scenarios, as shown

in Figure 3. In order to have a fair comparison, we

first evaluate the accuracy of PIE under static data rate

(6Mbps) and packet size (1400 bytes) settings, as the

overhead for computing LIR for dynamic (client mobil-

ity, variable rates) can be significant for bandwidth tests.

We then relax these constraints and evaluate the perfor-

mance of PIE under dynamic interference scenarios trig-

gered by client mobility, the use of variable transmission

rates and different packet sizes.
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Figure 5: Distribution of error for PIE as compared to LIR val-
ues computed using UBT. We note that in 95% of the interference
scenarios PIE is within 0.1 of the actual LIR value.

Controlled experiments: Using a canonical two link

topology we benchmark different carrier sensing and in-

terference scenarios. We selectively disable the carrier

sensing of transmitters to create the complete set of sce-

narios. The possible interference relationship between

the two links assuming that C1 is associated with AP

A, and C2 is associated with AP B are as follows: (i)

A interferes with C2 and B interferes with C1 (A →
C2∧B → C1), (ii) A interferes with C2, B does not with

C1 (A→ C2∧B l C1), (iii) B interferes with C1, A does

not with C2 (A l C2 ∧ B → C1), and (iv) A, and B do

not interfere with each others client (A l C2 ∧ B l C1).

Further, the possible carrier sensing relationship between

the two transmitters are: (i) A and B carrier sense each

other (A↔ B), (ii) B carrier senses A (A→ B), (iii) A

carrier senses B (A ← B), and (iv) A and B are not in

carrier sensing range (A l B).

Figure 3 compares the LIR values computed by PIE

and unicast bandwidth test for the sixteen possible sce-

narios of carrier sensing and interference between two

links. It also identifies cases which correspond to mu-

tual (two-way) and asymmetric (one-way) hidden termi-

nals. As shown in the figure, the LIR estimates of PIE

are very close to the values reported by the unicast band-

width tests. Also, Figure 4 shows the distribution of error

in estimating carrier sense probability and LIR values for

these different scenarios. As clear from the figure, PIE is

able to estimate the carrier sensing and LIR values with

good accuracy (±0.15) for all scenarios. Note that identi-

fying both carrier sensing and LIR values accurately can

characterize client performance under any scenario. For

instance, in the scenario where the interference relation-

ship is A→ C2 ∧B → C1, the links can achieve similar

throughputs when they are carrier sensing and sharing

the channel (A ↔ B) or when they are not carrier sens-

ing (two-way hidden terminal) and there is close to 40%

loss rate for the links. PIE can provide this greater visi-

bility, as to which phenomenon is actually taking place,

which can then be used by interference mitigation mech-

anisms.

Accuracy in larger testbed: We repeat the experiments

reported in Figure 3 for a large number of link pairs in our

testbed, comprising 30 nodes spread across five floors of
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Figure 6: Scatter plot of delivery ratios obtained using bandwidth
tests (unicast - LIR(Actual), broadcast - LIR(BBT)) and PIE on 43
link pairs. Note that LIR(BBT) may underestimate the loss rates
as it does not take the ACK loss into account.

our department building. We select links whose delivery

ratio in isolation is greater than 0.9 in both directions [3]5.

Figure 5 compares the values of LIR achieved using uni-

cast bandwidth test and PIE for 43 interference scenarios.

We note that for 95% of the interference scenarios, PIE

is within 0.1 of the actual LIR value. We experimented

with different convergence thresholds and found that con-

vergence within 0.1 of the actual LIR value was sufficient

for practical applications (see §5.4 for performance of

such applications).

Finally, we note some inaccuracies that are intro-

duced through approaches like BBT, which aim to col-

lect interference information at low overhead. BBT will

mis-estimate when interference impacts the reception of

ACKs rather than data packets. Figure 6 does indeed con-

firm that such cases do exist in reality and that they lead

to the underestimation of loss.

5.1.2 Dynamic interference settings

The previous experiments quantified PIE’s accuracy as

compared to the ground truth generated using unicast

bandwidth tests. However, PIE is not only able to ac-

curately capture interference under static conditions, but

more importantly, also under dynamic conditions.

Handling client mobility: Any practical interference es-

timation mechanism must be able to handle client mo-

bility, i.e. it should be able to update the conflict graph

in real time to reflect the changing interference patterns

that arise due to client movement. In order to evaluate

PIE ’s ability to handle mobile clients, we perform a mi-

cro experiment, where a mobile client is moving away

from its AP towards a hidden interferer as shown in Fig-

ure 7. In this experiment, the client is moving at a pace of

0.25 m/s 6. The bottom plot in the Figure shows the sig-

nal strength at the client from the AP and the interferer,

while the middle and top plots show the throughput of the

mobile client and the LIR estimate by PIE at each instant

in the experiment. As shown in the Figure, PIE’s LIR

estimate decreases as the client moves towards the inter-

ferer. Furthermore, it closely matches the trend shown

5 We wanted to consider stable links (high SNR) for analysis. In re-
ality, poor SNR links would rarely be selected during client association
to APs.

6Normal walking speed for mobile user.
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Figure 7: PIE ’s ability to track the changing interference patterns
for a mobile client. In this experiment, a mobile client is moving
away from its AP towards a hidden interferer. The bottom plot
shows the signal strength at the client from the AP and the inter-
ferer. The middle plot shows the throughput achieved by the client
at each instant. The top plot shows the LIR as measured by PIE.

by the instantaneous throughput during the experiment,

which confirms PIE’s accuracy in predicting the end user

performance in dynamic wireless environments.

Variable rate and packet sizes Prior research [24, 5]

has shown that the interference properties of wireless

links are impacted by the data transmission rate and

packet size. In order to evaluate PIE for different packet

sizes and data rates, we repeat our canonical experiments

with different packet sizes and data rates on multiple

interferer-link pairs. To evaluate multiple data rates, we

first activate a link in isolation and then activate an inter-

ferer, which forces the transmitter to adjust its data rate

to minimize losses. We use the default Atheros rate adap-

tation algorithm, SampleRate. Figure 8 (left) shows the

impact of data rate on the delivery ratio of a link (LIR by

UBT) and the estimate of LIR generated by PIE for each

rate in the experiment.

Next, we fix the data rate and vary the packet size for

a link under interference (right plot). As expected, LIR

is worse for larger packet sizes, which are prone to more

errors. We observe that the combination of data rate and

packet size can result in varying interference properties

and PIE is able to efficiently identify the impact of in-

terference accurately in each such scenario (confirmed

by the agreement with UBT). This also shows that us-

ing bandwidth tests or other active measurements may

require performing an exponential number of tests with

varying packet sizes and rates to determine the interfer-

ence impact for any given traffic scenario. PIE, on the

other hand, can passively determine the extent of inter-

ference for each scenario efficiently and accurately.

5.1.3 Classifying interferers accurately

PIE’s fundamental operation relies on observing overlap

in transmissions and correlating such events with packet

loss. One could argue that PIE’s accuracy is likely to be

affected by scale since the probability of observing over-

lap in transmissions across the network increases with

greater scale. Then the probability of identifying the
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Figure 8: Impact of physical layer data rate and packet size on
the delivery ratio of a link in a canonical hidden terminal topol-
ogy. While varying data rate, packet size is fixed at 1400 bytes, and
while varying packet size, data rate is fixed at 24Mbps. Note the sig-
nificant drop in delivery ratio with rate while the impact of packet
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Figure 9: Ability of PIE to identify true interferers from a set of
active transmitters. (a) LIR measured by PIE for both the true
interferer and the non-interfering transmitter as a function of the
overlap in transmission times. If the overlap fraction is less than
75%, PIE can distinguish the false and true interferers accurately.
(b) Overlap in transmission times for all wireless transmitter pairs
that are active during a one hour time window (2pm - 3pm) in the
USCD wireless trace. As clear from the trace, about 90% of the
transmitter pairs overlap less than 20% of the times, providing suf-
ficient traffic diversity for PIE.

transmitter responsible for loss becomes much harder. To

answer this question we attempt to quantify the success

of PIE in correctly identifying an interferer depending

on the amount of time that it tends to overlap with the

transmitter suffering the loss.

Canonical experiments: Consider a link (A, B) and

two interferers C1 and C2. We compute the actual LIR

of the link under C1 and C2 by performing individual

unicast bandwidth tests, first with C1 and then with C2.

According to the unicast tests, the LIR of the link under

interference from C1 and C2 is 0.6 and 0.99 respectively,

indicating substantial interference from C1 and no inter-

ference from C2. We term C1 as the interfering transmit-

ter and C2 as the non-interfering transmitter. Our goal is

to evaluate the accuracy of PIE in identifying the inter-

fering (C1) and non-interfering (C2) transmitters, when

both C1 and C2 are activated simultaneously. Both C1

and C2 follow a http traffic model, with sleep and active

times being drawn from a 802.11 wireless trace [13]. We

then identify the time periods (1s) in the experiment with

varying overlaps between the transmission times of C1

and C2 and measure the LIR values for C1 and C2 ac-

cording to PIE.
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Figure 9(a) shows the LIR obtained by PIE for both

the interfering (C1) and non-interfering (C2) transmitter

as a function of the overlap in their wireless transmis-

sion times. As expected, when the overlap in transmis-

sion times is close to 100%, PIE is unable to distinguish

between true and false interferers. When the overlap is

less than 60% PIE can distinguish between the false and

true interferer. In fact, notice that even for high overlaps

(close to 75%), the median loss probability for false in-

terferer is close to 0. Further, as shown in Figure 9(b)

more than 90% of the transmitters in a real WLAN trace

(UCSD WLAN [8]) overlap less than 20% of the time, in-

dicating rich diversity in transmission patterns for wire-

less users. Such diversity will enable PIE to function

efficiently in realistic deployments.

Multiple interferer experiments: To validate the previ-

ous result with multiple interferers, we repeat the afore-

mentioned experiments in a larger topology. In our ex-

periments, we try to emulate the structure of our in-

building WLAN by placing one testbed AP node near

each production AP in the environment. We present re-

sults from a representative topology that randomly dis-

tributes client nodes into offices. The topology has 7

APs and 8 clients. Clients connect to the AP with the

strongest signal strength. Each transmitter follows a http

on-off model for transmitting data with the on and off

times derived from the UCSD trace. We classify all in-

terferers for which the UBT LIR is less than 0.8 (> 20%

loss) as strong (interfering) transmitters and the rest are

classified as weak (non-interfering) transmitters.

Figure 10 (a) shows the number of strong and weak

interferers per client as determined by UBT in our topol-

ogy. Figure 10 (b) shows the ability of PIE to identify

multiple strong and weak interferers in this topology. As

shown in the Figure, the LIR values estimated by PIE are

within +/- 0.15 of the actual LIR determined by pairwise

bandwidth tests using unicast traffic (UBT). Summariz-

ing, PIE is able to accurately identify the exact impact of

each interferer on every client in the system even in the

presence of multiple simultaneous transmitters. We show

the overall impact of such an accurate conflict graph on

application level performance for wireless clients in the

system in §5.4.

5.2 Agility of PIE

PIE can be integrated in today’s centralized WLANs, re-

quiring software-only modifications to the central con-

troller. However, as is apparent from the design section,

there are a number of knobs in PIE ’s design that are

likely to affect its accuracy. In this section, we study

appropriate values for the polling interval, and measure

PIE’s convergence time under varying loads.
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Figure 10: Accuracy of PIE for a 8 client, 7 AP topology. (a) Distri-
bution of strong (LIR < 0.8) and weak (LIR > 0.8) interferers. (b)
CDF shows the error in PIEś estimation of LIR for a link-interferer
pair as compared to pairwise bandwidth test (UBT). PIE identifies
both multiple strong and weak interferers accurately (all estimates
are withing +/- 0.15 of UBT LIR values). PIE is able to identify the
extent of interference accurately in the presence of multiple strong
and weak interferers.
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Figure 11: (a) Impact of polling period on the accuracy of the inter-
ference measures produced by PIE . LIR value stabilizes for polling
periods greater than 100ms. The experiment time was adjusted to
ensure same sample size for different polling periods. (b) Conver-
gence time for a canonical hidden terminal link as a function of
traffic load on the link and the interferer.

5.2.1 Polling interval

Any online interference estimation mechanism must

identify conflicts in real time to be useful. In PIE ,

the controller periodically polls the APs for transmission

summaries and then determines link conflicts. Higher

polling periods can provide more information to the con-

troller, thereby improving the quality of interference es-

timation. However, having a higher polling period also

makes the system less responsive, which may be critical

to dynamic interference scenarios. Here we evaluate the

performance of PIE with different polling periods and de-

termine the minimum period for which PIE can provide

stable LIR values. We define a LIR value reported by

PIE to be stable when the 90th and 10th percentiles of

the LIR estimates differ by less than 0.1 of the mean LIR

value. Figure 11 (a) demonstrates that a value of 100

ms provides a good compromise between reactivity and

accuracy.

Note that smaller polling periods will also increase

the communication overheads for sending traffic reports

from the AP to the Controller. Using an average packet

size of 600 bytes, and a medium constantly busy at 54

Mbps, the AP in PIE will have to store a summary for

1125 packets. This results in 9 KBytes sent from each

AP every 100 ms, i.e. 1 Mbps, easily sustained by the

AP.
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Figure 12: Convergence time and accuracy for PIE on a 7 AP - 8 Client topology under realistic patterns replayed from a period of (a) light
client activity and (b) heavy client activity (using TCP). Top part of both figures shows the convergence time for each link-interferer pair
and the bottom figure shows its corresponding accuracy when traffic traces are replayed on our representative topology. As shown in the
figure, for light (heavy) traffic scenarios, PIE takes 1150ms (650ms) or less for 95% link-interferer pairs to converge within ± 0.1 of their
actual value.

5.2.2 Convergence time

Convergence time is defined as the amount of time taken

by PIE to gather sufficient samples to compute an accu-

rate LIR estimate (within ±0.1 of ground truth). Accord-

ingly, the time taken by PIE to converge on an accurate

estimate for link interference depends on two key factors:

i) the polling period used by PIE to collect statistics from

the APs, and ii) the actual amount of traffic that is cap-

tured by the APs in a given polling period. We first under-

stand the impact of traffic load on the convergence of PIE

by systematically varying the load on the canonical two

link topology. Figure 11(b) shows the convergence time

for a canonical hidden terminal link as a function of traf-

fic load on the link and the interferer. Both the link and

the interferer use a physical data rate of 6Mbps, while the

traffic load is varied from 6Mbps (saturated) to 0.2 Mbps

(light). Reduction in traffic load leads to longer conver-

gence times because of the reduced frequency of inter-

ference events. Note, however, that LIR values would

correspond to perceived client performance degradation

only under relatively heavy loads, in which case PIE

could capture events in 100 ms. In contrast, the mea-

surement overheads of prior bandwidth test based active

interference estimation mechanisms (e.g. Interference-

maps [15]) is in the range of 20-30 seconds per link-

pair [16].

Next, in order to understand the convergence of PIE

under realistic traffic patterns, we replay a real WLAN

trace [18] on the representative (7AP - 8 Client) topology

(described in Section 5.1).

5.3 Experiments with real wireless traces

We now present experimental results on the performance

of PIE using the publicly available Sigcomm 2004 traf-

fic traces [18]. The Sigcomm trace was partitioned into

heavy, medium, and light periods corresponding to peri-

ods with airtime utilization of more than 50%, between

20-50%, and less than 20% respectively, at different

times of the conference [19]. In these traces, HTTP trans-

actions were categorized into a series of HTTP sessions.

Each session consists of a set of timestamped operations

starting with a connect, followed by a series of sends and

receives (called transactions), and finally a close. The

HTTP sessions are then replayed on our testbed using the

mechanism described in [10]. In our experiments, each

client emulated the behavior of one real client from the

trace, faithfully imitating its HTTP transactions. We use

TCP as the underlying transport protocol for trace replay.

Figure 12 shows the convergence time (top plot) and

accuracy (bottom plot) of PIE for each link-interferer

pair when access patterns from the light and heavy load

periods are replayed on the representative topology. As

shown in the figure, for light (heavy) trafc scenarios, PIE

converges to ± 0.1 of the actual LIR value within 1150

ms (800 ms) for more than 95% of the link-interferer

pairs 7 Further figure 13 shows the distribution of conver-

gence time of PIE for different link-interferer pairs under

all three load periods. As expected, the convergence time

is smaller for higher activity periods. The median conver-

gence time for the light, medium, and heavy traffic loads

are 400 ms, 620 ms, and 700 ms respectively.

7We skip detailed results from medium activity periods and instead
show only the distribution for medium activity period to save space.
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Figure 13: Distribution of convergence time for all link-interferer
pairs under realistic traffic scenarios. Traffic scenarios (TCP
based) are classified as heavy, medium and light depending on the
total traffic load. As expected, PIE’s convergence is faster for heavy
traffic scenarios (median of 400 ms), followed by medium (median
of 620 ms) and light (median of 700) traffic.

5.4 Applying PIE to improve WLAN

performance

Being able to track interference in a highly dynamic

environment may be considered as an admirable aca-

demic exercise. In this section, we will prove that ac-

cess to such information can better enable a number

of real time mechanisms that have been proposed for

the performance optimization of wireless networks. To

that end, we have integrated PIE with three such mech-

anisms (channel selection, dynamic packet scheduling,

and power control) and tested them on two different

testbeds. Our results clearly demonstrate that all these

functions become a viable tool in the hands of network

operators as long as we can supply reliable interference

information in real time.

We use the same 7 AP and 8 client topology that we

described in §5. We set the polling period to 1 second as

per our observation in §5.2.2, thus capturing interference

accurately even under low traffic loads. In mobility ex-

periments, each client moves along a corridor at ∼0.25

m/s. We use UDP traffic for our experiments to mea-

sure the performance of PIE with different applications.

We also perform experiments with TCP traffic for cen-

tralized scheduling application and report the results for

the same.

Conflict Mechanism System Jain’s Fairness
graph (Num Channels) Tput(Mbps) Index
NA Single (1) 9.2 0.52
NA LCCS (3) 17.1 0.58

UBT Conflict aware (3) 24.6 0.72
PIE Conflict aware (3) 24.9 0.71

Table 3: Performance of conflict-aware channel assignment (using
conflict graph generated by PIE and bandwidth tests) as compared
with single channel and LCCS (least congested channel search) as-
signments. Under static conditions, PIE leads to similar results as
UBT, offering significant improvement compared to single channel
and LCCS assignments. Note that UBT being an active technique
has significantly higher measurement overhead and is not practical.

5.4.1 Application I: Channel assignment

Efficiently assigning channels to access points (APs) in

an enterprise WLAN can significantly affect the network

performance and capacity [14, 20]. We implement a

conflict aware channel assignment heuristic (Random-

ized Compaction), proposed in [20], that takes a conflict

graph as input and performs channel assignment with

the objective to minimize interference. We compare the

performance of the conflict-aware channel assignment

scheme when based on the conflict graph generated by

PIE and that of unicast bandwidth tests.

Table 3 shows the total system throughput and Jain’s

fairness index achieved by each channel assignment

mechanism. Bandwidth tests are performed with uni-

cast traffic at data rate and packet size of 6Mbps and

1400 bytes. Experiments are performed under static set-

tings for a fair comparison with bandwidth tests. We

consider the conflict graph generated by bandwidth tests

as the true interference information. Results are aver-

aged over 20 runs. We note that conflict aware chan-

nel assignment significantly improves system throughput

over LCCS [11] (least congested channel search) and sin-

gle channel assignments. Moreover, the performance of

the heuristic is similar with PIE and bandwidth tests, il-

lustrating PIE’s ability to generate high quality conflict

graphs in real time.
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Figure 14: Performance of an iterative power control mechanism
that uses PIE. Each matrix represents the conflict graph, with over-
all capacity (total system throughput in Mbps) and Jain’s fairness
index listed in the title. Intensity of darkness is proportional to
the extent of interference. The final state corresponds to reduced
interference, improved overall network capacity and fairness.

5.4.2 Application II: Transmit Power Control

We implement a simple centralized power control heuris-

tic that uses the dynamic conflict information produced

by PIE to reduce interference in the system. We measure

the performance of the system through LIRall, i.e. the

sum of LIR values, for all link-interferer pairs in the sys-

tem. Our goal is then to maximize this value by iterating

over different power levels of the transmitters.

In each iteration of power control, we identify the most

dominant interferer, as the AP that sources links with the

minimum cumulative LIR. We reduce its transmit power
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(by 10mW) and recompute the conflict graph using PIE.

If the new conflict graph has lower cumulative LIR, then

we discard the new power settings and reduce the power

level of the next strongest interferer. In this way, we

always move to a new set of power levels only if it in-

creases the overall performance of the system. We quit

when there is no improvement in the overall LIR value

for 10 iterations.

Figure 14 shows the impact of such a power control

mechanism. We present three matrices that capture the

interference caused by each AP (row) to each client (col-

umn) in the network (the darker the cell, the stronger

the interference). The title of each matrix further cap-

tures the iteration, the overall network capacity, and the

fairness index. The leftmost matrix corresponds to the

default power level setting, while the middle and right

columns indicate the intermediate and final stages of

the power level settings achieved by the aforementioned

power control heuristic. We clearly see that our sim-

ple power control mechanism reduces the overall con-

flict in the system (matrix cells get increasingly lighter),

while increasing overall network capacity and fairness.

The point of this evaluation is not on the power control

mechanism itself, since there are a number of solutions

that could achieve such an objective more effectively

(like [17]). Our focus is to demonstrate the effectiveness

of PIE when used for power control.

5.4.3 Application III: Centralized scheduling

Accurate, fast and scalable conflict graph construction is

critical for realizing centralized data plane mechanisms.

In a recent work on centralized data path scheduling

(Centaur [22]), authors relied on micro-probing [3], an

online mechanism that performs micro experiments to

determine link conflicts. Although micro-probing can

generate an accurate conflict graph in very short time

scales (4 seconds for a 10 link topology), it may still be

inefficient in high mobility scenarios, especially given

the need for silencing the network during the measure-

ment of the conflict graph. We re-evaluate the perfor-

mance of Centaur using the conflict graph generated by

PIE and contrast it to bandwidth tests for consistency. We

show that PIE improves the performance of Centaur un-

der high mobility and varying traffic properties (variable

packet sizes and data rates).

Table 4 shows the Centaur’s performance when oper-

ating on conflict information from PIE and bandwidth

tests respectively, in one static and one mobile scenario.

The UBT conflict graph is generated using 6 Mbps and

a fixed packet size of 1400 bytes for static client loca-

tions. Due to the overhead of recomputing bandwidth

tests, we use the static conflict graph for the mobility sce-

nario too. One can clearly see that exploiting real time

conflict information in scheduling is not only increasing

Scenario Mechanism System Jain’s Fairness
Tput(Mbps) Index

Static(UDP)
DCF 11.2 0.64

Centaur (UBT) 12.6 0.88
Centaur (PIE) 13.0 0.84

Static(TCP)
DCF 9.5 0.60

Centaur (UBT) 12.2 0.85
Centaur (PIE) 12.4 0.89

Mobile(UDP)
DCF 10.1 0.61

Centaur (UBT) 10.4 0.71
Centaur (PIE) 12.4 0.95

Table 4: Performance of centralized scheduling (Centaur) using
PIE ’s conflict graph. UBT and PIE lead to equivalent performance
under static settings. The introduction of mobility confirms PIE’s
superiority to provide real time information. Note that UBT has
very high measurement overheads compared to PIE .

the overall network throughput but also the fairness in-

dex across clients. More interestingly, the inaccuracies in

the conflict graph generated using bandwidth tests almost

negate the benefits of centralized scheduling under mobil-

ity. We performed similar experiments with auto-rate and

observe that Centaur with PIE ’s conflict graph provides

32% overall system throughput gain as compared to us-

ing the conflict graph generated using bandwidth tests

under static scenarios (6Mbps, 1400 bytes).

TCP performance: We also analyze TCP performance

for different conflict graphs. We observe system through-

puts (fairness) of 9.5 Mbps (0.60), 12.2 Mbps (0.85)

and 12.4 Mbps (0.89) for DCF, Centaur(UBT) and Cen-

taur(PIE) respectively. As expected UBT and PIE per-

form close to each other and outperform DCF. However,

as noted earlier, the measurement overhead of UBT is

much higher than PIE making it impractical for real time

mechanisms like Centaur.

5.4.4 Application IV: Wireless troubleshooting

Beyond PIE’s ability to enable real time performance op-

timization in enterprise WLANs, its real time nature al-

lows it to serve as a diagnosis tool that could be used

proactively by a network operator to avoid performance

problems. We test this property by running PIE in two

production 802.11b/g WLANs (W1 and W2), co-located

with our two testbeds.

These WLANs differ from each other in many signifi-

cant ways as follows. WLAN1 spans 5 floors of a build-

ing and uses 9 APs manufactured by vendor A. The net-

work administrator was responsible for conducting RF

site surveys, identifying locations to place the APs, and

manually assigning the channel of operation of each AP

to minimize interference. Exactly 3 APs were placed on

channels 1, 6, and 11 in WLAN1 to minimize the level

of inter-AP interference. In contrast, WLAN2 occupies

a single floor of a different building, uses 21 APs man-

ufactured by a different vendor, B, and features a con-

troller in charge of dynamic channel assignment. The

number of APs on each channel, thus, varies over time.

In WLAN2 the vendor was responsible for conducting

the RF site surveys and making AP placement decisions.
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WLAN HT-Links Anomaly-Link pairs
(LIR < 0.7) (Ratio < 0.2)

WLAN1 31 / 386 231 / 1087
WLAN2 53 / 464 305 / 1391

Table 5: Performance issues observed in two production WLANs.
The extent of hidden terminal interference ranges from 8% to 11%
but can be significant for a small number of links. Rate anomaly
affects approximately 20% of the links in both networks.

We select testbed nodes closest to the production APs

to provide transmission reports to the PIE controller,

sniffing the transmissions on the operational network.

We use those reports to measure the carrier sense and

interference relationships between different links in the

production WLAN. PIE reveals two performance issues:

1) Hidden terminals: Performance degradation beyond

a certain level due to interference can significantly im-

pact client performance. We set LIRthresh equal to 0.7

to identify those links that suffer more than 30% reduc-

tion in their LIR under interference and classify them as

hidden terminals.

2) Rate anomaly: Rate anomaly is a well documented

problem [23] in wireless environments. If a transmitter

of a link operating at a high data rate (say 54 Mbps), car-

rier senses the transmitter of another link operating at a

low rate (say 6Mbps), then the link operating at higher

rate will experience significant slowdown in throughput

(by a factor of 1/10 in this case). We classify a given link

pair as a case of rate anomaly, when the ratio of their

transmission rates is less than 0.2.

Both these issues are observed in both production net-

works. Table 5 shows the extent of hidden interference

and rate anomaly in the two WLANs. The extent of hid-

den interference is rather limited (8% for WLAN1 and

11% for WLAN2). For comparison, Jigsaw [8] also re-

ports that 5% of their links observe an LIR of less than

0.8. While limited on average, however, we do still ob-

serve, across both WLANs that hidden interference can

lead to up to 70% LIR degradation for as many as 4%

and 3% of the links in WLAN 1 and 2 respectively.

In terms of rate anomaly issues, we observe that for

about 20% carrier sensing link pairs, the transmission

rates differ by more than 80%. This could be one of the

reasons for sudden performance slowdown experienced

by perfectly good quality links in WLANs.

6 Conclusions
We presented a detailed evaluation of a passive, real time

interference estimation mechanism (PIE ). We showed

that PIE is accurate in estimating link interference and

can also adapt to changing interference patterns in real

time. This enables PIE to be especially effective in real-

istic wireless environments, where client mobility, vari-

able transmission rates, and bursty traffic result in chang-

ing interference scenarios, thereby limiting the useful-

ness of static bandwidth test mechanisms. Further, we

showed that PIE is completely passive, does not require

client support, and does not cause any network downtime,

making it attractive for use in real WLAN settings. We

have integrated PIE with interference mitigation mech-

anisms like centralized scheduling, transmit power con-

trol, and channel assignment and showed that PIE can en-

able these mechanisms to function efficiently and dynam-

ically by providing an accurate conflict graph in real time.

We also used PIE to monitor two production WLANs and

demonstrated that PIE can diagnose certain performance

issues in real systems.
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