
Wireless Virtualization on Commodity 802.11 Hardware

Gregory Smith, Anmol Chaturvedi, Arunesh Mishra, Suman Banerjee ∗

Dept. of Computer Sciences, University of Wisconsin
Madison, WI 53706, USA

{gregory, anmol, arunesh, suman}@cs.wisc.edu

ABSTRACT
In this paper we describe specific challenges in virtualizing
a wireless network and multiple strategies to address them.
Among different possible wireless virtualization strategies,
our current work in this domain is focussed on a Time-
Division Multiplexing (TDM) approach. Hence, we we present
our experiences in the design and implementation of such
TDM-based wireless virtualization. Our wireless virtualiza-
tion system is specifically targeted for multiplexing experi-
ments on a large-scale 802.11 wireless testbed facility.

Categories and Subject Descriptors
C.2.m [Computer-Communications Networks]: Mis-
cellaneous

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Wireless Networks, Virtualization, Time Division Multiplex-
ing

1. INTRODUCTION
Experimentation facilities need to be an integral part of

research endeavors. While initial research ideas can be eval-
uated through analysis, simulations, and emulations, imple-
mentation and deployment of these ideas on a realistic envi-
ronment helps in systematically identifying and addressing
many practical problems that systems typically encounter.
As pointed out in the 2002 report [4] of an NSF workshop on
network research testbeds, “There is no substitute for a real
life environment to capture the complexity of multipath and
fading that is inherent to wireless.” Therefore, understand-
ing wireless environments requires extensive prototyping and

∗The authors were supported in part by NSF awards CNS-
0639434, CNS-0627589, CNS-0627102, and CNS-0520152.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiNTECH’07, September 10, 2007, Montréal, Québec, Canada.
Copyright 2007 ACM 978-1-59593-738-4/07/0009 ...$5.00.

experimentation, in order to uncover new insights that lead
to improvements in system design.

The goal of our work is to design and implement a system
that virtualizes a wireless network using a large-scale 802.11
testbed. The objective of virtualization is to allow multiple
experiments to co-exist on a wireless experimental facility in
an efficient manner.

1.1 Challenges to wireless virtualization
Virtualizing a wireless network presents some unique chal-

lenges that are not observable in a wired network. The
biggest challenge in this domain is to virtualize the wire-
less link. To establish a wireless link, a transmitter-receiver
pair has to configured to the same channel parameters, e.g.,
channel of operation, appropriate setting of transmit power,
receiver sensitivity, etc. Now consider two different exper-
iments (A and B), each with its own definitions of wire-
less links and communication patterns spanning the physi-
cal network. If these two experiments are to co-exist on the
same hardware, communication activities from one experi-
ment should not affect any reception behavior on the second
experiment, and vice versa. This observation translates to
two important requirements: (i) Coherence: When a trans-
mitter of one experiment is active, all of the corresponding
receivers and potential sources of interference as defined by
the experiment should be simultaneously active on their ap-
propriate channels of operation, and (ii) Isolation: When
a node belonging to one one experiment is receiving some
signal pertinent to the experiment, no transmitter of a dif-
ferent experiment within the communication range of the re-
ceiver should be active in the same or a partially-overlapping
channel [6]. To enforce such requirements, we need careful
scheduling of transmission activities across different experi-
ments. We next discuss different approaches to meet these
goals.

1.2 Approaches to wireless virtualization
Virtualization of the wireless medium can be achieved in

multiple ways. They are:

• Space Division Multiplexing (SDM): This is the
simplest approach, where physical resources are par-
titioned in space. Each experiment is assigned a set
of physical nodes such that transmitting nodes from
different experiments do not interfere with each other.
Such an approach is possible because any wireless trans-
mission has very little impact beyond a certain inter-
ference perimeter. The size of the region bounded by
this perimeter depends on many factors such as trans-

75

mission power and channel characteristics. The exact
choice of transmit power at each node, thus, plays a
significant role in the design of this virtualization ap-
proach.

• Frequency Division Multiplexing (FDM): In this
approach, different experiments are partitioned in the
frequency domain for their communication needs. It
can be implemented as follows. Each physical node
in the facility is equipped with multiple wireless in-
terfaces. Multiple virtual nodes — one corresponding
to a single node from each experiment — is hosted
in each such physical node. Different virtual nodes
use distinct wireless interfaces, each configured with
the frequencies allocated to the corresponding experi-
ment. Interference between the different experiments
are avoided by ensuring that different experiments are
assigned non-interfering channels.

• Code Division Multiplexing (CDM): This approach
is analogous to FDM, except that different experiments
use different orthogonal codes for their communica-
tion. The choice of codes in this approach is critical.

• Time Division Multiplexing (TDM): In this case,
the entire wireless network is partitioned in time across
the different experiments. Each experiment is assigned
a time slot during which each physical node in the sys-
tem activates the virtual node corresponding to this
particular experiment. This is somewhat analogous to
processor sharing mechanisms that are widely adopted
in current operating systems to multiplex different pro-
cesses on the same hardware. However, since an ex-
periment can potentially run on a large set of physical
nodes, this approach calls for synchronized operations
between them.

• Hybrid approaches: It is possible to envision a num-
ber of virtualization approaches that combine one or
more techniques among SDM, FDM, CDM, and TDM.
For example, we can combine the FDM and TDM ap-
proach to design a technique called Frequency-hopping,
where each experiment hops through a unique sequence
of frequencies (channels) over different time slots. Our
prior work has shown that such dynamic frequency
allocation schemes can lead to significant throughput
gains over static FDM approaches [5].

In the rest of this paper, we describe the design and im-
plementation of one of these approaches — namely Time
Division Multiplexing for wireless virtualization. Our im-
plementation effort is fairly general in nature. However, to
demonstrate these capabilities, we are building on top of
a 802.11-based wireless grid. In section 2, we describe the
basic software design and introduce some of the challenges
involved in the virtualization effort. Then, in section 3, we
present the results of our preliminary integrity and perfor-
mance benchmarks. Finally, we outline several considera-
tions for future work in 4.

2. DESIGNING TDM-BASED
VIRTUALIZATION

Each experimentation node on the wireless grid has a 1
GHz VIA C3 processor, 512 MB RAM, a 20 GB local hard

Figure 1: Each physical nodes hosts one virtual node

per running experiment. At any given time, exactly

one experiment is actually active on the grid; the rest

sit idle and wait for their next time slice.

disk, two Atheros mini-PCI 802.11 a/b/g interfaces, and two
100BaseT Ethernet interfaces.

The basic schedulable unit in our TDM virtualization scheme
is the experiment. An experiment can be mapped to a set
of virtual nodes (a virtual grid). A physical node in the grid
hosts a set of virtual nodes, one per running experiment,
illustrated in Figure 1. As described above, at most one ex-
periment is active at a time so there is no media contention.

2.1 TDM Context Switches
At the core of TDM is the need for time-synchronization.

When the scheduler preempts a running experiment, it is
crucial that the physical nodes can act in perfect synchrony.
If there are even small delays, packets may be lost: a sender
may run too long, or a receiver may be paused too early.
Even worse, these stray packets could cause interference for
the experiment running in the next time slice. This is par-
ticularly catastrophic for reliable protocols, which would be
forced to retransmit at the edge of every time slice.

Because of propagation delay, simply stopping all the vir-
tual nodes at the same time is not sufficient. Consider the
transmission of a packet from the virtual node, destined for
the wireless network. Once the kernel forwards this frame to
the 802.11 interface, there is no way to know exactly when
the transmission will be successfully completed. Sometimes
the transmission of this frame can get significantly delayed
in the wireless interface itself, due to specific implementation
of the interface’s transmission logic. It is entirely possible
that the scheduler will stop the current experiment while
this frame is still trapped on the interface. Because of this,
there must be some way to allow for packets like these to
leave the interface and reach their destination. The most
straightforward way to facilitate this in our system is to in-
sert a short delay, during which the virtual node is paused,
but the wireless configuration is unchanged.

Once the delay is over, the physical nodes must prepare
themselves for the next experiment. Each virtual node has
its last-known wireless configuration as part of its context.
When a virtual node is paused, its wireless configuration is
check-pointed, and the same configuration is restored prior
to resuming the virtual node. Saving the device’s configu-
ration is rapid and takes a predictable amount of time, but
restoring a configuration is slow and takes a variable amount
of time, depending on the which parameters change. During
any given context switch, the time spent in reconfiguration
could be different for all the nodes on the grid. Therefore,
we reserve a slot of time for reconfiguration that will eas-

76

ily accommodate worst possible time needed to reconfigure
(about 25 ms).

To summarize, when a context switch is triggered, the
virtual nodes corresponding to the current experiment are
paused. There is a short delay, to accommodate packets that
are en route. After this delay, the wireless configuration is
saved as part of the context for the recently-paused virtual
node. The next virtual node’s configuration is restored to
the card, and once all physical nodes are guaranteed to be
ready, the virtual node is started and the context switch is
complete. Because of the overhead involved in a context
switch, time slices smaller than 200 ms may not be practical
in today’s commodity wireless hardware.

2.2 Virtualization Platform
There are many virtualization techniques available, so we

must consider which is most appropriate. Our primary goals
are:

• Experiments should be maximally isolated from one
another, so that they do not contend for resources or
namespaces.

• The experimenter should be able to use customized
kernel or user-level code, to provide flexibility for ap-
plication and driver development.

• A simple, precise abstraction for accounting.

• As mentioned above, the experiment should be given
a consistent view of time: one that does not jump
forward at the beginning of each time slice.

These objectives clearly rule out process-level virtualiza-
tion and motivate the need for a full virtualization platform,
such as VMware [3], Xen [1], Linux Vservers, or User Mode
Linux (UML).

The Vserver approach is used in PlanetLab’s current im-
plementation [7, 2]. However, virtual machines on this plat-
form share the same kernel, violating our goal of isolation.

In this section, we examine the suitability of Xen, UML,
and VMware in light of our goals, and illustrate why we
chose UML in our implementation. From this point forward,
we use the terms “virtual node” (as introduced above) and
“virtual machine” interchangeably.

Xen is a hypervisor platform, while VMware and UML are
hosted virtualization platforms (as described in [8]1). Be-
cause it sits right next to the hardware, Xen is capable of
passing control of a PCI device exclusively to a single virtual
machine. Using this functionality, dubbed PCI passthrough,
we could push wireless driver code into the virtual machines,
so that experimenters can use whatever wireless drivers they
want.

However, our wireless drivers (MadWifi) were unaccept-
ably unstable when running inside a guest virtual machine,
causing system-wide crashes that were difficult to diagnose.
Another difficulty involved the transfer of control, since we
needed a way to “hand off” the wireless device from virtual

1A hosted virtualization architecture is one in which the vir-
tualization software runs inside a host OS and only accesses
hardware through the drivers provided by the host. This
differs from pure-hypervisor virtualization like Xen, which
runs on the bare metal and provides device drivers through
a dedicated domain (dom0).

Figure 2: An overview of the software infrastructure

used for TDM multiplexing, built on top of the exist-

ing experiment infrastructure.

machine to virtual machine. PCI passthrough is still in de-
velopment and the documentation does not adequately cover
the usage we have in mind.

Nonetheless, the virtual node must have a way of ac-
cessing and configuring the wireless device. Without PCI
passthrough, the next best solution is to tunnel requests
from inside the virtual node through to a driver running in
the host OS. Since we are only interested in wireless param-
eters, we have decided to modify the guest kernel’s ethernet
interface driver to support the wireless extensions. These ex-
tra handlers forward ioctl requests to the appropriate wire-
less interface in the host kernel.

Because these sorts of modifications are rather unortho-
dox, we prefer to use an open-source virtualization platform
that can be modified as necessary to meet our needs. For
this reason, we decided that VMware is most likely not the
appropriate platform for our projected development course.
To break the tie between Xen and UML, we decided that
we are simply more comfortable modifying and debugging
UML.

2.3 Software Design
As mentioned previously, our implementation is intended

to be generic, but we see large-scale 802.11 testbeds as an
ideal target platform. Currently, we are porting the system
to the ORBIT testbed at Rutgers University, and our system
utilizes ORBIT’s experimentation infrastructure, which we
briefly outline here.

ORBIT is outfitted with software to provide experimenters
with a simple interface for running experiments on the grid.
This software consists of two primary components, arranged
in a one-to-many master/client configuration. The master
is called the node handler, and the clients are called node
agents.

The node handler is run as a standalone application. It
defines a scripting language for configuring, controlling, and
monitoring node behavior. When an experimenter feeds a
script through the node handler, the handler translates the
script into commands and multicasts them to all the node
agents on the grid. Data is collected in a MySQL database
for later analysis. This entire process is an experiment, which
is the basic schedulable unit in the virtualized system.

2.3.1 The Overseers
The overseers are the most important part of the virtu-

alization infrastructure. Since our method of virtualization

77

is TDM, the overseers’ primary task is to run experiments
in a round-robin fashion. As with the handler and agent,
we adopt a master/client model. We refer to the master as
the master overseer and the client as the node overseer. We
chose a master/client model over a distributed model, be-
cause we can centralize policy in the master overseer. This
centralized policy is easier to reason about and is less com-
plex in implementation than a distributed policy.

The master overseer embodies the virtualization policy.
It schedules experiments to run and monitors both physical
and virtual nodes. The node overseer is purely mechani-
cal: it receives and executes orders from the master. It is
in charge of configuring the wireless interface and control-
ling virtual nodes. Most commonly, the node overseer must
perform context switches, as described in Section 2.1.

2.3.2 Synchronization
As presented in Section 2, the most critical aspect of TDM

virtualization is synchronization. Therefore, the overseers
are designed specifically with this goal in mind. By keeping
the nodes’ clocks in synch with one another and improving
kernel scheduling granularity, we can use preemptive schedul-
ing to synchronize the execution of commands across the
grid.

In our implementation, the master overseer tags each com-
mand with a deadline before multicasting it to the grid.
Node overseers will queue the command in a list, ordered by
deadline. Meanwhile, a worker thread will sit at the head of
the queue and sleep until it is time to execute the next com-
mand. This algorithm relies heavily on the ability to sleep
for accurate periods and the synchronization of the nodes’
clocks.

The node kernel has been patched for high-resolution timers
(commonly referred to as hrtimers). This improves schedul-
ing granularity by at least three orders of magnitude. With-
out the patch, a user-level process trying to sleep for a cer-
tain period of time would wake up within 4 ms of the target
duration. With the patch, the error is reduced to 40 µs2.

In order to keep the nodes’ clocks in synch, we have con-
figured NTP servers to service the grid and we run NTP
daemons on each of the nodes, configured with the small-
est polling interval allowed (16 seconds). Unfortunately,
the quality of commodity hardware clocks is rather poor.
The NTP clients on the node typically only synchronize the
clocks within about one millisecond of the source, so the
margin of error is roughly 2 milliseconds. This is enough
to potentially cause problems, and will most likely receive
attention in future work.

2.3.3 Network Configuration
To connect the virtual nodes to the wireless interface, we

use a layer 2 software bridge. As implied, all virtual nodes
will be effectively present on the same link. This means that
experiments will need to operate in reserved address spaces
in order to avoid crosstalk between experiments.

2.3.4 Wireless Configuration
Virtual machines in UML have a generic network driver

2These numbers were measured while the node’s processor
was mostly idle. Under load, both numbers increase, but
the factor of improvement offered by hrtimers is roughly the
same. We have yet to see a situation in which the hrtimers
are off by more then a hundred microseconds.

that is used for all network interfaces. In order to grant vir-
tual nodes the ability to configure and read statistics from
the wireless device, we implemented the wireless extensions
in the virtual network driver. As implemented, these ex-
tensions simply forward ioctl requests to the real network
driver in the host kernel. Thus, the wireless extensions are
a transparent tunnel from the virtual machine to the wire-
less card driver. We justify this approach for TDM, simply
because we can guarantee that only one virtual machine will
be using the wireless card at a time.

As described above, it is necessary to save the wireless de-
vice’s configuration at the end of every time slice and store
the parameters as context for the running experiment. By
restoring these parameters later, the virtual node will have a
coherent view of the wireless configuration. The node over-
seer is in charge of this operation.

A significant drawback in our implementation, is that the
node overseer does not deal with the card’s state in full
generality. That is to say, it only saves and restores basic
parameters such as essid, channel, and mode. From the
virtual node’s perspective, the wireless interface’s buffers,
registers, and bookkeeping information will be put into an
indeterminate state at the beginning of each time slice. The
integrity analysis presented in Section 3.2 will showcase some
of the more visible effects of this shortcoming.

3. INTEGRITY AND PERFORMANCE
In evaluating our system, we are interested in examining

the coherence and scalability of our design. Our primary
concern is that the virtualized environment is a suitable em-
ulation of the real thing, so that applications running in ex-
periments see minimal side effects resulting from the TDM
virtualization. As a secondary goal, we would like to ensure
that our system can scale to accommodate many concurrent
experiments utilizing many physical nodes.

In this paper, we primarily concentrate on the integrity
of the system, because we see this as the most daunting
challenge in implementing TDM virtualization. However,
we do briefly address the scalability of the system in section
3.4.

3.1 Experimental Setup
For the results in this section, we had an isolated off-grid

node (the master) issuing commands to grid nodes. In or-
der to measure network integrity, we are primarily interested
in characterizing data flows through the virtualized wireless
medium. We feel that a single data flow between a source
and sink node will provide us with good baseline measure-
ments. Thus, the results in this section involve only two grid
nodes.

For measuring the integrity of the medium, we run two ex-
periments concurrently. One experiment involves a source-
to-sink data flow from one node to the other. The data flow
is generated by iperf: a common Unix utility for measuring
network throughput by saturating the medium. During the
transfer, we run tcpdump in both the host and guest OSes,
and use these dumps to characterize the flow of data. All
of the results obtained in section 3.2 are the result of these
dumps. For consistency, all data flow tests were performed
using 802.11a.

The second experiment is a “null experiment”: it simply
introduces another schedulable unit into the system, so that
we can witness the effects of TDM virtualization on the data

78

flow created in the first experiment. To ensure that the sys-
tem is functioning properly, this experiment configures the
wireless interface differently than the first experiment. Thus,
if any configuration overruns occur, they will factor into our
integrity results. However, these occurred very rarely, and
hence they did not have a noticeable effect in our tests.

3.2 Network Streams
Because our project is concerned with virtualizing the

wireless medium, we are most interested in how accurately
the virtualized network emulates the real-world network. We
present our findings in this section.

3.2.1 UDP
The UDP tests were initially quite surprising: in the virtu-

alized environment, there are fewer packets lost, and through-
put is much greater than in the real world. The magnitude
of the effect is directly related to the frequency of context
switches (or inversely related to the length of the time slice).

The reason that UDP streams perform better inside the
virtualized environment entirely has to do with the con-
gestion of the medium. Keep in mind that the iperf util-
ity saturates the medium with packets. This means that
802.11 frames will queue up on the sender’s wireless in-
terface waiting for CTS. So, at the end of a timeslice for
an experiment running iperf, there are conceivably several
packets still waiting for transmission. More importantly,
these are lost (not sent) when the wireless configuration is
changed, and when the experiment starts its next time slice,
the medium is completely clear.

Therefore, when the time slice is relatively long, iperf has
enough time during the time slice to saturate the medium to
the point where packets begin getting lost. The frequency
of the context switches dictates how often the medium is
wiped clear of congestion, from the virtual node’s point of
view. We refer to this phenomenon as the “clear medium”
problem.

3.2.2 TCP
For the same reason that UDP experiences improved through-

put in the virtualization environment, TCP suffers, as seen
in Figures 3 and 4. Again, frames queue up on the 802.11
interface and buffers are cleared at the end of each time slice.
Since TCP is a reliable protocol, these lost packets must be
detected and retransmitted, resulting in under-usage of the
medium.

The wireless medium is cleared at the start of the experi-
ment’s next time slice, so all of the data points in Figure 3
show that TCP has increased throughput in the virtualized
environment. However, as the trend shows, the through-
put decreases as the frequency of context switches increases.
This effect is opposite of that observed with UDP streams,
because TCP must retransmit lost packets.

Figure 4 shows the percentage of packets received by the
sink that were out of order. We define the post-slice pause
as the delay at the end of each time slice. Recall that this
delay is intended to catch packets that are queued on 802.11
interfaces or in the air. From observation, all out-of-order
packets are retransmission of packets that were lost during
context switches.

Increasing the duration of the post-slice pause increases
the probability that a late packet will reach its destination
during a context switch. However, as the plot shows, this

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 (K

B
/s

)

Timeslice Size (seconds)

Throughput (TCP)

With TDM
Without TDM (control)

Figure 3: Throughput for iperf TCP tests.

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2

P
er

ce
nt

 o
f P

ac
ke

ts

Timeslice Size (seconds)

Percentage of Out-of-order Packets (TCP)

Post-slice Pause
20 ms
50 ms

100 ms
200 ms

Figure 4: Packet of packets that arrived out of order

during iperf TCP tests.

is clearly not enough; even if we wait 200 ms at the end
of a timeslice, roughly 1.5% of packets arrive out of order.
Increasing the length of the post-slice pause to 500 ms did
not exhibit a noticeable improvement.

Another curiosity is the effect that the timeslice duration
has on the percentage of out-of-order packets (as shown by
the lines in the plot). The data gathered for this plot was
very noisy, varying by as much as 3-4%. We hypothesize
that this effect stems from inaccurate node synchronization
and the “clear medium” problem, outlined in section 3.2.1.

3.3 Time slice size
Figure 5 presents the calculated (theoretical) overhead

due to context switching. Each line represents a particu-
lar duration for the context switch. Exactly 25 ms are al-
located for wireless configuration, and the rest is dedicated
to the post-slice pause. Clearly, the amount of overhead
gets out of hand rather rapidly. In fact, if we increase the
post-slice pause sufficiently to eliminate out-of-order pack-
ets, sub-second time slices are no longer feasible, due to the
expense of context switching.

In Section 4, we will discuss a number of approaches by
which we can alleviate this cost. Such approaches will re-

79

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

 O
ve

rh
ea

d

Timeslice Size (seconds)

Context Switch Overhead

Context Switch
45 ms
75 ms

125 ms
225 ms

Figure 5: This plot shows the percentage of time that

is lost to overhead, as a function of time slice size

and several different context switch durations.

duce the time overheads of mitigating out-of-order packets.
This will lead to an overall improvement in efficiency of the
system.

3.4 Scalability
One of the appealing results of our research is that the

implementation scales nicely with respect to the number of
experiments running. All of the data obtained in the previ-
ous sections were verified for two, three, and four concurrent
experiments, and the results were always identical. However,
this is not to say that the number of experiments can scale
indefinitely. The primary limiting factor is the computing
power of the physical nodes themselves. Only equipped with
512 MB RAM and 1 GHz processors, they are simply not
fit to accommodate large numbers of experiments running
concurrently.

We’ve tested up to five concurrent virtual machines with-
out seeing any ill side-effects, with the exception that the
nodes are under extremely heavy load while the VMs are
booting. Once the boot is complete, the strain on the phys-
ical nodes is significantly less. The node overseer’s ability
to stop accurately did not diminish under this many VMs
once they are booted. In cases where many concurrent ex-
periments are desirable, the VMs need not be booted out
of band. In such a configuration, the node overseer should
retain its ability to execute commands at precise times.

For this paper, we have not conducted a thorough test of
the system’s ability to scale in terms of testbed size. This
will be a subject of future research. We anticipate that node
clock synchronization will figure prominently in the extent
to which the system suffers under a large number of nodes.
Another major factor will be system integrity: the effects
characterized in the previous sections will obviously extend
to situations where multiple flows are in place. For multi-
hop routing, we expect integrity to degrade as a function of
the number of nodes involved in the route.

4. FUTURE WORK
There are several items slated for future work that will

improve the performance and coherence of the system. Once
these modifications are implemented and tested, we will have

a better understanding of which types of experiments are
well-suited to running in a virtualized environment.

4.1 TDM on a Large-scale Testbed
We are in the process of porting the virtualization in-

frastructure to ORBIT: a 400-node testbed at Rutgers Uni-
versity. Once integrated, this environment will allow us to
more thoroughly test our scalability hypotheses. ORBIT is
an ideal target application for our system. The testbed is
in very high demand, and an experimenter allocating time
on the grid must register the entire grid at once. Obviously,
this leads to an under-utilization of resources. In addition
to maximizing grid utilization, a strong virtualization infras-
tructure will also provide a mechanism for accounting and
prioritization.

4.2 Dual Interface
Because wireless configurations take an unpredictable amount

of time, we have no choice but to reserve a full 25 ms during
every context switch for wireless device configuration, when
in the common case, configuration should take no more than
4 to 5 milliseconds. Since the physical nodes are outfitted
with two wireless interfaces, we propose the following solu-
tion to this problem. Each experiment is allowed to use only
one interface. When a virtual node starts its timeslice, it is
bridged to one of the two interfaces, while the other inter-
face is configured for the upcoming timeslice. Then, during
a context switch, the node overseer bridges the next virtual
node to the pre-configured wireless interface, so that there
is no real-time overhead for wireless configuration.

4.3 Clock Synchronization Improvements
Because commodity computer hardware is prone to in-

accurate timekeeping, NTP alone is not a suitable solution
for sub-millisecond clock synchronization in a grid environ-
ment. Through conversations with systems administrators
who deal with such issues, we have learned that a more ap-
propriate solution might involve using a highly reliable time
source (such as GPS) that generates PPS3 signals, which
are broadcast to all nodes on the testbed. NTP running on
the nodes can use these 1 Hz signals to synchronize their
clocks far more accurately than they can using standard
stratum 2 NTP servers. Making an improvement of this
magnitude would mean that fewer packets are lost during
context switches and that virtual nodes clocks’ remain more
closely synchronized with other virtual nodes from the same
experiment.

4.4 Wireless Configuration Management
A fatal issue, addressed above, is that we simply do not

have the required power to snapshot all of the state from the
wireless device. As shown particularly clearly in Section 3,
the effects are dramatic. Ideally, we want the ability to save
and restore the actual buffers and registers on the device.
Such a powerful mechanism would improve the coherence
of the virtualized environment and grant the experimenter
the ability to poll the device for accurate statistics. Cur-
rently, stateful and time-sensitive statistics (such as RTT)
will inevitably be muddied by the TDM approach.

3Pulse per second.

80

5. CONCLUSIONS
The ability to cleanly virtualize a wireless network has

important practical implications for experimentation facili-
ties. In addition to increasing grid utilization, it provides an
accounting abstraction of the correct granularity.

However, as this paper shows, TDM virtualization of a
wireless network is a difficult task. We identified two major
challenges in our implementation: node synchronization and
device state. As a group, nodes must have a coherent and
accurate view of the clock; individually, they must be able
to perform tasks at specific times. To meet these goals, we
used NTP and high resolution kernel timers, respectively.
However, NTP without a high-accuracy local clock source
cannot provide the accuracy we need. Secondly, we noted
that we have only limited access to the state stored on the
wireless device.

It is because of these limitations that our current imple-
mentation struggles with integrity tests. These two factors
are the culprits that induce the “clear medium” problem
(section 3.2.1) and TCP retransmission. As seen in sec-
tion 3.2.2, small adjustments are not sufficient in eradicat-
ing these symptoms. To get small gains, we must make large
sacrifices. On the other hand, if we were able to snapshot
the state of the wireless device and keep node clocks in syn-
chrony, these unwanted side effects would be significantly
reduced. We expect that further research in these areas will
be fruitful.

6. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In Symposium of
Operatiing Systems Principles, October 2003.

[2] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and
M. Wawrzoniak. Operating system support for
planetary-scale network services. In Symposium on
Networked Systems Design and Implementation, March
2004.

[3] S. Devine, E. Bugnion, and M. Rosenblum.
Virtualization system including a virtual machine
monitor for a computer with a segmented architecture.
US Patent, 6397242, October 1988.

[4] Bob Aiken et. al. Report of nsf workshop on network
research testbeds, November 2002.

[5] A. Mishra, D. Agrawal, V. Shrivastava, S. Banerjee,
and S. Ganguly. Distributed channel management in
uncoordinated wireless environments. In ACM
Mobicom, September 2006.

[6] A. Mishra, V. Srivastava, S. Banerjee, and
W. Arbaugh. Partially overlapped channels not
considered harmful. In ACM Sigmetrics, June 2006.

[7] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
internet. In ACM Workshop on Hot Topics in Networks
(HotNets), October 2002.

[8] J. Sugeman, G. Venkitachalam, and B.-H. Lim.
Virtualizing i/o devices on vmware workstation’s
hosted virtual machine monitor. In USENIX Annual
Technical Conference, 2002.

81

