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A Fast Content-based Data Distribution
Infrastructure

Samrat Ganguly, Sudeept Bhatnagar, Akhilesh Saxena, Suman Banerjee, Rauf Izmailov

Abstract— We present Sieve – an infrastructure for fast
content-based data distribution to interested users. The ability
of Sieve to filter and forward high-bandwidth data streams
stems from its distributed pipelined architecture. The complex
message filtering task is broken-up into a sequence of light-weight
filtering components resulting in high end-to-end throughput.
Furthermore, since each component is assigned to a node based
on its resource constraints, the queue buildup inside the nodes is
minimal resulting in low end-to-end latency. Our experimental
results based on real system implementation show that Sieve can
sustain a throughput of more than 5000 messages per second for
100000 subscriptions with predicates of 10 attributes.

Index Terms— Content-based Information Dissemination,
Publish-Subscribe System, Event Stream Filtering

I. I NTRODUCTION

Content-based networking is an emerging data routing
paradigm where a message is forwarded based on its content
rather than specific destination addresses attached to it [1]. In
this paradigm, data distribution to the users is based on the
publish-subscribe model where publishers (sources) publish
messages and subscribers (receivers) register their interest
about the content. The content of the message has a list of
attribute name and value pairs, such as (symbol=“google”;
price=196.8). The subscriber interest is usually expressed as a
selection predicate, such as (symbol=“google” & price> 200
& volume> 11M). A content-based network infrastructure en-
ables selective data distribution from publishers to subscribers
by matching the appropriate selection predicates.

However, along with the rich functionalities provided by
content-based network infrastructure comes the high complex-
ity of message processing stemming from parsing each mes-
sage and matching it against all subscriptions. The resulting
message processing latency makes it difficult to support high
message publishing rates from diverse sites targeted to a large
number of subscribers. For example, NASDAQ real-time data
feeds alone include up to 6000 messages per second in the
pre-market hours [2]; hundreds of thousands of users may
subscribe to these data feeds.

The main contribution of this paper is design and evaluation
of Sieve, a fast content-based data dissemination infrastructure
to support high streaming rate of messages. The Sieve in-
frastructure is an overlay network with nodes spread over the
Internet. The main design philosophy is to efficiently partition
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the complex multi-attribute subscription matching task and
distribute the sub-tasks strategically among multiple servers
while respecting the resource constraints at each server.

Sieve recognizes the importance of processing and band-
width limitations of nodes as the core problems for any
content-based filtering network. These limitations restrict the
amount of filtering and forwarding that any node can perform.
The specific objective of Sieve is to achieve a message
processing latency that can match the message arrival rate
while supporting rich content-based semantics. Sieve strives
to partition the tasks so as to match both the network and the
processing loads assigned to an overlay node with its corre-
sponding processing capacity and network bandwidth. Funda-
mentally, the increased throughput of Sieve comes from the
basic principles of pipelining, where the end-to-end throughput
of the system increases by judicious partitioning of a task into
smaller sub-tasks.

The message processing speed in a content-based router
depends upon a variety of factors such as the subscription
lookup data structure, predicate matching algorithm, and total
space requirement. In existing distributed systems such as
SIENA [1], [3], Gryphon [4] and others [5], each content-
based router hosts a multi-attribute data structure to com-
pletely match the complex predicate for each subscription. The
complete predicate matching cost coupled with large space
requirement to hold the data structure in memory or processor
cache increases the message processing latency.

Sieve differs from these systems by creating a distributed
subscription-matching data structure over multiple overlay
nodes. Using this data structure, Sieve provides the following
advantages to achieve fast message processing: a) it allows for
control over the space and forwarding bandwidth requirement,
b) it allows for each node to participate in partial matching of
predicates in a distributed way towards a global matching of
the complete subscription predicate, and c) it allows for staging
the subscription matching process such that the processing
complexity at each node can match the message arrival rate.

Sieve architecture is composed of three stages of message
forwarding to enable the filtering pipeline. Each stage is
defined by a set of participating nodes and their well-defined
roles. These stages create an efficient system that maximizes
filtering pipelining while meeting the state space constraints
and bandwidth limitations. This results in the following solu-
tions that we propose in this paper:
• A consistent distributed data structure for data filtering

and forwarding meeting the space requirements of a
participating node.

• An efficient attribute-specific tree construction for mes-
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Fig. 1. Content-based Routing Architecture in Sieve

sage filtering and forwarding which can adapt to content
popularity distribution and subscription profile. Given the
space requirements, we provide algorithm for construct-
ing an optimal filtering structure.

• Optimistic counting algorithm based on [6] for fast
matching of complete subscription predicate.

• Since task distribution also leads to increase in number of
messages in the system, we provide an approach adapting
the task distribution based on content popularity and
subscription interests.

• Label-based forwarding inside the network that limits
the costly message-parsing operations [7] to the network
edges.

Finally, micro-benchmark results from our real system im-
plementation shows that Sieve can sustain a throughput of
more than 5000 messages per second for 100000 subscriptions
with predicates of 10 attributes.

II. SIEVE ARCHITECTURE

The Sieve architecture (shown in Figure 1) is based on
the publish-subscribe [8] service model. A user registers its
interest in certain content by means of asubscription. A
content producerpublishesa message into the Sieve network
which sends it to all users with matching subscriptions. In this
section, we describe the various architectural aspects of Sieve
that help realize the above model.

A. Data model

In the Sieve infrastructure, an event notification from a
publisher is associated with a messagem containing a list of
tuples< type, attribute name(a), value(v) > in XML format
where type refers to data type (eg. float, string). Each sub-
scriptionu (also in XML format) from a user is expressed as a
selection predicate in conjunctive form asu = P1 ∧ . . . ∧ Pn.
Each elementPi of u is expressed as< type; attribute
name(a); value range(R)> whereR : (xi, yi). Pi is evaluated

to be true only for a message containing< ai, vi > such that
xi ≤ vi ≤ yi. A messagem matches a subscriptionu if all
the corresponding predicates are evaluated to be true based on
the content ofm. Disjunctions in the subscription predicates
are handled by splitting the predicate into smaller conjunctive
predicates and treating them separately.

B. Sieve Components

In order to efficiently distribute the parsing, filtering, and
forwarding load, Sieve defines three logical roles that nodes
play. In Sieve, a publisher contacts aPublisher Proxy Server
(PPS) to publish its data. Similarly, a user contacts aSub-
scriber Proxy Server(SPS) to send subscription requests and
to get notifications matching its subscriptions. There is one
logical filtering tree corresponding to each attribute. Any
message that contains a value for an attributea is routed over
the attribute tree fora. Each node in an attribute tree is called
an Intermediate Router(IR).

Sieve is designed to operate on top of an overlay network
with heterogenous characteristics. All nodes in the network
can communicate with each other, however, the latency and
bandwidth observed between different pairs of nodes varies.
Each node in the Sieve network can be assigned one or
more of the roles (PPS, SPS, IR) based on its processing and
bandwidth capabilities. We assume acoordinator node(which
could potentially be distributed over several physical nodes)
controls the assignment of roles to the nodes. The publishers
contact the coordinator to ask for nearest PPS, the PPS can
contact it to find the roots of various attribute trees, and users
contact the coordinator to find the SPS to which they should
send their subscription. In the remainder of the paper, we do
not detail the involvement of the coordinator node and focus
on Sieve’s content-based filtering framework.

C. Subscription process

A user sends its subscription containing its ranges of interest
over multiple attributes to an SPS. The SPS of choice for
a subscription is the one whose existing subscriptions have
maximum overlapwith the new subscription. The SPS stores
the entire subscription for each user locally. It then subscribes
to different range of values for different attributes on behalf
of the users.

The SPS aggregates the individual user subscriptionsu
into non-overlapping rangesfor each attribute. Consider a set
Ua with all the user subscriptionsu interested in attribute
a. Each of these subscription is characterized by a range
(xi, yi) on attributea. If there aren such subscriptions in
Ua, their ranges can intersect at no more than2n distinct
points over the content space. For example, consider two
subscriptions with ranges< 20, 70 > and < 10, 50 > for a
given attribute. These ranges intersect the content space at
the distinct points(10, 20, 50, 70). Let the ranges be defined
by two adjacent intersection points(l,m) in the ordered set
of intersection points. For the above example, the ranges are
(10, 20), (20, 50), (50, 70). SPS assigns a unique subscription-
id (denoted asS with or without subscripts) to each of these
ranges and sends it to the corresponding attribute tree root (as
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shown in Figure 2.a). Note that this subscription aggregation
process ensures that the SPS subscribes to a value if and only
if someuser subscription is interested in it.

Each attribute tree root receives subscriptionS from one or
more SPSs. The root finds the minimum and maximum value
t : (xmin, ymax) in value space covered by union of all ranges
in S from all SPSs. The root informs the ranget to all the
PPS.

D. Message filtering and forwarding

The goal of Sieve is efficient and correct delivery of
messages to interested subscriber using content-based routing.
In order to provide a high end-to-end throughput Sieve uses the
concept offilter pipelining. Fundamentally, a pipeline of well-
designed components increases the end-to-end throughput.

Sieve divides the complex task of event filtering and rout-
ing into three stages (Figure 1): a)Attribute-based forward-
ing:used for forwarding a message based on attribute name; b)
Value-based forwarding:used for filtering the messages based
on values of specific attributes and forwarding it to the correct
SPSs; c)Predicate-based forwardingused for matching entire
subscription based on the compound predicates and notifying
the users. We now give a brief overview of the content-based
routing of a message over the three stages as shown in Figure
1. The detailed description of these techniques is deferred to
the subsequent sections.

Attribute-based forwarding (at PPS):Each publisher is
assigned an attribute-based forwarding server (PPS). A pub-
lisher sends a new message (containing multiple attribute-
value pairs) to its PPS. The PPS parses an incoming message
to identify its attribute names. The message is forwarded toall
attribute treesTi corresponding to the attributesai present in
the message (Figure 1). As an optimization, the PPS does not
send a message to an attribute tree forai if the corresponding
value vi is not in the subscription bound (given byti set in
subscription process). Before forwarding the message toTi,
PPS attaches the valuevi of attribute ai as a label (Figure
2.b). As vi can be of any length, labels can be a pointer to
the location ofvi in the message. The PPS also attaches a
unique message-idM to the message.M is common to all

copies of the message irrespective of the attribute trees they
are forwarded on.

Value-based forwarding (at IR):All IRs on an attribute
tree use value-based forwarding. Upon receiving a message
at the root of an attribute treeTj , the objective is to deliver
this message to all SPSs that have a subscription that matches
value vj . The value-based forwarding is implemented as
a hierarchical forwarding tree structure usingIntermediate
Router (IR) providing two functionalities: message filtering
and multicasting. Filtering restricts the multicast of a message
to only those SPSs which have at least one subscription
matching the valuevj contained in the message. In order to
execute message filtering, each IR has a set of non-overlapping
filters fa,b defined as

Definition: A filter f , is defined by range(a, b) (where
a, b ∈ content spaceV ) and an associated set of nodesN .

A filter f allows only those messagesm to pass through
whose label valuev lies in its range, i.e.,v ∈ (a, b]. A message
that passes throughf is forwarded to all the nodes inN .
Each IR has a list of filters (Figure 3). In an IR, a message is
matched to a filterf using a range search on its label value
v and then replicated and forwarded to the next hop nodes
(IRs or SPSs) associated withf as shown in Figure 3. The
construction of the value-based forwarding tree and the filters
at each IR is based on the aggregated subscription profiles
generated from each SPS. The IRs do not parse the message
as the entire operation uses the valuev attached as a label.

Predicate-based forwarding (at SPS):Each SPS maintains
a list of complete subscriptions sent by the users and hosts a
predicate-based forwarding server for matching user subscrip-
tions. Based on messages received from the attribute trees,
SPS matches the compound predicates of the subscriptions.
For each subscription match, the message is forwarded to
the corresponding user. The SPS uses anoptimistic counting
algorithm to avoid parsing the message while determining the
final recipients of each message it receives. The SPS also
maintains an efficient data structure to minimize the number
of subscriptions that are considered for matching.

Example:Figure 2(b) shows a publisher generating a mes-
sage which has two attributesa1 and a2. This message is
published into the Sieve network by sending it to PPS2. From
there the message is sent to the root of the two attribute trees
with corresponding labels. The IRs forward these message to
the SPS after adding labels that identify the tree-idT , the SPS
subscription-idS that matched the value (in the label), and the
message-idM . The SPS on receiving it performs complete
matching to user subscriptions and forwards it to the interested
user (User2).

In summary, the PPS performs filtering based on theat-
tributes in the message. An attribute’s filtering tree performs
filtering on the values for that attribute in the message.
The SPS combines the results from various attribute trees to
identify the subscriptions that completely match a message.

III. VALUE BASED FORWARDING

As discussed in the previous section, the PPS nodes receive
a message from the publisher, parses it to determine the
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attributes it contains, and sends it to the corresponding attribute
trees. Before sending the message to treeTk, it assigns a
unique message-idM , and a label containing the valuevk

corresponding to the attributeak. We now detail the value-
based forwarding operation in an attribute treeTk.

An attribute tree contains subscriptions from multiple SPSs
expressed as(SPSi : Sj). SPSi is the unique-id of the SPS
which subscribed to this attribute.Sj is the subscription-id
that SPSi assigned to the corresponding subscription range.
Tk matches the valuevk in an incoming message’s label
to the subscription range that covers it, stamps it with the
Sj of matching subscription, and sends it toSPSi. SPSi

will assume that any message stamped withSj matches the
corresponding subscription range.

Two important issues govern the design of an attribute
tree: the amount ofstate spacerequired to store the different
subscriptions and the correspondingforwarding load. A simple
insight helps in understanding the impact of these issues: a
message being sent to a bunch of subscriptions (based on its
content) is essentially being multicast to a (possibly unique)
group. For example, in Figure 4(A), there are 4 subscriptions
for ranges(1, 4), (6, 9), (1, 4), and (6, 9) respectively. Using
the unique end-points of the subscriptions, the content-space
is partitioned into three multicast group rangesG1 from 1−4,
G2 from 4 − 6, and G3 from 6 − 9. Of these groups, there
is no interested subscription inG2 whereasG1 andG3 have
two interested subscriptions each. Thus, a message with value

2 will be multicast to subscriptions1 and 3. Implicitly, this
also means that multicast groupG1 acts as a filter that does
not send the message to subscriptions2 and4.

Note that, a multicast group has to identifyall subscriptions
that must receive a message andno other subscription should
get it. This requirement results in a large state space. In fact,
the real magnitude of this problem emerges from the analysis
of a simple case in Sieve: Consider 100000 subscriptions
over a content space with values in range 1-100000. Con-
sider 100000 subscriptions where subscriptioni is for range
(i,100000). All values from 1 to 100000 form distinct end-
points for this subscription sequence. Thus, we have a 100000
distinct groups with groupGi having i associated members.
The state space for this example is

∑100000
i=1 i = 5x109 entries.

Even with a mere 4 bytes (integer) to store the subscription-
ids (group members), this requires 20GB of memory in the
system. Furthermore, the state space explodes asn2 for n
subscriptions using the above example. This amount of state is
infeasible to be stored at a single node. Furthermore, consider
the amount of forwarding load explosion that this system
can experience. For the above example, consider that we are
getting a minuscule incoming message rate of 1 byte per
second per value. In such a case, each of the5x109 entries
will get one byte per second resulting a total outgoing traffic of
5GBps. Thus, forwarding load requirement for such a system
can be huge due to the multicasting requirements.

Lastly, the solutions to minimize state space and forwarding
load are highly dependent on the subscription distribution over
the content space. For example, consider the two subscription
cases in Figures 4(A) and 4(B) where we have 4 subscriptions
each on the same content space. Suppose we characterize
the total state space as the number of subscription-ids over
all groups (the number of entries in the right-most column).
Then the total state requirement in 4(A) is 4 units and 10
units in 4(B). Suppose we have a traffic ofi units per second
for value i. Then the total forwarding load at the node in
Figure 4(A) to all the subscriptions is given by (1+2+3+4)
mesg/sec to subscription ids{1,3} and (6+7+8+9) mesg/sec
to subscription ids{2,4} resulting in 80 messages per second.
However, for the subscription distribution in Figure 4(B), the
total load is only 72 messages per second. Thus, while state
space requirement is higher in Figure 4(B), the forwarding
load is higher in Figure 4(A).

Our objective is to construct a hierarchical filtering structure
by distributing both the forwarding space and load among mul-
tiple nodes. The construction is adaptive to the message value
popularity distribution and subscription range distribution over
the content space.

In order to capture the popularity distribution of different
values, each node keeps aggregate arrival statistics for different
values in form of a histogram. The histogram provides the
distribution of values in a given unit interval over the entire
content space. The histogram is updated using a sliding
window average every time a message is received. From the
histogram, one can easily compute for any ranger in the value
space, the fraction of trafficp(r) with values inr. Note that
the total traffic with values in ranger is λp(r) whereλ is the
total message arrival rate.
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A. Space and load partitioning

If the root node of the attribute tree cannot handle the space
and forwarding load requirements, we distribute the filtering
and forwarding task among multiple children. We observe that
both the number of multicast group ranges and the associated
forwarding load is an increasing function of the number of
subscriptions. Thus by partitioning the subscriptions among
multiple children, we can meet both space and forwarding
constraints of each node. Each node can then serve a subset
of all subscriptions by having a unique filter for each multicast
group range thereby ensuring zero false positive delivery to the
SPSs.

We assume that the available space and forwarding band-
width for each node in a resource pool is given. Assume, in the
current state, the set of all subscriptions is partitioned among
k nodes all of which are children of the root. The subscription
set in the nodei is denoted asSi. The following subscription
partition process is used when a new subscription requestS
is received at the root.

Subscription partition and movement:Consider a nodei
with a maximum forwarding capacity ofc(Si) and suppose
that l(Si) of its capacity is currently being used to forward
messages to downstream nodes.l(Si) is the forwarding load
of node i. If the subscriptionS is assigned to nodei, the
increase in its forwarding load isδl

S = p(r)λ where r is
the range of values subscribed inS. The above is true as
each subscription identifies a unique SPS because of the user
subscriptions being aggregated at SPS. One can now easily
find the feasible set of nodesN for which l(Si)+δl

S ≤ c(Si).
Let g be the total number of multicast groups for a nodej in
N with subscription setSj . If S is assigned to nodej, the total
space requirement will increase by maximumδg

S(j) = g′ + 2
whereg′ is the total number of multicast group ranges spanned
by the range ofS. In order to minimize the increase in space
requirement,S is assigned to nodej for which δg

S(j) is
minimum. However, if space requirement is not met by any of
the nodes inN , a new node is added to which the subscription
is assigned. Note that the solution does not provide for load
balancing; instead it tries to minimize the number of nodes
while meeting their capacity constraints.

B. Hierarchical filtering

In order to have the filtering at each of thek leaf nodes, the
root can forward each message to all of these nodes. However,
simple forwarding leads to the following problems: a) The total
outgoing message forwarding loadλk at the root becomes
high; b) the number of messages processed by each leaf node
is high (number of message received is independent of the
subscriptions handles by the leaf node) and c) increased overall
network traffic. It is therefore worthwhile for the root to invest
in the filtering process, albeit in a weak form, meeting the
space constraint. In order to clarify weak filtering, we define
leak as follows: A leak is the amount of extra traffic that is
passed to a node with subscription setS which is not matched
by S and thus should not have received it.

A leak occurs in a case where there is apartial overlap
between a filter’s range and an associated multicast group
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range. Let us defineG(f) as a set of multicast group ranges
covered byf . Let the subset of group ranges inG(f) that is
of interest to subscriptions in leaf nodei be G(i). It follows
that any message passed byf intended for multicast group
rangesG(f) − G(i) contributes to the traffic leak for nodei.
Therefore, the total leak for a filterf is given by

Definition: The leak of a filterf (denoted asLf ) is defined
as the total traffic leakcaused byf given as

Lf =
k∑

i=1

p(G(f)− G(i))λ,

wherep(G(f)−G(i)) is the fraction of traffic with the values
in the partition rangesG(f) and not inG(i) as obtained from
the histogram. A filterf with a non-zero leakLf is called a
weak filter.

The example shown in Figure 5 illustrates the leak from
filters for a given set of subscriptions. In this example, we
assume that each unit value interval (i : i + 1) has traffic of
1 message/sec. In order to find the leak fromf1, consider
leaf nodes 1 and 2. Suppose that node 1 hosts subscriptions
1&2 with ranges (1-4) and (3-6) respectively. Node 2 hosts
subscriptions 3&4 with ranges (3-5) and (6-9). As shown
in Figure 5, partitioning these ranges results in 5 multicast
groupsG1, . . . , G5. We obtainG(f1) = {G1, G2, G3}, G(1) =
{G1, G2, G3}, G(2) = {G2, G3},. Therefore, the leak for node
1 from f is zero asG(f1) − G(1) = ∅ while leak for node 2
from f is 2 messages/sec asG(f1)−G(1) = {G1}. Similarly,
computing the same for filterf2, we obtain the total leak from
both filterf1 andf2 to be 7 messages/sec. The interesting point
to note is that without any filter (equivalent to having one
filter), the total leak is 7 messages/sec as well. However, with
filters f3 andf4, the total leak is reduced to 3 messages/sec.
Thus we observe that creating proper filters is important in
order to exploit the benefit of filtering at root. Next we present
an optimal polynomial time algorithm for filter construction.

C. Optimal Filter Construction

We are given the set of subscriptions and their location in
one of the leaf nodes. LetFi denotes a set ofi filters andL(Fi)
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denotes combined leak from all filters inFk, i.e, L(Fk) =∑i
j=1 Lfk . We want to constructi non-overlapping filters such

that:
1) They span the subscription space, i.e., any value that any
subscription has subscribed to, must pass through one of the
filters.
2) L(Fi) is minimized.

We now present an optimal dynamic programming algo-
rithm for the above problem. The algorithm runs fork − 1
iterations wherek is the number of filters to be constructed.
In the ith iteration, the algorithm computes the best filter set
if we were allowed onlyi + 1 filters (denoted byFi+1). This
is done using the filter sets generated in thei− 1th iteration
and adding a new filter strategically.

A key property of a filter’s leak as defined above is that it
is self-contained and independent, i.e, the total leak due to a
filter f is computed using only the portions of subscriptions
that overlap it and the value of the leak remains the sameirre-
spective of how the remaining filters are designed(recall that
the ranges of filters are non-overlapping). This key property
is used in the dynamic programming approach.

Let the ordered setV : {v1 . . . vn} denote the set of
distinct edge points in the value space in increasing order
corresponding to either start or end of multicast group ranges.
Let an ordered subsetVk denote{vk . . . vn}. In order to take
advantage of dynamic programming’s book-keeping capability,
we store some partial information after each iteration of the
algorithm. This information is in form of a filter set over
a subsetVk. We denote byF j

i (Vk) the filter set defined
over Vk when we havei filters such that1st filter spans
vk, . . . , vk+j and the resti − 1 filters are spread over the
range vk+j+1, . . . , vn. Note that, ifn − j − k > i − 1 then
the setF j

i is meaningless since there are not enough values
to assign thei− 1 non-overlapping filters over that range. Let
F ∗i (Vk) define the optimal filter set ofi filters overVk such
that total leakL(F ∗i (Vk)) is minimized. This is obtained by
finding value ofj for which F j

i (Vk) is minimized.

The base step of the algorithm involves computing the filter
sets assuming that there are two filters.1 For this, we compute
all the setsF 1

2 (Vk) to Fn
2 (Vk) and the corresponding leak

L(F j
2 (Vk)). F ∗2 (Vk) is obtained asminj(L(F j

2 (Vk))) for all
j = 1 : n. The base case is repeated for alln subsetsV1 . . . Vn.

In the subsequent iterationsi where we need to find the filter
sets withi filters, we utilize the setsF ∗i−1(V1) . . . F ∗i−1(Vn)
instead of combinatorially testing all possible filter assign-
ments withi filters. As mentioned above this is possible due
to the independence of the filter-leaks with respect to the other
filter leaks. We note thatL(F j

i (Vk)) = Lf +L(F ∗i−1(Vk+j)),
whereLf is the leak for the first filter inF j

i (Vk) spanning
vk . . . vk+j . Thus we can findj for which L(F j

i (Vk)) is
minimized giving us the filter setF ∗i (Vk). Repeating the above
steps for allk we get the optimal filter setF ∗i (V ) where
V = V1.

1The only case when just one filter covering the entire range suffices, is
when there is only one subscription. With two or more distinct subscriptions,
two or more filters will have a lower total leak than a single filter.
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Fig. 6. Example showing the need for multi-stage filtering. In case (B) the
amount of leak to leaf node is zero

D. Multi-stage filtering

Although the above solution minimizes the leak at the root,
it does not completely eliminate it due to the space constraints.
One can add multiple layers between the root and the leaf
nodes to successively filter messages leading to zero leak
(as shown in Figure 6). In the multi-stage arrangement, the
total event space is partitioned and each partition assigned
to a given node in that stage. Partitioning is done such that
each partition has equal number of multicast group ranges.
The number of partitions is determined by the amount of leak
from the previous stage. Our experiments under most scenarios
indicates that single stage framework is sufficient to handle the
leaks.

IV. PREDICATE BASED FORWARDING ATSPS

Each SPS contains various user subscriptions and is re-
sponsible to subscribe to appropriate attribute trees on behalf
of these subscriptions. Based on the incoming messages,
SPS performs predicate matching and forwards the message
to users with matching subscriptions. However, matching a
single message content against all subscription is inefficient.
Furthermore, each end-user subscription predicate is multi-
dimensional whereas the received message only corresponds to
one dimension. We next present optimistic counting algorithm
– a predicate evaluation mechanism based on an efficient data
structure that achieves fast subscription matching.

A. Optimistic Counting Algorithm

Consider a single user subscriptions with a selection pred-
icate defined onn attributes. Assume that the SPS subscribes
to all n attribute trees on behalf of the user subscription. If
the SPS receivesn copies of a message corresponding to
each attributed tree, it implies that the user subscription is
evaluated to be true. Any less thann copies would mean
otherwise. Therefore, it is possible to establish whether a
subscription is matched by simple counting. In essence, the
algorithm recognizes that the messages reaching an SPS are
already filtered along different attribute trees and tries to avoid
further local matching. This simple observation serves as the
basis for the optimistic counting algorithm.

The algorithm is considered optimistic because it assumes
that all copies of the messages are definitely going to arrive
if they are going to match the subscription and that they will
arrive in a reasonably finite time.
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In order for the above algorithm to be of practical use,
there are several problems that need to be addressed: 1) Each
subscriptionS of an SPS for a given attribute tree is a union
of several user subscriptionss for that attribute. Therefore, in
order to take any action for a messagem, SPS must know
which attribute tree it arrives from and the corresponding
user subscriptions, without parsing the message content; 2)
messagesm can come asynchronously from different attribute
trees; 3) the messages can be arbitrarily delayed. Hence, the
SPS has to maintain the counts of multiple subscriptions
for some duration; 4) Subscribing to multiple attributes for
a subscription can result in extra overhead because of the
multiple copies of the message received. Thus, a mechanism is
required to curtail the number of attributes for which the SPS
should subscribe. We address these issues in the remainder of
this section.

B. Forwarding Structure at SPS

We describe forwarding mechanism at SPS based on the
action taken on a given message and the corresponding data
structures used. When a messagem arrives at the SPS, it
identifies the attribute tree idT and the subscription idS as
shown in Figure 7 (these information were put as a label by
the last hop IR node in the attribute tree). From the tree idTi,
the corresponding user subscription mapping table is accessed.
There is one table for each attribute where a row is indexed
by the subscription-idSi used by the SPS to subscribe to the
attribute tree. Using this table, we map the subscription-idSi

in m to a list of constituent user subscriptions-idss. Thus with
two lookup operations, we get the user subscription list who
are interested inm (for example,u1 andu2 in Figure 7).

SPS also maintains a subscription matching table (Figure
7) indexed by the unique-id of the user subscriptionuj .
For each subscriptionuj , the attribute countfield contains
the number of attributes inuj for which the SPS has a
corresponding subscription to some IR. TheFull Match Flag
indicates whether theattribute count represents the actual
number of attributes of the subscription. A value of 1 in this
field indicates that the SPS has subscribed toall attribute
trees for this subscription. This implies that if the number
of copies ofm received at SPS is equal toattribute count,
then m matchesuj whereas a 0 value forFull Match Flag
would only indicate a partial match. The table contains a
hash-queue ofpending message-ids and their countswhich
contains the list of all messages which have matched along
some (but not all) attributes indicated by them having a count
greater than zero but less thanattribute count. Merely counting
the number of copies of a message received is not enough to
match user-subscriptions. Only message arriving from specific
trees should be able to increment the count for a specific
subscription.

In Figure 7, for the arriving messagem, the list of pending
messages foru1, u2 is traversed. Using the unique message-
id M1 of the message, we check if the message is already
pending for either one of them. It increments the count for
M1 in both u1, u2. Since the count ofM1 for u1 now goes
to 3, it is a complete match as theFull Match Flag is 1 and

M1= 2

1
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user
subscription

mapping table
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Fig. 7. Matching a message against the resident subscriptions using the
Optimistic Counting Algorithm

the message is directly sent tou1. Also, the count forM1 for
u2 reaches 5 (which is the required attribute count) implying
that M1 matchesu2. However, this is a partial match since
the Full Match Flag for u2 is 0 indicating that there are more
than 5 attributes inu2. In this case, now the message is sent to
the message cache (described next) to fully match its content
against partially-matched subscriptions (likeu2).

C. Message Cache and Timer Management

An SPS can receive multiple copies of a message with each
arrival possibly resulting in some partial matches. Without any
special mechanism, this would require parsing the message
each time to test for a complete match. We alleviate this
overhead using amessage cache. Whenever a new message
arrives, it is added to the message cache. Any subsequent
copies of the message are used only for the counting algorithm.
Furthermore, the message is parsed lazily, i.e, only when the
first partial match occurs.

A feasible implementation of the message cache requires
the use of timers. There are two uses of timers in our setup.
A timeout for a message in a subscription’s pending queue
indicates that the message did not match and the entry can
be discarded. A timeout in the message cache indicates that
a duplicate copy of the message is no longer expected and
the message can be purged from the cache. Note that both
timer expiry durations depend upon the maximum possible
delay between different attribute trees. In practical scenarios
this delay would be small.

In worst case, the SPS may have to start one or more
timers with each message arrival. Thus, the number of active
timers can quickly grow into an infeasible number. We control
this overhead by grouping the expiry events into buckets and
using a timer expiry to process all events in the corresponding
bucket [9].
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D. Selective Subscriptions

We allow SPS to subscribe to only a subset of attributes
for each subscription to reduce the extraneous messages. The
rationale for this choice is that certain attributes and values
would be very common (especially in skewed distributions)
vis-a-vis the others. By subscribing to a popular attribute, the
SPS does not gain much in terms of filtering. For example,
a subscription for the entire content space for a particular
attribute, matches all messages having that attribute (implying
no filtering). In such a case, the SPS decides to subscribe
to an extra attribute only if it gets significant benefit with
respect to the filtered traffic. Specifically, theselectivityof a
subscription-range determines whether the SPS subscribes to it
or not. Lastly, the SPS must subscribe toat least oneattribute
from each of its user-subscriptions.

While selectivity reduces extraneous traffic, it introduces
a new problem. Now merely counting cannot ensure that a
subscription matched completely with a message. The count
can only ensure that the subscription matches in all attributes
that were subscribed to. Unless the message is parsed, the SPS
cannot determine whether the remaining attributes match or
not. However, the utility of the selective subscription technique
is that it reduces incoming message rate at SPS while still
retaining the ability to identify thenon-matching subscriptions.
If k of a subscription’s attributes have been subscribed to
and the SPS receives at mostk − 1 copies of the message
from the corresponding trees, then irrespective of the values
of its remaining attributes, the message does not match the
subscription. This reduces the number of subscriptions that
need to be matched against a message.

E. Choosing Subscription Ranges

The selective subscription mechanism requires a technique
to determine the ranges for each attribute to subscribe to.
We present a simple strategy to solve this problem using the
event arrival statistics, and the cost of matching and counter-
incrementing operations.

We consider the SPS to consist of two separate units: 1) a
matching unit which identifies the matching subscriptions for
each message, and 2) a forwarding unit, which forwards the
message to all matching users. Clearly, if the forwarding unit
cannot handle the forwarding load, we need to move some
subscriptions to other SPS as the forwarding load consists
entirely of desired messages. Hence for this discussion we
consider the matching unit.

Intuitively, adding an extra subscription is only useful if it
increases the system throughput. Thus, ifM distinctmessages
arrive at the SPS per unit time, then the SPS becomes a
bottleneck if it matches less thanM messages per unit time.
Here matching a message refers to the message being sent
to the forwarding unit along with all matched subscriptions.
Using selective subscriptions, we can increase the throughput
of the matching unit.

Let the average time taken to fully match a message against
a subscription betf and the time taken to increment a message
counter betc. We expecttf to be much higher compared
to tc because a full-match involves parsing the message

and matching all its attributes against all attributes in the
subscription. The expected timeT to process a message by
the SPS is given byn1 ∗ tf + n2 ∗ tc wheren1 is the number
of full matches it has to do andn2 is the number of counters it
has to increment. IfT is less than1/M then the SPS is not the
bottleneck. Otherwise, we can try to reduceT by subscribing
to additional dimensions for some subscriptions.

If SPS subscribes to more attribute trees, it results in more
incoming messages. That in turn increases the total counter-
increment cost as each message would likely increment some
counters. On the other hand, subscribing to an additional
attribute tree for a subscription reduces the likelihood that it
would have to be fully matched. This because then a full-match
is required only whenan additional attribute has already
matched in the counting domain. There exists an optimal point
beyond which the matching unit’s throughput starts decreasing
when we subscribe to extra attributes. We try to reach the
optimal point by an incremental algorithm. The SPS calculates
the effective throughput if it subscribes to a range withleast
extra traffic. If the effective throughput increases, it subscribes
and checks the next candidate range, otherwise it stops. We
show in the evaluation section that this simple strategy can
significantly increase the throughput of the matching unit
under different circumstances.

V. EVALUATION

We now show the effectiveness of the Sieve architecture by
running several experiments over a prototype implementation
and some simulations.

We use zipf distribution to generate both the subscriptions
and messages so that valuei occurs with probabilityi−α (nor-
malized by number of values) whereα is the zipf parameter.
Since lower values of the value-space are more prevalent in the
zipf generation, we permute them using a random permutation
vector so as to disperse the popular values in the distribution.
To generate the subscription ranges, we draw a number from
the zipf distribution as the lower end of the subscription range.
The higher end of the subscription is generated using a uniform
width with a specified mean (that is varied in the experiments).
Since a subscription exhibits interest inall values within its
range, this technique allows us to have more subscriptions
concentrated around the more popular values. Furthermore,
using subscription width as a parameter allows us to control
the overlap between multiple subscriptions giving us a wider
test area for Sieve.

For the evaluation purposes, we need the following defini-
tions:

Definition: The per-message processing timeof a node is
the mean time it takes for it to identifyall the subscriptions
that completely match a message.

Definition: The throughput ratioof a node is the ratio of
the mean message inter-arrival time it sees and its per-message
processing time. A throughput ratio of less than 1 is a must for
a node to be able to seamlessly filter and forward an incoming
message stream.
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Fig. 8. Per-message processing time with same distribution for publication
and subscription.

A. Implementation

We have implemented the Sieve system prototype using
the optimal filters at IRs (defined in section III-C) and the
optimistic counting algorithm at the SPS (defined in section
IV-A). We show some performance results taken over a cluster
of nodes. The key performance metric is the effective through-
put of the matching unitof an SPS. We chose this as the
performance metric of interest for two reasons: 1) the filtering
cost at IRs is much lower compared to the SPS because the
match is on a single attribute for aggregate subscriptions. 2) the
actual throughput of the SPS depends on the subscriptions and
the message arrival rate. Hence the capability of the system is
better illustrated by the matching throughput rather than the
forwarding throughput.

The following results were taken on a set of 13 Pentium-4
2.8Ghz machines with 1GB of RAM connected over 100Mbps
Ethernet. One machine acts as both publisher and PPS thus
generating the messages, attaching the value-based labels, and
forwarding the messages to the appropriate IR nodes. We have
one subscriber node that generates 100000 subscriptions and
sends them to the single SPS node. The SPS computes its
local tables and subscribes to the appropriate ranges overall
attributes implementing thefull-matchversion of the counting
algorithm.

The publisher generates 10000 messages per second with
each message carrying a payload of 512 bytes. The payload
includes the XML message with varying number of attributes
and the rest of it is padding data. The number of attributes
and the traffic patterns are varied to test the system’s per-
formance. Our first experiment generates a stressful workload
of subscriptions and publications. In this case, we generate
subscriptions and publications using a zipf distribution with
same value ofα. Furthermore, we use thesamepermutation
vector at both publisher and subscriber end to generate the
case where the most number of subscriptions are for the
most popular events. This results in a message from the
range with maximum arrival rate matching a large number
of subscriptions (thus resulting in a large number of counter
increments). Hence, the performance of the matching unit in
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Fig. 9. Per-message processing time with different distribution for publication
and subscription.

this scenario is expected to form a worst case for Sieve for
the correspondingα. Figure 8 shows the actual time it takes
for the SPS to match and forwardall copies of a message
from the system for varying number of attributes and different
α. We can observe the following: 1) In the best case, the
SPS needs only 16µsec per message of matching time. Thus,
the system is not only capable of sustaining a throughput of
10000 messages per second, but has the capacity to scale
upto 60000 messages per second (network permitting), 2)
Increasing number of attributes increases the matching time
due to more copies of messages arriving and thus increasing
the number of counter-increment operations, 3) An increase in
α results in a super-linear increase in the matching time. As
discussed above, this is caused by our choice of having the
same values popular both among publishers and subscribers.

The second experiment tests the system in a more general
condition. For this experiment, we have different degrees of
popularity of various values for subscribers and publishers.
We keepα for the publisher at 0.5 and change the alpha for
subscribers from 0.3 to 0.7. We still have the artificial sharing
of popular values introduced by the identical permutation
vectors so that only the relative interest level in a particular
value changes (but the popularity index of a value amongst all
values does not). Figure 9 shows the results of this experiment.
We find that the message processing times have reduced
significantly by changing the interest level in the values. This
happens because a message carrying a popular value can now
have less number of interested subscriptions (resulting in lower
number of counter increments). This shows that in an average
situation, Sieve is likely to perform very well.

An important measure of the pipelining effect is the amount
of throughput the bottleneck node can provide with respect to
its input traffic. Our experience with the system suggests that
the bottleneck node in Sieve is invariably the SPS. The next
experiment aims at quantifying the throughput that the SPS
can achieve by evaluating its throughput ratio over diverse
conditions. We setα to 0.5 for both publisher and subscriber
with the same permutation vectors to generate subscriptions
and messages having the same values more popular. Figure 10
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shows the throughput ratio of the SPS with different number of
attributes in the system with increasing message arrival rates.
As mentioned earlier, a throughput ratio of less than one is
mandatory for a node to seamlessly handle its incoming traffic.
The figure shows us that while supporting 10 attributes, we
can handle around 4000 messages per second while serving
100000 subscriptions. Figure 11 shows the throughput ratio for
the case when the subscription distribution is uniform with the
publication distribution having anα of 0.5. In this case, we
can see that one SPS can support around 5500 messages per
second while supporting 10 attributes with 100000 subscrip-
tions. These results strongly establish the viability of Sieve in
supporting high-rate message streams.

Lastly, we show the impact of increase in number of
subscriptions on the processing time for individual messages.
For this experiment, both publication and subscriptionα were
set to 0.5 and both had identical permutation vectors. Figure
12 shows the result. We see an almost linear increase in the
total message processing time as the number of subscriptions
increase. The reason behind this increase is that each new
subscription is added to the table corresponding to each of
its attributes thus increasing the number of subscriptions a
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Fig. 12. Per-message processing time with increasing number of subscrip-
tions.

message matches. However, our data structure at the SPS (with
3-level lookup) ensures that a subscription is only matched
against a limited number of messages (those that match it
in some attributes). This is why the increase in per-message
processing time is marginal.

B. Comparison with Multi-dimensional Matching

While Sieve partitions the task of filtering among one-
dimensional attribute trees, an alternate approach is to have
multi-dimensional filtering at each node. We compare the
Sieve approach with multi-dimensional matching by using R-
tree2 [10] to index subscriptions (as used in [5]). For this, we
have 100000 subscriptions generated withα = 0.5 as in the
previous section. We divide the subscriptions among 10 nodes,
so that each handles only 10000 subscriptions. A dispatcher
node sends each message to all the 10 nodes which identify the
individual subscriptions that the message matches. Since, our
prototype of Sieve uses one IXR node per attribute, this gives
the R-tree based system extra computing advantage unless the
subscriptions are on 10 attributes.

First we show the processing time per-message atoneR-tree
node with publisher generating messages with sameα. Note
that since each node is effectively identical and operating in
parallel, the system throughput is governed by the processing
time at each node. Figure 13 shows that the throughput
due to our counting-based algorithm is consistently higher
than that of R-tree. We emphasize that this throughput only
corresponds to the matching algorithms and not the network
portion. With large number of attributes, Sieve almost doubles
the throughput that R-tree can attain. This clearly shows that
Sieve’s approach of splitting the filtering task into multiple
one-dimensional matching and then combining the results
works well.

The second result in this set shows the impact of number
of subscriptions on a multi-dimensional matching system. We
vary the number of subscriptions from 6000 to 16000 on
an R-tree node (equivalent to 60000 to 160000 subscriptions

2We used the publicly available implementation from
http://www.cs.ucr.edu/ marioh/spatialindex/ with default parameters.
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in Sieve with 10 attributes) with the same distribution of
subscriptions and publications as above and with the subscrip-
tions and messages having 6 attributes. Figure 14 plots the
throughput that the matching process attains for the R-tree
node in comparison with the Sieve system. Again we see that
Sieve has much higher throughput even when the system has
to match a large number of subscribers.

C. Selective Subscription

This set of experiments shows the benefits of selective
subscription mechanism using simulations. We consider 10000
subscriptions interested in 5 attributes on an average. There
are 50 different attributes in the system each having 10000
distinct values. The subscriptions ranges for each attribute
are chosen independently using the method detailed above.
The attributes and values are zipf-distributed but are are
independently chosen. We have 20000 messages arriving per
unit time.

We first show the viability of the selective subscription
approach with different ratios of time for full-matching (tf )
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Fig. 15. Maximum throughput achieved by subscribing to additional
attributes for different cost ratiostc/tf .
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and counter increment (tc). The averagetf for matching a
message with a subscription is set as 0.0001 units of time.
The average range width of each subscription is 30 units.
The ratio tc/tf is set to three different values 0.01, 0.005,
and 0.001. Figure 15 shows the increase in matching unit
throughput in these three cases. There are several things shown
by the figure: 1) In the base case when SPS subscribes on only
one attribute per subscription, the throughput of its matching
unit is low making it the bottleneck. In this experiment, it is
around 45% of the distinct message arrival rate. 2) As the SPS
subscribes to more attributes per subscription, the matching
unit throughput (and hence the system throughput) increases
initially. However, beyond a certain point, the increased cost of
counter increments outweighs the gains attained by reducing
number of full-matches. 3) The smaller the ratiotc/tf , the
higher the throughput we can attain. The reason being the
ability to add extra subscriptions and reducing the number
of full-matches without paying much in terms of increased
counter maintenance cost. 4) In two of the three cases, the
maximum reached throughput is less than 100% of the arrival
rate. In Sieve, this serves as an indication that the SPS is
overloaded and some of its subscriptions need to be off-loaded
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Fig. 17. Maximum attainable throughput by subscribing to additional
attributes for different cost ratiostc/tf .

to another SPS.
The next experiment shows the impact of different sub-

scription range widths on the attainable throughput. For this
experiment,tf is set to 0.0001 time units and the ratiotc/tf
is 0.01. Figure 16 shows the results of the experiment. We see
that as the width of the subscriptions increase, the maximum
attainable throughput reduces. The reason for this reduction is
that the messages matching the new subscription are likely to
partially-match more number of subscriptions.

Our next experiment aims at identifying the impact of
various parameters on the maximum attainable throughput.
We set the ratiotc/tf to 0.005, the zipf parameter for
subscriptions and publications is set to 0.7, the subscription
range width is varied from 20 to 100, and the number of
attributes on an average per-subscription is successively set
to 3,5,7. Figure 17 shows the maximum attainable throughput
for different parameters. There are two important observations
from these figures: 1) With larger subscription width, the max-
imum attainable throughput decreases because each additional
subscription results in a larger number of potential counter
increment operations for the newly added traffic. 2) Larger the
number of attributes in a subscription, the larger the possible
throughput. This because we have more dimensions to add and
improve the throughput.

VI. RELATED WORK

In the recent past, a large body of work has emerged
focussing on the problem of large scale selective dissemination
of information to users. Several solutions were proposed based
on using the multicast model. Using conventional multicast
model is not scalable as the number of multicast trees can
grow up to2n to capture all possible subscriber groups. The
channelization problem formulated in [11] provides a solution
to map sources and destinations to a limited set of multicast
trees to minimize the unwanted message delivery. Another
category of work [12], [13], [14], [15] creates a limited number
of multicast trees by proper clustering of user subscription
profiles. In the above solutions, filtering is done at the source,
at the receiving point, or both. In contrast, authors in [16],

[17] proposed the use of filters in the intermediate nodes in
a given multicast tree for selective data dissemination. [17]
provides a solution to filter placement and leak minimization
problem. In multicast based approaches, the forwarding path of
a message is restricted to pre-defined multicast tree topology.
Although these approaches can apply well in topic/subject
based or messages with single attribute, they are not suitable
to support general predicates over multiple attributes.

In Sieve, we use multicast model based approach in value
based forwarding in the attribute tree. In our solution, we
solve the joint problem of filter construction at each node and
multicast tree creation, which is not explored in existing work.

The added advantage of associating subscriptions to a
multicast tree is marginal as the complex predicate has to
be finally matched either at source or receiver. Instead of
restricting to a multicast model, a general model is to cre-
ate a routing network composed of content-based routers as
proposed in Siena [1], [3] and Gryphon [4]. A content-based
router creates a forwarding table based on subscription profiles
and performs both data filtering and forwarding based on
predicate matching. As with any data distribution network,
the speed of matching the subscription predicates at each
content-based router determines the sustainable throughput.
The goal of content-based routing is to provide processing
latency meeting the wire-speed.

In both Siena and Gryphon, each router may need to keep
states about all subscriptions. Even though Siena [3] proposed
subscription merging to minimize states, the resultant benefit is
not applicable with subscription deletion. In Sieve architecture
design, we are particularly concerned about the subscription
states as that determines the message processing speed and
forwarding bandwidth. A large subscription state space cannot
be accommodated in main memory or processor cache for
fast processing [18]. We specifically provide solutions to
move subscriptions among leaf nodes (IR) such that space
constraints and forwarding capacity are met.

A significant amount of research [18], [19], [20], [6], [1],
[21]has been done on finding better solutions for general
predicate matching at a single node. As a centralized solution
using a single node may not support the ever-increasing rate
of information flow, Sieve tries to distribute the matching
complexity among multiple nodes. Although Sieve architecture
implements a distributed data structure to match a message,
the solution is based on many ideas from the single node
based solutions. The reverse indexing structure used by Sieve
to map content-space to subscriptions is similar to those used
in [6]. Both [6] and [1] proposed a variation of counting based
mechanisms to match predicate in a single node. However,
to apply the counting method to a distributed engenders new
problems that we discuss in section IV-A.

In certain solutions such as Siena [1], [3], [4], the message
dissemination path is coupled with the subscription movement
path and therefore lacks the routing flexibilities. In contrast,
solutions [22], [23], [24], [25], [26], [27], [28] based on
indirection use rendezvous points in form of broker nodes
where messages meet subscribers. Sieve infrastructure is also
based on the indirection philosophy (expounded in [29]),
however, the sequence of indirections is used to partition the
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complex task of predicate matching by defining separate roles.
Unlike the above solutions, the goal of Sieve is to match
time complexity of each role with the message arrival rate
in supporting high bandwidth data stream.

Content-based information dissemination over P2P network
was proposed in XROUTE [30]. Their main concern is net-
work bandwidth usage and minimizing the size of the routing
tables. In this work, our primary objective fast end-to-end
message processing and delivery.

The notion of weak filtering as discussed section III-B on
hierarchical filtering has been used in summary based routing
[5] and [19]. In contrast to the above, use of weak filters
in Sieve is motivated by space constraint and the design
objective is to minimize leak for which we provide optimal
filter construction algorithm.

Another body of works such as topic-subject based SCRIBE
[31] over P2P substrate and XML based mesh routing in [7]
looks at the reliability and fault-tolerance issues. In supporting
XML format information dissemination, several solutions have
been proposed such as [7], [32], [33]. Sieve supports XML
format as well, however, it restricts the XML parsing operation
to the network edge (PPS and SPS).

VII. C ONCLUSION

We presented Sieve as an infrastructure solution for content-
based forwarding of high-rate message streams. The key
insight enabling Sieve’s handling of high-rate streams is the
concept of filter pipelining. Sieve divides the filtering task
into smaller components, each with low space requirement
and fast processing operation. Collectively, these components
form a filtering pipeline providing the basis for high end-to-
end throughput. The fundamental benefit that Sieve exhibits
is that partitioning of tasks expedites the filtering process.
This is illustrated by a sustained throughput of more than
5500 messages per second with 100000 subscriptions over 10
attributes.

Our work represents a step towards accomplishing a uni-
versal content-based filtering and routing network. In order to
make a complete system, we plan to address issues related to
the fault-tolerance to broker node and reliable message deliv-
ery as future work. In its current form, Sieve is meant for per-
forming distributed multi-dimensional subscription matching.
We aim to support regular expression matching and text search
as filtering functions. Furthermore, we plan on exploring the
use of Sieve for resource discovery, event transformations, and
event compositions. We believe that the distributed pipelining
architecture of Sieve can serve as the basis for a unified
content-based information dissemination network.
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