A Fast Content-based Data Distribution
Infrastructure

Samrat Ganguly, Sudeept Bhatnagar, Akhilesh Saxena, Suman Banerjee, Rauf Izmailov

Abstract—We present Sieve — an infrastructure for fast the complex multi-attribute subscription matching task and
content-based data distribution to interested users. The ability distribute the sub-tasks strategically among multiple servers
of Sieve to filter and forward high-bandwidth data streams \nije respecting the resource constraints at each server.
stems from its distributed pipelined architecture. The complex Si g the i t f . d band
message filtering task is broken-up into a sequence of light-weight |ev§ rgcqgnlzes € importance of processing and band-
filtering components resulting in high end-to-end throughput. Width limitations of nodes as the core problems for any
Furthermore, since each component is assigned to a node basedcontent-based filtering network. These limitations restrict the
on its resource constraints, the queue buildup inside the nodes is amount of filtering and forwarding that any node can perform.
minimal resulting in low end-to-end latency. Our experimental Tpgq specific objective of Sieve is to achieve a message
results based on real system implementation show that Sieve can . lat that tch th ival rat
sustain a throughput of more than 5000 messages per second forprqceSS|ng a_e”CY at can maltc e megsage. arriva .ra e
100000 subscriptions with predicates of 10 attributes. while supporting rich content-based semantics. Sieve strives
to partition the tasks so as to match both the network and the
processing loads assigned to an overlay node with its corre-
sponding processing capacity and network bandwidth. Funda-
mentally, the increased throughput of Sieve comes from the

[. INTRODUCTION basic principles of pipelining, where the end-to-end throughput

Content-based networking is an emerging data routir‘iﬁthe system increases by judicious partitioning of a task into
paradigm where a message is forwarded based on its confdRgller sub-tasks. _ _
rather than specific destination addresses attached to it [1]. I "€ Message processing speed in a content-based router
this paradigm, data distribution to the users is based on @Pends upon a variety of factors such as the subscription
publish-subscribe model where publishers (sources) publi9Qkup data structure, predicate matching algorithm, and total
messages and subscribers (receivers) register their inteRP&Ce requirement. In existing distributed systems such as
about the content. The content of the message has a listENA [1], [3], Gryphon [4] and others [5], each content-
attribute name and value pairs, such as (symbolz“googlé”?sed router hosts a mult|-at'_cr|bute data structure to com-
price=196.8). The subscriber interest is usually expressed d¥@fely match the complex predicate for each subscription. The
selection predicate, such as (symbol="google” & pric€00 complete predicate matching cost cogpled with large space
& volume > 11M). A content-based network infrastructure enfequirement to hold the data structure in memory or processor
ables selective data distribution from publishers to subscrib&che increases the message processing latency.
by matching the appropriate selection predicates. Slevg (_thfers from these systems by creating a distributed

However, along with the rich functionalities provided b)ﬁubscnpnon—matchlng data structure over multiple overlay

content-based network infrastructure comes the high compl@@des. Using this data structure, Sieve provides the following

ity of message processing stemming from parsing each madvantages to achieve fast message process?ng: a) it gllows for
sage and matching it against all subscriptions. The resultiigntrol over the space and forwarding bandwidth requirement,

message processing latency makes it difficult to support highit allows for each node to participate in partial matching of
message publishing rates from diverse sites targeted to a |dPgedicates in a distributed way towards a global matching of
number of subscribers. For example, NASDAQ real-time datd€ complete subscription predicate, and c) it allows for staging
feeds alone include up to 6000 messages per second in {if Subscription matching process such that the processing
pre-market hours [2]; hundreds of thousands of users mté?,mplexny at each node can match the message arrival rate.
subscribe to these data feeds. Sieve architecture is composed of three stages of message
The main contribution of this paper is design and evaluatidffwarding to enable the filtering pipeline. Each stage is

of Sieve, a fast content-based data dissemination infrastructflffined by a set of participating nodes and their well-defined
to support high streaming rate of messages. The Sieve riﬂl_es. These stages create an efficient system that maximizes
frastructure is an overlay network with nodes spread over tHEENG pipelining while meeting the state space constraints

Internet. The main design philosophy is to efficiently partitioﬁnd bandwidth Iimitatiqns. This results in the following solu-
tions that we propose in this paper:

Samrat Ganguly, Sudeept Bhatnagar, Akhilesh Saxena, and Raufe A consistent distributed data structure for data filtering
Izmailov are with NEC Laboratories America, Princeton, NJ. email: and forwarding meeting the space requirements of a
{samrat,sudeept,saxena,fg@nec-labs.com. Suman Banerjee is with S
Dept. of Computer Science, Univ. of Wisconsin, Madison. email: Participating node.
suman@cs.wisc.edu « An efficient attribute-specific tree construction for mes-

Index Terms—Content-based Information Dissemination,
Publish-Subscribe System, Event Stream Filtering

to be true only for a message containifigz;, v; > such that

x; <wv; <y;. A messagen matches a subscription if all

the corresponding predicates are evaluated to be true based on

the content ofm. Disjunctions in the subscription predicates

At besed are handled by splitting the predicate into smaller conjunctive
predicates and treating them separately.

1 abeis

Attribute-based
Forwarding

J/ \ e
/,/"/\ l,/forAmibmeak\\,\~ B. Sieve Components
®®® In order to efficiently distribute the parsing, filtering, and
Tree forauibueld, forwarding load, Sieve defines three logical roles that nodes
S s Ve based play. In Sieve, a publisher contactsPablisher Proxy Server
(PPS) to publish its data. Similarly, a user contactSub-
oo St scriber Proxy Serve(SPS) to send subscription requests and
: ' ubsorpion 1 eredcaobased || to get notifications matching its subscriptions. There is one
| reauest o o Forwarding oo logical filtering tree corresponding to each attribute. Any
o message that contains a value for an attrileuie routed over
Subscrbers the attribute tree for. Each node in an attribute tree is called
an Intermediate Route(IR).
Fig. 1. Content-based Routing Architecture in Sieve Sieve is designed to operate on top of an overlay network
with heterogenous characteristics. All nodes in the network
c{';\n communicate with each other, however, the latency and

sage fll'[_erlng a_nd forwardmg whl_ch_can ad_apt 10 CONteiit, \ jwidth observed between different pairs of nodes varies.
popularity distribution and subscription profile. Given th . ; .
ach node in the Sieve network can be assigned one or

isnpagi f%?;gm‘ﬁtltrsih Wgtg;\:;?ee algorithm for COnStrucrﬁore of the roles (PPS, SPS, IR) based on its processing and

Ogtimistirc): countin gl orithm based on 161 for fastbandwidth capabilities. We assume@ordinator nodgwhich

« Optimi 9 ayg i) [6] could potentially be distributed over several physical nodes)
matching of complete subscription predicate.

. o) : ntrols th ignment of rol he n . Th lisher
« Since task distribution also leads to increase in number%? trols the assignment of roles to the nodes e publishers

. . contact the coordinator to ask for nearest PPS, the PPS can
messages in the system, we provide an approach adaptmﬂ . s . .
the task distribution based on content pooularit anCcP tact it to find the roots of various attribute trees, and users

T Pop Y @%ntact the coordinator to find the SPS to which they should
subscription interests. : o .

A ._..send their subscription. In the remainder of the paper, we do

« Label-based forwarding inside the network that limits : .)

not detail the involvement of the coordinator node and focus

Lh deggcs)stly message-parsing operations [7] to the netwocgn Sieve’s content-based filtering framework.

Finally, micro-benchmark results from our real system im-
plementation shows that Sieve can sustain a throughput%‘f _ o S _
more than 5000 messages per second for 100000 subscriptiorfs User sends its subscription containing its ranges of interest

z abeis

Tree
/for Attribute al

¢ abeig

Subscriber

Proxy Server

Subscription process

with predicates of 10 attributes. over multiple attributes to an SPS. The SPS of choice for
a subscription is the one whose existing subscriptions have
Il. SIEVE ARCHITECTURE maximum overlapith the new subscription. The SPS stores

The Sieve architecture (shown in Figure 1) is based trrlle entire subscription for each user locally. It then subscribes

the publish-subscribe [8] service model, A user registers |% different range of values for different attributes on behalf
.)) o of the users.
interest in certain content by means ofsabscription A

.) ; The SPS aggregates the individual user subscriptions
content producepublishesa message into the Sieve network . . .
: X : . - thto non-overlapping rangefor each attribute. Consider a set
which sends it to all users with matching subscriptions. In th . e . . .
with all the user subscriptiona interested in attribute

section, we describe the various architectural aspects of Sieve ST :
) a. Each of these subscription is characterized by a range
that help realize the above model.

(x;,y;) on attributea. If there aren such subscriptions in
U,, their ranges can intersect at ho more than distinct
A. Data model points over the content space. For example, consider two
In the Sieve infrastructure, an event notification from aubscriptions with ranges: 20,70 > and < 10,50 > for a
publisher is associated with a messageontaining a list of given attribute. These ranges intersect the content space at
tuples< type, attribute name), value (v) > in XML format the distinct points(10, 20, 50, 70). Let the ranges be defined
where type refers to data type (eg. float, string). Each sullBy two adjacent intersection poin{s, m) in the ordered set
scriptionu (also in XML format) from a user is expressed as af intersection points. For the above example, the ranges are
selection predicate in conjunctive formas= P, A... A P,. (10,20), (20, 50), (50,70). SPS assigns a unigue subscription-
Each elementP; of u is expressed as< type; attribute id (denoted asS with or without subscripts) to each of these
name(a); value range(R} whereR : (x;,y;). P; is evaluated ranges and sends it to the corresponding attribute tree root (as

copies of the message irrespective of the attribute trees they
are forwarded on.

Value-based forwarding (at IR):All IRs on an attribute
tree use value-based forwarding. Upon receiving a message
at the root of an attribute tre€;, the objective is to deliver
this message to all SPSs that have a subscription that matches
— value v;. The value-based forwarding is implemented as
a hierarchical forwarding tree structure usihgtermediate
Router (IR) providing two functionalities: message filtering
and multicasting. Filtering restricts the multicast of a message
to only those SPSs which have at least one subscription
matching the value); contained in the message. In order to
execute message filtering, each IR has a set of non-overlapping
filters f, defined as
Fig. 2. Subscription movement and message routing Definition: A filter f, is defined by rangda,b) (where

a,b € content spacé’) and an associated set of nod¥s
A filter f allows only those messages to pass through

shown in Figure 2.a). Note that this subscription aggregatiovhose label value lies in its range, i.ew € (a, b]. A message
process ensures that the SPS subscribes to a value if and tmdy passes througlf is forwarded to all the nodes V.
if someuser subscription is interested in it. Each IR has a list of filters (Figure 3). In an IR, a message is

Each attribute tree root receives subscriptiofrom one or matched to a filterf using a range search on its label value
more SPSs. The root finds the minimum and maximum valweand then replicated and forwarded to the next hop nodes
t : (Tmin, Ymae) iN value space covered by union of all range@Rs or SPSs) associated withas shown in Figure 3. The
in S from all SPSs. The root informs the rangdo all the construction of the value-based forwarding tree and the filters
PPS. at each IR is based on the aggregated subscription profiles
generated from each SPS. The IRs do not parse the message
as the entire operation uses the valuattached as a label.

Predicate-based forwarding (at SPSEach SPS maintains

The goal of Sieve is efficient and correct delivery of list of complete subscriptions sent by the users and hosts a
messages to interested subscriber using content-based roupgdicate-based forwarding server for matching user subscrip-
In order to provide a high end-to-end throughput Sieve uses ffishs. Based on messages received from the attribute trees,
concept offilter pipelining Fundamentally, a pipeline of well- SPS matches the compound predicates of the subscriptions.
designed components increases the end-to-end throughput=or each subscription match, the message is forwarded to

Sieve divides the complex task of event filtering and routhe corresponding user. The SPS useptimistic counting
ing into three stages (Figure 1): Aftribute-based forward- algorithmto avoid parsing the message while determining the
ing:used for forwarding a message based on attribute namefiRal recipients of each message it receives. The SPS also
Value-based forwardingused for filtering the messages basefhaintains an efficient data structure to minimize the number
on values of specific attributes and forwarding it to the corregt subscriptions that are considered for matching.
SPSs; cPredicate-based forwardingsed for matching entire Example:Figure 2(b) shows a publisher generating a mes-
subscription based on the compound predicates and notifyigmge which has two attributes; and a,. This message is
the users. We now give a brief overview of the content-basg@blished into the Sieve network by sending it to PPS2. From
routing of a message over the three stages as shown in Figiti&e the message is sent to the root of the two attribute trees
1. The detailed description of these techniques is deferredvmh Corresponding labels. The IRs forward these message to
the subsequent sections. the SPS after adding labels that identify the tre@jdhe SPS

Attribute-based forwarding (at PPS)Each publisher is subscription-idS that matched the value (in the label), and the
assigned an attribute-based forwarding server (PPS). A pyhessage-id\/. The SPS on receiving it performs complete
lisher sends a new message (containing multiple attribui@atching to user subscriptions and forwards it to the interested
value pairs) to its PPS. The PPS parses an incoming messgggr (User2).
to identify its attribute names. The message is forwardedlto |0 summary, the PPS performs filtering based on ahe
attribute trees/; corresponding to the attributes present in triputesin the message. An attribute’s filtering tree performs
the message (Figure 1). As an optimization, the PPS does fiéring on the values for that attribute in the message.
send a message to an attribute treedpif the corresponding The SPS combines the results from various attribute trees to
value v; is not in the subscription bound (given by set in identify the subscriptions that completely match a message.
subscription process). Before forwarding the messagg; to
PPS attaches the valug of attribute a; as alabel (Figure
2.b). Aswv; can be of any length, labels can be a pointer to
the location ofv; in the message. The PPS also attaches aAs discussed in the previous section, the PPS nodes receive
unique message-id\/ to the messageM is common to all a message from the publisher, parses it to determine the

Userl
(subscriber)

(b) Message path

D. Message filtering and forwarding

IIl. VALUE BASED FORWARDING

10 o W e 2 will be multicast to subscriptions and 3. Implicitly, this
/ — 150-225 | IRLIR2 410425 also means that multicast grodp, acts as a filter that does
410-484 IR2 . .
@ @ g w2 not send the message to subscriptiarsnd4.
e[190215 [spst] Note that, a multicast group has to ident#l} subscriptions

@ @ 160210 | IR3IR4 that must receive a message aralother subscription should

220-225 IR4 Ra| 500-520 SPS2
xR - oreeo | spss get it. This requirement results in a large state space. In fact,

the real magnitude of this problem emerges from the analysis
of a simple case in Sieve: Consider 100000 subscriptions
over a content space with values in range 1-100000. Con-
sider 100000 subscriptions where subscriptiois for range
Subscription (4,100000). All values from 1 to 100000 form distinct end-
Yt points for this subscription sequence. Thus, we have a 100000

Fig. 3. Content-based Routing Architecture in Sieve

! G, ! ! G, ! Gl R Subscripti L. . R K .
it | A S ~ T T as | distinct groups with groups; having associated members.
S I — | § G | o : The state space for this exampleﬁ}iiﬂoooz‘ = 5x10° entries.
f* ? : G, 69 2.4 Even with a mere 4 bytes (integer) to store the subscription-

I ids (group members), this requires 20GB of memory in the
system. Furthermore, the state space explodes?afor n

subsorition @ Groups | Range | suoseriptions | subscriptions using the above example. This amount of state is
"t eiaiciaie: o 6 | 12 ! infeasible to be stored at a single node. Furthermore, consider
PEEE — — the amount of forwarding load explosion that this system
S ! P s can experience. For the above example, consider that we are
i N e o | s B getting a minuscule incoming message rate of 1 b)_/te per
- G| 69 4 second per value. In such a case, each of5th)° entries

1 2 3 4 5 6 7 8 9
(8)

—— Subscription Range

will get one byte per second resulting a total outgoing traffic of
5GBps. Thus, forwarding load requirement for such a system
can be huge due to the multicasting requirements.

Lastly, the solutions to minimize state space and forwarding
Fig. 4. Partiioning the content space into multicast group ranges based!@&d are highly dependent on the subscription distribution over
subscription profiles the content space. For example, consider the two subscription

cases in Figures 4(A) and 4(B) where we have 4 subscriptions

each on the same content space. Suppose we characterize
attributes it contains, and sends it to the corresponding attribtfie total state space as the number of subscription-ids over
trees. Before sending the message to tfge it assigns a all groups (the number of entries in the right-most column).
uniqgue message-id/, and a label containing the valug. Then the total state requirement in 4(A) is 4 units and 10
corresponding to the attribute,. We now detail the value- units in 4(B). Suppose we have a traffic iofinits per second
based forwarding operation in an attribute ti&e for value i. Then the total forwarding load at the node in

An attribute tree contains subscriptions from multiple SP3ggure 4(A) to all the subscriptions is given by (1+2+3+4)
expressed agSPS; : S;). SPS; is the unique-id of the SPS mesg/sec to subscription id4,3} and (6+7+8+9) mesg/sec
which subscribed to this attributes; is the subscription-id to subscription idg2,4} resulting in 80 messages per second.
that SPS; assigned to the corresponding subscription rangdowever, for the subscription distribution in Figure 4(B), the
T, matches the valuey, in an incoming message’s labeltotal load is only 72 messages per second. Thus, while state
to the subscription range that covers it, stamps it with thfepace requirement is higher in Figure 4(B), the forwarding
S; of matching subscription, and sends it $&S;. SPS; load is higher in Figure 4(A).
will assume that any message stamped wiithmatches the Our objective is to construct a hierarchical filtering structure
corresponding subscription range. by distributing both the forwarding space and load among mul-

Two important issues govern the design of an attributgple nodes. The construction is adaptive to the message value
tree: the amount oftate spaceequired to store the different popularity distribution and subscription range distribution over
subscriptions and the correspondfogwvarding load A simple the content space.
insight helps in understanding the impact of these issues: dn order to capture the popularity distribution of different
message being sent to a bunch of subscriptions (based ornvélues, each node keeps aggregate arrival statistics for different
content) is essentially being multicast to a (possibly uniquedlues in form of a histogram. The histogram provides the
group. For example, in Figure 4(A), there are 4 subscriptiodsstribution of values in a given unit interval over the entire
for ranges(1,4), (6,9), (1,4), and (6,9) respectively. Using content space. The histogram is updated using a sliding
the unique end-points of the subscriptions, the content-spagadow average every time a message is received. From the
is partitioned into three multicast group rangeésfrom 1 —4, histogram, one can easily compute for any rangethe value
G, from 4 — 6, and G5 from 6 — 9. Of these groups, there space, the fraction of traffip(r) with values inr. Note that
is no interested subscription il whereasG; and G3 have the total traffic with values in rangeis Ap(r) where) is the
two interested subscriptions each. Thus, a message with vaioal message arrival rate.

1| Multicast Group Range

A ; ‘
A. Space and load partitioning ubscrgion § s M ,
If the root node of the attribute tree cannot handle the space * f2 @

L] 1 1 L) 1 1
and forwarding load requirements, we distribute the filtering 4 5 G EGZE 635 G“EG—SE
and forwarding task among multiple children. We observe that 3 | e |
both the number of multicast group ranges and the associated | IR | o o
forwarding load is an increasing function of the number of *T ™ 1 | | e @2 B4
subscriptions. Thus by partitioning the subscriptions among 1 2 3 4 56 7 8 9 Subscription Ids
multiple children, we can meet both space and forwarding— ,
) ™ Filter- Node Leak Leak Filter- Node Leak Leak

constraints of each node. Each node can then serve a subget id_| fromG id id | fome
of all subscriptions by having a unique filter for each multicast f, ! ; 0 msgis f L ; 0 msgls
group range thereby ensuring zero false positive delivery to th 2 S | 2msgs 2 i Gy | Smsgls
SPSs f, 1 Gs 4 msg/s f, 1 ; 0 msg/s

) i . 2 G, 1 msg/s 2 ; 0 msg/s

We assume that the available space and forwarding band

width for each node in a resource pool is given. Assume, in the— SubscriptionRange { | Mulicast Group Range 1 Filter Range

current state, the set of all subscriptions is partitioned among
k nodes all of which are children of the root. The subscriptiofig. 5. Mapping into multicast trees based on subscription profiles
set in the nodé is denoted ass;. The following subscription

partition process is used when a new subscription regbiest i)
is received at the root. range. Let us defing(f) as a set of multicast group ranges

Subscription partition and movemerEonsider a node Ccovered byf. Let the subset of group ranges @iif) that is
with a maximum forwarding capacity af(S;) and suppose of interest to subscriptions |n.Ieaf nodebe G (7). .It follows
that [(S;) of its capacity is currently being used to forwardn@t any message passed pyintended for multicast group
messages to downstream nodis;) is the forwarding load "@N9€sG(f) — G(i) contributes to the traffic leak for node
of node . If the subscriptions is assigned to node, the 'nerefore, the total leak for a filtef is given b¥ o
increase in its forwarding load is, = p(r)A wherer is Deflnltlon:TheT leak of a filterf (dgnoted ad.’) is defined
the range of values subscribed # The above is true as as the total traffic lealcaused byf given as
each subscription identifies a uniqgue SPS because of the user k
subscriptions being aggregated at SPS. One can now easily LT =>"p(G(f) = G(i)A,
find the feasible set of node for which i(S;) + 6% < ¢(S;). i=1
Let g be the total number of multicast groups for a ngde wherep(G(f)—G(7)) is the fraction of traffic with the values
N with subscription sef;. If S is assigned to nodg the total in the partition range§(f) and not inG(i) as obtained from
space requirement will increase by maximdf(j) = ¢’ +2 the histogram. A filterf with a non-zero leakl.’ is called a
whereg’ is the total number of multicast group ranges spannevkak filter
by the range ofS. In order to minimize the increase in space The example shown in Figure 5 illustrates the leak from
requirement,S is assigned to nodg for which ¢Z(j) is filters for a given set of subscriptions. In this example, we
minimum. However, if space requirement is not met by any assume that each unit value interval: ¢ + 1) has traffic of
the nodes inV/, a new node is added to which the subscriptioh message/sec. In order to find the leak frghm consider
is assigned. Note that the solution does not provide for loéehf nodes 1 and 2. Suppose that node 1 hosts subscriptions
balancing; instead it tries to minimize the number of nodd.2 with ranges (1-4) and (3-6) respectively. Node 2 hosts
while meeting their capacity constraints. subscriptions 3&4 with ranges (3-5) and (6-9). As shown
in Figure 5, partitioning these ranges results in 5 multicast
groupsGy,...,Gs. We obtaing(f1) = {G1,G2,G3},G(1) =
o {G1,G2,Gs}, G(2) = {G2,Gs},. Therefore, the leak for node
In order to have the filtering at each of thdeaf nodes, the 1 fom £ is zero asg(f,) — G(1) = 0 while leak for node 2

root can forward each message to all of these nodes. Howeygyy, £ is 2 messages/sec @¢f1) — G(1) = {G,}. Similarly,
simple forwarding leads to the following problems: a) The totglomputing the same for filtef,, we obtain the total leak from
outgoing message forwarding load: at the root becomes poth filter f, and f, to be 7 messages/sec. The interesting point
high; b) the number of messages processed by each leaf nfl@iote is that without any filter (equivalent to having one
is high (number of message received is independent of #jer), the total leak is 7 messages/sec as well. However, with
subscriptions handles by the leaf node) and c) increased ovefiglirs #, and f,, the total leak is reduced to 3 messages/sec.
network traffic. It is therefore worthwhile for the root to investrhys we observe that creating proper filters is important in
in the filtering process, albeit in a weak form, meeting thgrder to exploit the benefit of filtering at root. Next we present

space constraint. In order to clarify weak filtering, we defingn optimal polynomial time algorithm for filter construction.
leak as follows: Aleak is the amount of extra traffic that is

passed to a node with subscription Setvhich is not matched

by S and thus should not have received it. , - . L
A leak occurs in a case where there ipartial overlap We are given the set of subscriptions and their location in

between a filter's range and an associated multicast gro?fe Of the leaf nodes. Léf; denotes a set affilters and.(£7)

B. Hierarchical filtering

C. Optimal Filter Construction

1,>(L1:4); f,>(5:6)

denotes combined leak from all filters iy, i.e, L(F}) =
23:1 L7+ We want to construat non-overlapping filters such 15(14), 1,5(6)
that:

1) They span the subscription space, i.e., any value that any

subscription has subscribed to, must pass through one of the

f,>(1:2); f,>(4:4)

filters.

2) E(Fl) IS mlnlmlzed' A A) (g%z) (4:4) (5:5) (6:6) (1:1) (2:2) (4:4) (5:5) (6:6)
We now present an optimal dynamic programming algo- @) ®

rithm for the above problem. The algorithm runs for- 1

iterations wherek is the number of filters to be constructed.

In the i iteration, the algorithm computes the best filter s{#ﬁbﬁht

if we were allowed onlyi + 1 filters (denoted byF;, ;). This

is done using the filter sets generated in the 1" iteration

and adding a new filter strategically. D. Multi-stage filtering

A key property of a filter's leak as defined above is that it Although the above solution minimizes the leak at the root,
is self-contained and independent, i.e, the total leak due tat does not completely eliminate it due to the space constraints.
filter f is computed using only the portions of subscription®ne can add multiple layers between the root and the leaf
that overlap it and the value of the leak remains the sarae nodes to successively filter messages leading to zero leak
spective of how the remaining filters are desigieztall that (as shown in Figure 6). In the multi-stage arrangement, the
the ranges of filters are non-overlapping). This key propertgtal event space is partitioned and each partition assigned
is used in the dynamic programming approach. to a given node in that stage. Partitioning is done such that

Let the ordered set/ : {v;...v,} denote the set of €ach partition has equal number of multicast group ranges.
distinct edge points in the value space in increasing ordERe number of partitions is determined by the amount of leak
corresponding to either start or end of multicast group rangd&@m the previous stage. Our experiments under most scenarios
Let an ordered subséf, denote{vy...v,}. In order to take indicates that single stage framework is sufficient to handle the
advantage of dynamic programming’s book-keeping capabilit§aks.
we store some partial information after each iteration of the
algorithm. This information is in form of a filter set over IV. PREDICATE BASED FORWARDING ATSPS
a subsetV),. We denote byF/(V}) the filter set defined Each SPS contains various user subscriptions and is re-
over Vi, when we havei filters such thatlst filter spans sponsible to subscribe to appropriate attribute trees on behalf
Uk, ..., Uk+; and the resti — 1 filters are spread over the of these subscriptions. Based on the incoming messages,
range vyyji1,--.,v,. Note that, ifn —j —k > i — 1 then SPS performs predicate matching and forwards the message
the setF; is meaningless since there are not enough valutes users with matching subscriptions. However, matching a
to assign the — 1 non-overlapping filters over that range. Lesingle message content against all subscription is inefficient.
Fr(V,) define the optimal filter set of filters overV, such Furthermore, each end-user subscription predicate is multi-
that total leakC(F;*(Vy)) is minimized. This is obtained by dimensional whereas the received message only corresponds to
finding value of; for which F{(Vk) is minimized. one dimension. We next present optimistic counting algorithm

The base step of the algorithm involves computing the filter@ predicate evaluation mechanism based on an efficient data
sets assuming that there are two filtér&or this, we compute Structure that achieves fast subscription matching.
all the setsF} (V) to F3'(V;) and the corresponding leak
L(FJ(Vi)). F5 (Vi) is obtained asnin;(£(Fj(V4))) for all A. Optimistic Counting Algorithm
j = 1:n.The base case is repeated forafiubsetd/; ... V. Consider a single user subscriptismwith a selection pred-

In the subsequent iterationsvhere we need to find the filter icate defined om attributes. Assume that the SPS subscribes
sets withi filters, we utilize the setF; ;(V1)...F (V,,) to all n attribute trees on behalf of the user subscription. If
instead of combinatorially testing all possible filter assignhe SPS receives copies of a message corresponding to
ments with: filters. As mentioned above this is possible dueach attributed tree, it implies that the user subscription is
to the independence of the filter-leaks with respect to the otreraluated to be true. Any less than copies would mean
filter leaks. We note thaf (F! (Vi,)) = LY + L(F}_;(Vi4;)), otherwise. Therefore, it is possible to establish whether a
where L/ is the leak for the first filter inF/ (V;) spanning subscription is matched by simple counting. In essence, the
Uk ...Uk+;. Thus we can findj for which £(F}(V})) is algorithm recognizes that the messages reaching an SPS are
minimized giving us the filter sef(V}.). Repeating the above already filtered along different attribute trees and tries to avoid
steps for allk we get the optimal filter sef’*(V) where further local matching. This simple observation serves as the
vV =1;. basis for the optimistic counting algorithm.

The algorithm is considered optimistic because it assumes
that all copies of the messages are definitely going to arrive

1The only case when just one filter covering the entire range suffices, ; inti ;
when there is only one subscription. With two or more distinct subscriptionlsf,Sthey are going to match the subscription and that they wil

two or more filters will have a lower total leak than a single filter. arrive in a reasonably finite time.

Example showing the need for multi-stage filtering. In case (B) the
of leak to leaf node is zero

In order for the above algorithm to be of practical use, |[2tTfeetd=T
Sub-ld=S; ~}.
there are several problems that need to be addressed: 1) Eagh— | AtrTreeid Too | e | T | Tn

Msg-Ild = M,

subscriptionS of an SPS for a given attribute tree is a union | Serayoa ([Taleponer | ® hd hd
of several user subscriptionsfor that attribute. Therefore, in NewMessage % T \

order to take any action for a message SPS must know \
. A . . . \ SPS Subscription Id Sy | o | Sk
which attribute tree it arrives from and the corresponding user
. \ u; bseripti
user subscriptions, without parsing the message content; 2) sobommenta | - | = | U | mapping mble
messages: can come asynchronously from different attribute v

trees; 3) the messages can be arbitrarily delayed. Hence, the T)
SPS has to maintain the counts of multiple subscriptions

"T=:-._ Increment Count

for some duration; 4) Subscribing to multiple attributes for sussorpion | Gount | waten | pendmg | | f o
a subscription can result in extra overhead because of the "’1 - F'fg e T R
multiple copies of the message received. Thus, a mechanism is — - . 5 P BT
required to curtail the number of attributes for which the SPS

should subscribe. We address these issues in the remainder of u, 2 1 —— =1

this section. user subscription matching table

. Fig. 7. Matching a message against the resident subscriptions using the
B. Forwarding Structure at SPS Optimistic Counting Algorithm

We describe forwarding mechanism at SPS based on the
action taken on a given message and the corresponding data

structures used. When a messagearrives at the SPS, it {he message is directly sentg. Also, the count ford; for
identifies the attribute tree i@’ and the subscription i as ,, reaches 5 (which is the required attribute count) implying
shown in Figure 7 (these information were put as a label Bifat 77, matchesu,. However, this is a partial match since
the last hop IR node in the attribute tree). From the tre#jid the Fyll Match Flagfor u, is 0 indicating that there are more
the corresponding user subscription mapping table is accessggln 5 attributes im,. In this case, now the message is sent to

There is one table for each attribute where a row is indexgek message cache (described next) to fully match its content
by the subscription-id; used by the SPS to subscribe to thggainst partially-matched subscriptions (likg).

attribute tree. Using this table, we map the subscriptios;id

in m to a list of constituent user subscriptions-ildShus with

two lookup operations, we get the user subscription list who

are interested imn (for example,u; andusy in Figure 7). C. Message Cache and Timer Management

SPS also maintains a subscription matching table (Figure))))

7) indexed by the unique-id of the user subscriptiop An SPS can receive m_ultlple copies of a message with each
For each subscription;, the attribute countfield contains arrival possibly resulting in some partial matches. Without any
the number of attributes in; for which the SPS has aspemall mechanism, this would require parsing the message
corresponding subscription to some IR. Thell Match Flag each time to test for a complete match. We alleviate this
indicates whether thattribute countrepresents the actualOVerhead using aessage cacheNhenever a new message
number of attributes of the subscription. A value of 1 in thi@'"Ves, it is added to the message cache. Any subsequent
field indicates that the SPS has subscribedalioattribute COPies of the message are used only for the counting algorithm.
trees for this subscription. This implies that if the numbdrurthermore, the message is parsed lazily, i.e, only when the
of copies ofm received at SPS is equal aitribute count first partial match occurs.

then m matchesu; whereas a 0 value foFull Match Flag A feasible implementation of the message cache requires
would only indicate a partial match. The table contains the use of timers. There are two uses of timers in our setup.
hash-queue opending message-ids and their coumthich A timeout for a message in a subscription’s pending queue
contains the list of all messages which have matched aloiglicates that the message did not match and the entry can
some (but not all) attributes indicated by them having a coube discarded. A timeout in the message cache indicates that
greater than zero but less thattribute count Merely counting a duplicate copy of the message is no longer expected and
the number of copies of a message received is not enouglhi® message can be purged from the cache. Note that both
match user-subscriptions. Only message arriving from specifi@er expiry durations depend upon the maximum possible
trees should be able to increment the count for a speciflelay between different attribute trees. In practical scenarios
subscription. this delay would be small.

In Figure 7, for the arriving message, the list of pending In worst case, the SPS may have to start one or more
messages fot;, us is traversed. Using the unique messageimers with each message arrival. Thus, the number of active
id M; of the message, we check if the message is alreatityers can quickly grow into an infeasible number. We control
pending for either one of them. It increments the count fahis overhead by grouping the expiry events into buckets and
M; in both u;, us. Since the count off; for u; now goes using a timer expiry to process all events in the corresponding
to 3, it is a complete match as till Match Flagis 1 and bucket [9].

D. Selective Subscriptions and matching all its attributes against all attributes in the

We allow SPS to subscribe to only a subset of attribut€§PScription. The expected tinié to process a message by
for each subscription to reduce the extraneous messages. fi§eSPS is given by, x5 +nj x t. wheren, is the number
rationale for this choice is that certain attributes and valu@ full matches it has to do ane is the number of counters it
would be very common (especially in skewed distributiond)2s to increment. " is less thani /M then the SPS is not the
vis-a-vis the others. By subscribing to a popular attribute, tfaottleneck. Otherwise, we can try to redufedy subscribing
SPS does not gain much in terms of filtering. For exampl® additional dimensions for some subscriptions.

a subscription for the entire content space for a particular!f SPS subscribes to more attribute trees, it results in more
attribute, matches all messages having that attribute (implyifiigoming messages. That in turn increases the total counter-
no filtering). In such a case, the SPS decides to subscriperement cost as each message would likely increment some
to an extra attribute only if it gets significant benefit witffounters. On the other hand, subscribing to an additional
respect to the filtered traffic. Specifically, teelectivityof a attribute tree for a subscription reduces the likelihood that it
subscription-range determines whether the SPS subscribes ¥atld have to be fully matched. This because then a full-match
or not. Lastly, the SPS must subscribeatdeast oneattribute iS required only whenan additional attribute has already
from each of its user-subscriptions. matched in the counting domaifhere exists an optimal point

While selectivity reduces extraneous traffic, it introducegeyond which the matching unit's throughput starts decreasing
a new problem. Now merely counting cannot ensure that§1en we subscribe to extra attributes. We try to reach the
Subscription matched Comp|ete|y with a message. The Co@mtimal point by an incremental algorithm. The SPS calculates
can only ensure that the subscription matches in all attribufé@e effective throughput if it subscribes to a range weast
that were subscribed tdJnless the message is parsed, the SEgtra traffic. If the effective throughput increases, it subscribes
cannot determine whether the remaining attributes match &td checks the next candidate range, otherwise it stops. We
not. However, the utility of the selective subscription techniqugow in the evaluation section that this simple strategy can
is that it reduces incoming message rate at SPS while significantly increase the throughput of the matching unit
retaining the ability to identify theon-matching subscriptions under different circumstances.

If £ of a subscription’s attributes have been subscribed to

and the SPS receives at mdst- 1 copies of the message

from the corresponding trees, then irrespective of the values V. EVALUATION
of its remaining attributes, the message does not match the

subscription. This reduces the number of subscriptions thatwe now show the effectiveness of the Sieve architecture by

need to be matched against a message. running several experiments over a prototype implementation
and some simulations.
E. Choosing Subscription Ranges We use zipf distribution to generate both the subscriptions

The selective subscription mechanism requires a technit%l?edl_ mzsts)ages Sl;) tha'; val:ljeccurshwnh prr(])bat_)n;t)r“ (nor-
to determine the ranges for each attribute to subscribe fc/i2€d by number of values) whereis the zipf parameter.

We present a simple strategy to solve this problem using tﬁgwce lower values of the value-space are more prevalent in the

event arrival statistics, and the cost of matching and countéi‘c’f generation, we permute them using a random p(_arm.utaltlon
incrementing operations. vector so as to disperse the popular values in the distribution.

We consider the SPS to consist of two separate units: 1T% ge_:nergte_ the_ subscription ranges, we draw a _nu_mber from
pe zipf distribution as the lower end of the subscription range.

matching unit which identifies the matching subscriptions f X A : .
each message, and 2) a forwarding unit, which forwards tﬁ@e higher end of the subscription is generated using a uniform

message to all matching users. Clearly, if the forwarding urjdth with @ specified mean (that is varied in the experiments).
cannot handle the forwarding load, we need to move Soﬁgwce a subscription exhibits interest all values within its
subscriptions to other SPS as the forwarding load consi§i19€: this technique allows us to have more subscriptions

entirely of desired messages. Hence for this discussion wcentrated_ a_round_ the more popular values. Furthermore,
consider the matching unit. using subscription width as a parameter allows us to control

Intuitively, adding an extra subscription is only useful if illhe overlap between multiple subscriptions giving us a wider

increases the system throughput. Thusyifdistinctmessages test area for S'eV?' _ .

arrive at the SPS per unit time, then the SPS becomes. &or the evaluation purposes, we need the following defini-

bottleneck if it matches less thall messages per unit time.0NS:

Here matching a message refers to the message being seRefinition: The per-message processing tiné a node is

to the forwarding unit along with all matched subscriptionghe mean time it takes for it to identifgll the subscriptions

Using selective subscriptions, we can increase the throughpiat completely match a message.

of the matching unit. Definition: The throughput ratioof a node is the ratio of
Let the average time taken to fully match a message agaitits mean message inter-arrival time it sees and its per-message

a subscription bé; and the time taken to increment a messagwocessing time. A throughput ratio of less than 1 is a must for

counter bet.. We expectty to be much higher compareda node to be able to seamlessly filter and forward an incoming

to t. because a full-match involves parsing the messagessage stream.

1400 180

— 0=03
X a=0.5
160 H -0~ a=0.7 , A

1200

140
1000 -

@ ®
3 3
3 3

T T

Per-message processing time (i sec)

I
8
S
\

Per-message processing time (i sec)

200 o

. 6
Number of Attributes Number of Attributes

Fig. 8. Per-message processing time with same distribution for publicatipfy. 9. Per-message processing time with different distribution for publication
and subscription. and subscription.

A. Implementation this scenario is expected to form a worst case for Sieve for

We have implemented the Sieve system prototype usiHEf correspondingv. Figure 8 shows the gctual time it takes
the optimal filters at IRs (defined in section 11-C) and thdo" the SPS to match and forwamll copies of a message
optimistic counting algorithm at the SPS (defined in sectidfom the system for varying number of attributes and different
IV-A). We show some performance results taken over a clustgr e can observe the following: 1) In the best case, the
of nodes. The key performance metric is the effective througRPS N€eds only 1&ec per message of maiching time. Thus,
put of the matching unitof an SPS. We chose this as thahe system is not only capable of sustaining a throughput of

performance metric of interest for two reasons: 1) the filtering?000 messages per second, but has the capacity to scale
cost at IRs is much lower compared to the SPS because fi0 60000 messages per second (network permitting), 2)
match is on a single attribute for aggregate subscriptions. 2) {pgreasing numbgr of attributes Increases the matc'hmg t|me
actual throughput of the SPS depends on the subscriptions 1§ to more copies of.messages arrving and thus: Increasing
the message arrival rate. Hence the capability of the syste § number of counter-increment operations, 3) An increase in

better illustrated by the matching throughput rather than ﬂ%results n a super—_lln_ear increase in the m_atchlng “’T‘e- As
forwarding throughput. discussed above, this is caused by our choice of having the

The following results were taken on a set of 13 Pentium-szfame values popular both among publishers and subscribers.

2.8Ghz machines with 1GB of RAM connected over 100Mbps | '€ Sécond experiment tests the system in a more general
Ethernet. One machine acts as both publisher and PPS tfgadition. For this experiment, we have different degrees of
generating the messages, attaching the value-based labels PgRylarity of various values for subscribers and publishers.
forwarding the messages to the appropriate IR nodes. We halV Keepo: for the publisher at 0.5 and change the alpha for

one subscriber node that generates 100000 subscriptions syRscribers from 0.3 to 0.7. We still have the artificial sharing

sends them to the single SPS node. The SPS computeso tsoopular values introduced by the identical permutation

local tables and subscribes to the appropriate rangesad;lvervelcmrshSO that g ntl3;hthe reIzaILtly(te mtgrest flevel I|n a part|cutlar”
attributes implementing thieill-matchversion of the counting value changes (bu _ne popularity Index of a value amongst a
algorithm. values does not). Figure 9 shows the results of this experiment.

We find that the message processing times have reduced

TEe publisher gen_erates 10|00?j mfegiggsst perTshecondl\g/f ificantly by changing the interest level in the values. This
€ach message carrying a payload o ytes. 1he pay pens because a message carrying a popular value can now

includes the XML message with varying number of attribut ave less number of interested subscriptions (resulting in lower

and the rest'of it is padding dqta. The number of attr,'bm%mber of counter increments). This shows that in an average
and the traffic patterns are varied to test the system’s PE

i . (l}lation, Sieve is likely to perform very well.
formance. Our first experiment generates a stressful workloal

of subscriptions and publications. In this case, we generat thnrlmpr?rtatntthmia?tlljri oflzhne Elpellr::ng;r ef_fsct 'S_tLh? amOLtlr:t
subscriptions and publications using a zipf distribution wit oughput the bottieneck node can provide with respect to

same value ofv. Furthermore, we use treamepermutation Its input traffic. Our experience with the system suggests that

. . e bottleneck node in Sieve is invariably the SPS. The next
vector at both publisher and subscriber end to generate theé ") .
L xperiment aims at quantifying the throughput that the SPS
case where the most number of subscriptions are for the

. . an achieve by evaluating its throughput ratio over diverse
most popular events. This results in a message from the . . .

h . . . conditions. We setv to 0.5 for both publisher and subscriber
range with maximum arrival rate matching a large number. ; _

L L with the same permutation vectors to generate subscriptions
of subscriptions (thus resulting in a large number of counter . .
. . .. and messages having the same values more popular. Figure 10
increments). Hence, the performance of the matching unit in

10

T T T
—— Number of Attributes=2
putes=: —— Number of Attributes=4
: m:g:: g; 2::;:5:::;2 x- Number of Attributes=6 - <
Number of Attributes=8 100 =0~ Number of Atributes=8 o -
2.5H A Number of Attributes=10

Throughput Ratio
e
&

Per-message processing time (1 sec)
x

05F 1 o~ x
2 30k
] —

o !
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 60 70 80 %0 100 110 120 130 140 150 160
Message Arrival Rate (per sec) Number of Subscriptions (thousands)

Fig. 10. Throughput Ratio of the SPS with increasing arrival rate for sarféy. 12. Per-message processing time with increasing number of subscrip-

value distribution for publications and subscriptions. tions.
25 T T = T T T T T T
- Nomba o At message matches. However, our data structure at the SPS (with
3 Number of Atriutes=2. \ 3-level lookup) ensures that a subscription is only matched

against a limited number of messages (those that match it
in some attributes). This is why the increase in per-message
processing time is marginal.

Throughput Ratio

B. Comparison with Multi-dimensional Matching

While Sieve partitions the task of filtering among one-
dimensional attribute trees, an alternate approach is to have
multi-dimensional filtering at each node. We compare the
Sieve approach with multi-dimensional matching by using R-
S0 10000 tre€? [10] to index subscriptions (as used in [5]). For this, we
have 100000 subscriptions generated with= 0.5 as in the
previous section. We divide the subscriptions among 10 nodes,
Yo that each handles only 10000 subscriptions. A dispatcher
node sends each message to all the 10 nodes which identify the
individual subscriptions that the message matches. Since, our

fototype of Sieve uses one IXR node per attribute, this gives

ShO.WS the_throughput rauo_ of _the SP.S with different nL_meer ﬁm R-tree based system extra computing advantage unless the
attributes in the system with increasing message arrival ratgﬁbscriptions are on 10 attributes

As mentioned earlier, a throughput ratio of less than one ISg; <\ show the processing time per-messagmaR-tree

mandatory for a node to seamlessly handle its incoming traﬁH:ode with publisher generating messages with samblote

The ;‘:gu(rj? shows dujéggt while supporting 10 gttnﬁlljtes, ffat since each node is effectively identical and operating in
can nandie aroun) messages per second wWhile SErghiiel, the system throughput is governed by the processing
100000 subscriptions. Figure 11 shows the throughput ratio Qe at each node Figure 13 shows that the throughput
the case when the subscription distribution is uniform with th&e to our countiné-based algorithm is consistently higher

publicatiog distribustilgg having an of 0.5. (Ijn th(i)socase, W€ than that of R-tree. We emphasize that this throughput only
can see that one can support around 5500 message ésponds to the matching algorithms and not the network

;econd while supporting 10 attribu.tes with ,10(,),000 supscri ortion. With large number of attributes, Sieve almost doubles
tions. T_hese_results strongly establish the viability of Sieve Re throughput that R-tree can attain. This clearly shows that
supporting high-rate message streams.) Sieve’s approach of splitting the filtering task into multiple
Lastly, we show the impact of increase in number Qfne.dimensional matching and then combining the results
subscriptions on the processing time for individual messagggsrks well.
For this experiment, both publication and subscriptiowere The second result in this set shows the impact of number
set to 0.5 and both had identical permutation vectors. Figusgsubscriptions on a multi-dimensional matching system. We
12 shows the result. We see an almost linear increase in {Rfy the number of subscriptions from 6000 to 16000 on

total message processing time as the number of subscriptigRSr-tree node (equivalent to 60000 to 160000 subscriptions
increase. The reason behind this increase is that each new

subscription is added to the table corresponding to each ofwe used the publicly available implementation from
its attributes thus increasing the number of Subscriptionshtaj://www.cs.ucr.edu/ marioh/spatialindex/ with default parameters.

L L L L L
4000 5000 6000 7000 8000

Message Arival Rate (per sec)

o i
1000 2000 3000

Fig. 11. Throughput Ratio of the SPS with increasing arrival rate for differe
value distribution for publications and subscriptions.

-O- R-Tree
-5 Sieve | |

100

90

11

X

- (C/(, =0.001
x (C/l, =0.005

o tt=001

80

70}

60

50,

40

Throughput (msgs/sec)
9% of maximum throughput achieved

30

]

0 50 100 150
9% increase in incoming traffic

200 250

6
Number of Attributes

. .)) Fig. 15. Maximum throughput achieved by subscribing to additional
Fig. 13. Comparison of matching throughput of R-tree based matching Wil iputes for different cost ratios. /t .

Sieve with increasing number of attributes.

x 10
4 T

-O- R-Tree
—&- Sieve

T T
—— Subscription Width = 20
X Subscription Width = 30
-0~ Subscription Width = 40

- 80

9% of maximum throughput achieved

Throughput (msgs/sec)
N

-a h
~
~ 20 N
1l S]
~
S 10 |
05 T o- - - _ _ "
0O 50 100 150 200 250
0 L L L L % increase in incoming traffic
0.6 0.8 1 1.2 1.4 1.6
Number of Subscriptions x 10°

Fig. 16. Maximum attainable throughput by subscriptions with different
having different width.

Fig. 14. Comparison of matching throughput of R-tree based matching with

Sieve with increasing number of subscriptions.

and counter increment). The average; for matching a

in Sieve with 10 attributes) with the same distribution o essage with a subsgrlpnon Is set as 0'0.00.1 ”T"ts of t"?‘e-
he average range width of each subscription is 30 units.

subscriptions and publications as above and with the subscry‘?—

i d having 6 attributes. Fi 14 plot e ratiot./ty is set to three different values 0.01, 0.005,
lons and messages having © attributes. migure POt A% 0.001. Figure 15 shows the increase in matching unit

Sieve has much higher throughput even when the system RAs, - «ribute per subscription

) , the throughput of its matching
to match a large number of subscribers.

unit is low making it the bottleneck. In this experiment, it is
around 45% of the distinct message arrival rate. 2) As the SPS
subscribes to more attributes per subscription, the matching

unit throughput (and hence the system throughput) increases

Th|s_ s_et of exper_lments_ shqws th_e benefits Of_ SeIeCt'YﬁtiaIIy. However, beyond a certain point, the increased cost of
subscription mechanism using simulations. We consider 10000 yer jncrements outweighs the gains attained by reducing
subscriptions interested in 5 attributes on an average. The&{&,per of full-matches. 3) The smaller the ratig;, the
are 50 different attributes in the system each having 1000fhner the throughput we can attain. The reason being the
distinct values. The subscriptions ranges for each attribWigijity 10 add extra subscriptions and reducing the number
are chosen independently using the method detailed aboygy|l-matches without paying much in terms of increased
The attributes and values are zipf-distributed but are aggunter maintenance cost. 4) In two of the three cases, the
independently chosen. We have 20000 messages arriving pRfximum reached throughput is less than 100% of the arrival
unit time. rate. In Sieve, this serves as an indication that the SPS is

We first show the viability of the selective subscriptiorpverloaded and some of its subscriptions need to be off-loaded
approach with different ratios of time for full-matching;)

C. Selective Subscription

12

110

T ‘ [17] proposed the use of filters in the intermediate nodes in

W emTTTTT o =7] a given multicast tree for selective data dissemination. [17]

o h .] provides a solution to filter placement and leak minimization
g o 1 problem. In multicast based approaches, the forwarding path of
% 7ot N 1 a message is restricted to pre-defined multicast tree topology.
S oo 1 Although these approaches can apply well in topic/subject
; sol . e] based or messages with single attribute, they are not suitable

%’ ol IR to support general predicates over multiple attributes.

L - | In Sieve, we use multicast model based approach in value

ol \ - . based forwarding in the attribute tree. In our solution, we
T solve the joint problem of filter construction at each node and

all] multicast tree creation, which is not explored in existing work.
% 2w a0 0 . 0 s s 1m0 1o The added advantage of associating subscriptions to a

multicast tree is marginal as the complex predicate has to
!)) . . be finally matched either at source or receiver. Instead of
Fig. 17. Maximum attainable throughput by subscribing to additional . . .
attributes for different cost ratios / . restricting .to a multicast model, a general model is to cre-
ate a routing network composed of content-based routers as
proposed in Siena [1], [3] and Gryphon [4]. A content-based

to another SPS. router creates a forwarding table based on subscription profiles

The next experiment shows the impact of different sutnd performs both data filtering and forwarding based on
scription range widths on the attainable throughput. For tHRedicate matching. As with any data distribution network,
experiment/; is set to 0.0001 time units and the ratig't the speed of matching the subscription predicates at each
is 0.01. Figure 16 shows the results of the experiment. We g&ditent-based router determines the sustainable throughput.
that as the width of the subscriptions increase, the maximurRe goal of .content—b.ased routing is to provide processing
attainable throughput reduces. The reason for this reductioddt€ncy meeting the wire-speed.
that the messages matching the new subscription are likely tdn Poth Siena and Gryphon, each router may need to keep
partially-match more number of subscriptions. states about all subscriptions. Even though Siena [3] proposed

Our next experiment aims at identifying the impact 0§ubscr||o.t|0n merging to minimize states, the rgsultant peneflt is
various parameters on the maximum attainable throughpQet gpphcable with s.ubscrlpnon deletion. In Sieve arch|te<.:tu.re
We set the ratiot,/t; to 0.005, the zipf parameter fordesign, we are partlcglarly concerned about the _subscrlptlon
subscriptions and publications is set to 0.7, the subscripti§fptes as that determines the message processing speed and
range width is varied from 20 to 100, and the number derwarding bandW|dt_h. Ala_rge subscription state space cannot
attributes on an average per-subscription is successively Rgta@ccommodated in main memory or processor cache for
to 3,5,7. Figure 17 shows the maximum attainable throughg@ft Processing [18]. We specifically provide solutions to
for different parameters. There are two important observatiofove subscriptions among leaf nodes (IR) such that space
from these figures: 1) With larger subscription width, the magonstraints and forwarding capacity are met.
imum attainable throughput decreases because each addition4} Significant amount of research [18], [19], [20], [6], [1],
subscription results in a larger number of potential counté41lnas been done on finding better solutions for general
increment operations for the newly added traffic. 2) Larger tigedicate matching at a single node. As a centralized solution
number of attributes in a subscription, the larger the possib{éind @ single node may not support the ever-increasing rate

throughput. This because we have more dimensions to add &hdnformation flow, Sieve tries to distribute the matching
improve the throughput. complexity among multiple nodes. Although Sieve architecture

implements a distributed data structure to match a message,
the solution is based on many ideas from the single node
based solutions. The reverse indexing structure used by Sieve
In the recent past, a large body of work has emergéd map content-space to subscriptions is similar to those used
focussing on the problem of large scale selective disseminatior{6]. Both [6] and [1] proposed a variation of counting based
of information to users. Several solutions were proposed basadchanisms to match predicate in a single node. However,
on using the multicast model. Using conventional multicagh apply the counting method to a distributed engenders new
model is not scalable as the number of multicast trees caroblems that we discuss in section IV-A.
grow up to2™ to capture all possible subscriber groups. The In certain solutions such as Siena [1], [3], [4], the message
channelization problem formulated in [11] provides a solutiogdissemination path is coupled with the subscription movement
to map sources and destinations to a limited set of multicgsith and therefore lacks the routing flexibilities. In contrast,
trees to minimize the unwanted message delivery. Anothewlutions [22], [23], [24], [25], [26], [27], [28] based on
category of work [12], [13], [14], [15] creates a limited numbemdirection use rendezvous points in form of broker nodes
of multicast trees by proper clustering of user subscriptiomhere messages meet subscribers. Sieve infrastructure is also
profiles. In the above solutions, filtering is done at the sourdeased on the indirection philosophy (expounded in [29]),
at the receiving point, or both. In contrast, authors in [16however, the sequence of indirections is used to partition the

VI. RELATED WORK

complex task of predicate matching by defining separate roles]
Unlike the above solutions, the goal of Sieve is to match
time complexity of each role with the message arrival ratgs)

in supporting high bandwidth data stream.

Content-based information dissemination over P2P network

was proposed in XROUTE [30]. Their main concern is net-

work bandwidth usage and minimizing the size of the routings]

tables. In this work, our primary objective fast end-to-en
message processing and delivery.

The notion of weak filtering as discussed section 1lI-B o
hierarchical filtering has been used in summary based routi

[5] and [19]. In contrast to the above, use of weak filters:

in Sieve is motivated by space constraint and the desi

d
9

n

iAg

gn

objective is to minimize leak for which we provide optimall?]

filter construction algorithm.

Another body of works such as topic-subject based SCRIBE]

[31] over P2P substrate and XML based mesh routing in [ﬂ“]

looks at the reliability and fault-tolerance issues. In supporti

g

XML format information dissemination, several solutions havgs]
been proposed such as [7], [32], [33]. Sieve supports XML

format as well, however, it restricts the XML parsing operatio
to the network edge (PPS and SPS).

VIl. CONCLUSION

We presented Sieve as an infrastructure solution for conte
based forwarding of high-rate message streams. The

n
[16]

[17]
nt-

insight enabling Sieve’s handling of high-rate streams is the
concept of filter pipelining. Sieve divides the filtering taskl9]
into smaller components, each with low space requirement

and fast processing operation. Collectively, these componepts

form a filtering pipeline providing the basis for high end-to
end throughput. The fundamental benefit that Sieve exhib
is that partitioning of tasks expedites the filtering proces

5

S.

This is illustrated by a sustained throughput of more thd#?]

5500 messages per second with 100000 subscriptions over[z%?

attributes.

Our work represents a step towards accomplishing a uni-

versal content-based filtering and routing network. In order

'l

13

Y. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das, and P. Larson,
“Summary-based routing for content-based event distribution networks,”
Computer Communication Revie2004.

T. Yan and H. Garcia-Molina, “Index structures for selective dissemina-
tion of information under the boolean model,” XCM Transactions on
Database System4994.

7] A.Snoeren, K. Conley, , and D. K. Gifford, “Mesh based content routing

using xml,” in Proc. of SOSP2001.
P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces
of publish/subscribe,” iMmech. Rep. DSC 1D:2002001.

] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels:

efficient data structures for implementing a timer facilitffEE/ACM
Transactions on Networkingol. 5, no. 6, pp. 824-834, 1997.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD, 1984.

] M. Adler, Z. Ge, J. Kurose, D. Towsley, and S. Zabele, “Channelization

problem in large scale data dissemination,T@NP, 2001.

A. Riabov, Z. Liu, J. Wolf, P. Yu, and L. Zhang, “Clustering algorithms
for content-based publication-subscription systemsPrioc. of ICDCS
2002.

F. Cao and J. Singh, “Efficient event routing in content-based publish-
subscribe service networks,” lProceedings of InfocomApr 2004.

O. Papaemmanouil and U. Cetintemel, “Semcast: Semantic multicast for
content-based data dissemination,”Hroceedings of ICDEApr 2005.

Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. Wang, “Sub-
scription partitioning and routing in content-based publish/subscribe
networks,” inProc. International Symposium on Distributed Computing
2002.

M. Oliveira, J. Crowcroft, and C. Diot, “Router level filtering on receiver
interest delivery,” inProc. of 2nd Int. Workshop on Networked Group
Communication2000.

R. Shah, R. Jain, and F. Anjum, “Efficient dissemination of personalized
information using content-based multicast,”Fnoc. of Infocom 2002.

Q%] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and

D. Shasha, “Filtering algorithms and implementation for very fast
publish/subscribe systems,” BCM SIGMOD 2001.

P. Eugster, P. Felber, R. Guerraoui, and S. Handurukande, “Event
systems: How to have your cake and eat it too,"Aroc. of DEBS
2002.

A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient filter-
ing in publish-subscribe systems using binary decisionlhtarnational
Conference on Software Engineerjr2p01.

B. Segall and D. Arnold, “Elvin has left the building: A publish/
subscribe notification service with quenching,” AWUG, 1997.

P. J. Z. Ge, J. Kurose, and D. Towsley, “Min-cost matchmaker problem
in distributed publish/subscribe infrastructures,"GPENSIG 2002.

P. Pietzuch and J. Bacon, “Hermes: A distributed event-based mid-
dleware architecture,” irDEBS workshop on Distributed event-based
systems2002.

H. Yu, D. Estrin, and R. Govindan, “A hierarchical proxy architecture
for internet-scale event services,” rroc. of WETICE '99 1999.

make a complete system, we plan to address issues relategsdp . cugola, E. Nitto, and A. Fugetta, “The jedi eventbased infrastructure
the fault-tolerance to broker node and reliable message deliv- and its application to the development of the opss wfms,1EEE

ery as future work. In its current form, Sieve is meant for pe

[26]

forming distributed multi-dimensional subscription matching.

We aim to support regular expression matching and text sea

as filtering functions. Furthermore, we plan on exploring tHé

rch

use of Sieve for resource discovery, event transformations, apg]
event compositions. We believe that the distributed pipelining

architecture of Sieve can serve as the basis for a unifi
content-based information dissemination network.

REFERENCES

B

(30]

[1] A. Carzaniga and A. Wolf, “Forwarding in a content-based network,” ifi31]

Proc. of ACM SIGCOMMAug 2003.
[2] N. P.-M. Volume, “http://dynamic.nasdag.com/
namic/premarket5dayvolume.stm.”
[3] A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme for
content-based networking,” iRroceedings of IEEE INFOCOMMar
2004.
M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra
“Matching events in a content-based subscription systeng§ymposium
on Principles of Distributed Computing 999.

dy-

(4]

(32]

(33]

Transactions on Software Engineerjri2p01.

P. Pietzuch and J. Bacon, “Peer-to-peer overlay broker networks in an
event-based middleware,” DEBS workshop on Distributed event-based
systems2003.

7] L. Cabrera, M. Jones, and M. Theimer, “Herald: Achieving a global

event notification service,” ifProc. of HotOS-VIl) 2001.

G. Fox and S. Pallickara, “The narada event brokering system: Overview
and extensions,” irConference on Parallel and Distributed Processing
Technigues and Application2002.

I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” iACM SIGCOMM 2002.

R. Chand and P. Felber, “A scalable protocol for content-based routing
in overlay networks,” inEEE Symposium on Network Computing and
Applications 2003.

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
in IEEE Journal on Selected Areas in communicatj@&02.

Y. Diao, S. Rizvi, and M. Franklin, “Towards an internet-scale xml
dissemination service,” ivLDB, 2004.

A. Gupta and D. Suciu, “Streaming processing of xpath queries with
predicates,” inSIGMOD, 2003.

