
Performance Optimizations for Wireless Wide-area Networks:

Comparative Study and Experimental Evaluation

Rajiv Chakravorty, Suman Banerjee, Julian Chesterfield, Pablo Rodriguez, Ian Pratt ∗

ABSTRACT
We present a comparative performance study of a wide se-
lection of optimization techniques to enhance application
performance in the context of wide-area wireless networks
(WWANs). Unlike in traditional wired and wireless IP-
based networks, applications running over WWAN cellu-
lar environments are significantly affected by the vagaries
of the cellular wireless medium. Prior research has pro-
posed and analyzed optimizations at individual layers of the
protocol stack. In contrast, we introduce the first detailed
experiment-based evaluation and comparison of all such op-
timization techniques in a commercial WWAN testbed. This
paper, therefore, summarizes our experience in implement-
ing and deploying an infrastructure to improve WWAN per-
formance.

The goals of this paper are: (1) to perform an accurate
benchmark of application performance over such commer-
cially deployed WWAN environments, (2) to implement and
characterize the impact of various optimization techniques
across different layers of the protocol stack, and (3) to quan-
tify their interdependencies in realistic scenarios. Addition-
ally, we discuss measurement pitfalls that we experienced
and provide guidelines that may be useful for future exper-
imentation in WWAN environments.

1. INTRODUCTION
Wireless cellular networks are being upgraded world-wide

to support 2.5G and 3G mobile data services. For example,
GPRS and UMTS networks in Europe, and CDMA 1xRTT
and CDMA 2000 networks in the USA and Asia are cur-
rently being deployed and tested to provide wireless data
services that enable ubiquitous mobile access to IP-based
applications. In this paper we examine the performance
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of these IP-based applications running over such Wireless
Wide-Area Networks (WWANs).

WWAN links are severely plagued with problems like high
round trip times (RTT), fluctuating and relatively low band-
widths, frequent link outages and burst losses [14, 31, 33].
As a consequence the end-user experience in the WWAN en-
vironment is significantly different from the relatively stable
indoor wireless environments, e.g. 802.11b based Wireless
LANs (WLANs). Over the past several years, various opti-
mizations have been proposed to different layers of WWAN
protocol stacks to improve the experience of data users. Our
work presents a detailed comparative study of different pro-
posed performance optimization techniques through exper-
iments over commercial cellular networks. We believe that
ours is the first study of its kind that presents a detailed com-
parison of a wide-selection of such optimization techniques
across all layers of the protocol stack, studies the cross-layer
interactions of these techniques and their impact on appli-

cation performance in a realistic experimental environment
consisting of commercial cellular wireless networks.

We have conducted detailed performance studies of differ-
ent applications over commercial WWAN networks. In this
paper, we primarily focus on the performance of web brows-
ing applications in these environments. Our experiments
show that all standard web browsers operating in their de-
fault settings significantly under-utilize the limited resources
of the WWAN wireless link. This is surprising in the con-
text of prior work [31], which showed that TCP, the under-
lying transport protocol used by HTTP, makes efficient use
of the WWAN wireless link. In fact, these results of [31]
are also re-confirmed by our experiments. In this paper we
explain this performance discrepancy based on inefficiencies
in session and application layers. Our experiments show
that suitable optimizations implemented in these layers can
significantly improve application performance over WWAN
environments.

Overview
To precisely quantify the causes of poor performance over
WWANs, we first benchmarked standard web browsers, pro-
tocols, and techniques with respect to their performance.
Through our experiments we have measured the different
components that contribute to the latencies during web down-
loads for a range of popular websites (ranked in www.100hot.com).
Subsequently, we examined a large number of optimization
choices that are available at different layers of the protocol
stack. Specifically we study the following aspects of these
optimizations for WWANs in this paper:



• Application layer: We quantify the benefits of us-
ing schemes like HTTP pipelining [27, 29], extended
hash-based caching, delta encoding [26] and dynamic
content compression over WWANs.

• Session layer: We study the impact of multiple si-
multaneous transport connections as typical in stan-
dard web browsers, examine the impact of techniques
like DNS-boosting/URL-rewriting [32] and of server-
side ‘parse-and-push’ [12].

• Transport layer: We evaluate the performance of
standard TCP, a recently proposed and implemented
link-adapted TCP variant suited for WWAN environ-
ments [13] and a customized UDP based solution [12].

• Link layer: We study the interaction between link-
layer retransmissions (ARQ) and forward error correc-
tion (FEC) schemes using trace-based simulations for
different applications in WWAN environments.

To conduct this study we implemented all the necessary
techniques (including three different proxies) for our WWAN
infrastructure. The work presented in this paper summa-
rizes our experiences and lessons learnt through deployment
and operation of our WWAN testbed over a 12 month pe-
riod.

The following were some of our interesting observations:
(1) Although TCP itself is relatively efficient even in WWAN
environments, the default HTTP protocol significantly under-
utilizes the WWAN wireless links. (2) Appropriate application-
layer mechanisms are necessary to correct the significant
mismatch between transport and application performance.
(3) Proxy-based optimizations are sometimes crucial to re-
alize many of the performance benefits.

Key Contributions
We highlight the main contribution of this work as follows:

• We present the first detailed evaluation of application

performance over commercial WWAN environments.

• We implement and study a wide selection of optimiza-
tion techniques at different layers and their cross layer
interactions on application performance.

• We present an experiment methodology based on vir-

tual web hosting that is essential for performing re-
producible and repeatable experiments over WWAN
environments.

Additionally, to encourage further measurement and evalu-
ation studies within our research community, we are in the
process of releasing our tools and software which implements
the optimization techniques in Win2000/XP and Linux, de-
tailed traces, and benchmarks used.

Roadmap
The rest of this paper is organized as follows. In the next
section we describe our testbed and experimental method-
ology. In Section 3 we present a benchmark of the existing
web browsing performance using standard browsers, proto-
cols, and techniques over WWAN environments. In Sec-
tion 4 we present a detailed evaluation of various optimiza-
tion techniques and their relative benefits to application per-
formance. In Section 5 we discuss some of the deployment
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Figure 1: WWAN Experimental Testbed. In our
experiments, we placed the proxy in our laboratory
and then use a well provisioned IPSec VPN to ‘back
haul’ the traffic from the cellular provider’s net-
work. The mobile client connects to the web servers
through this proxy (shown as Label 2).

issues for these techniques. In Section 6 we present some of
the related work and finally conclude in Section 7.

2. TESTBED AND METHODOLOGY
The experiments reported in this paper have primarily

been performed on GPRS-based WWAN networks, which
are widely deployed in different parts of the world. Fig-
ure 1 shows a commercial GPRS-based WWAN network
that was used in our experiments. GPRS [9] is a bearer ser-
vice for GSM, and two new nodes have been added to the
traditional GSM network to support GPRS: Serving GPRS
Support Node (SGSN) and Gateway GPRS Service Node
(GGSN). The SGSN acts as a packet switch that performs
signaling similar to a mobile switching center (MSC) in GSM
networks, along with cell selection, routing, and handovers
between different Base Switching Centers (BSCs). It also
controls the Mobile Terminal (MT)’s access to the GPRS
network and routes packets to the appropriate BSC. The
GGSN is the gateway between the mobile packet routing of
GPRS and the fixed IP routing of the Internet.

We have also experimentally evaluated application perfor-
mance on the next generation (3G) cellular networks, which
are currently being deployed in parts of North America and
Asia. Wireless links using these 3G technlogies have higher
data rates than existing 2.5G technologies. Our prelimi-
nary study over 3G networks (based on CDMA 2000 3G-1X)
are presented in Section 5. These results indicate that our
observations and evaluations presented in this paper apply
equally to these higher data rate 3G environments.

2.1 Experimental and Infrastructure Setup
The experimental testbed we have used is shown in Fig-

ure 1. In this setup, a mobile terminal (MT), e.g. a laptop,
connects to the WWAN network through a mobile device
– a PCMCIA GPRS card or a phone. In order to use the
WWAN network, the MT first attaches itself to the GGSN
(PDSN in CDMA 2000) through a signaling procedure and



establishes a Point-to-Point Protocol (PPP) connection with
the GGSN. The MT is dynamically assigned an IP address
and the WWAN network is responsible for switching data
back and forth to this IP address as the MT moves through
the network.

In our experiments the MT (or mobile client) downloaded
web content over the WWAN link from different content lo-
cations: (1) directly from the real web servers, e.g. CNN,
Yahoo, and (2) virtually hosted web-servers (explained later
in this section) that were located in our laboratory. This is
shown by Label 1 in Figure 1. In either case, the data from
the mobile client to the servers traverse through the cellu-
lar service-provider’s network as well as the public Internet,
before it is finally ‘back-hauled’ to our laboratory.

To study the different optimization techniques at differ-
ent layers of the protocol stack and their overall impact on
application (web) performance, our experiments required us
to implement optimization-specific proxies. Based on the
use of proxies, our experiments can be classified into three
modes:

• No Proxy Mode: In this case the client directly con-
nected to the server and the experiments did not re-
quire any intervening proxy. These optimizations are
the easiest to deploy.

• Transparent Proxy Mode: This mode is used for
those experiments where the client need not be aware
of the existence of a proxy and the cellular provider’s
network transparently guides the client’s connections
through a proxy as necessary. Transparent proxy so-
lutions are also easy to deploy, since they require no
changes or configuration to be made in the mobile
clients themselves.

• Explicit Proxy Mode: This mode was used in ex-
periments which require the mobile client to be aware
of the proxy in the network (in this case called the
‘server-side’ proxy). This requires either (a) explicit
browser configuration or (b) software updates at the
mobile client to enable it to interact with the server-
side proxy. The software update is like a client-side
proxy and hence we refer to this approach as a dual-
proxy solution.

In the proxy-based optimizations the proxy needs to be
deployed within the cellular provider’s network. Since it
was not practical for us to install our own equipment inside
a commercial cellular network, we instead placed the proxy
in our laboratory and used a well provisioned IPSec VPN
to ‘back haul’ GPRS traffic to it directly from the cellular
provider’s network. This ensured that the path between the
proxy and the cellular provider’s network was never the bot-
tleneck. In the proxy-based experiments, the mobile client
connects to the web servers through this proxy (Label 2 in
Figure 1).

2.2 Experiment Methodology
We use virtual web hosting to emulate real web down-

loads. Virtual web hosting is an important construct to
perform repeatable web browsing experiments over WWAN
links involving fast-changing websites.

Contents of popular websites change very frequently (e.g.
in CNN content changes within minutes). If real web-download
experiments were to be conducted over low-bandwidth WWAN
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Figure 2: Total number of TCP connections opened
by the client to download the main webpages of the
popular websites with HTTP/1.0 and HTTP/1.1
protocols. Some of the web servers send ‘pre-
emptive FINs’ and hence benefits of HTTP/1.1 are
not always realized.

links involving such web-sites, then different download at-
tempts may notice significant differences in the downloaded
content structure and volume. The total number of down-
loads required for each website considered in this paper was
more than 500 (including at least 20 downloads for each con-
figuration). This translates to a duration of over 1500 min-
utes to perform the experiments, leaving aside setup times,
transient network congestion, unavailable wireless link con-
ditions, etc. Hence it would not have been feasible for us
to make meaningful comparisons performed directly using
real websites. To avoid this problem we implemented a vir-

tual web hosting system in our laboratory, where we repli-
cated the contents of the popular websites into a set of web
servers (in our laboratory) with public domain names. A
mobile client can access these webpages using WWAN net-
works just as they would from the actual servers.

A snapshot on the main webpage of a popular news web-
site like CNN shows that it has more than 100 embedded
objects. While some of these objects may be hosted on the
main content servers, others are hosted by CDN servers, e.g.
Akamai [22]. (as shown in Figure 3).

When a user attempts to download http://www.cnn.com,
the browser first performs a DNS lookup to resolve cnn.com

and downloads the main webpage. Subsequently it per-
forms further DNS lookups to resolve the CDN servers that
hold some of the embedded objects in that page, and per-
forms appropriate downloads for these objects. Downloads
from popular websites sometimes involves a large number of
DNS lookups, which significantly affect the download perfor-
mance over WWAN links. Hence, in the virtual web hosting
setup, it was necessary to faithfully replicate the distributed
web content and its overall structure.

For each server in the original website, we assigned a sep-
arate web server in our laboratory to “virtually” host the
corresponding content. The domain names of these virtual
web-hosting servers were constructed from their original do-
main names by pre-pending the corresponding CDN server



Download latency (sec) No. of Embedded Objects (Size in KB) T’put(Kbps)
Website WWAN-Real WWAN-Virtual Wired 802.11 Domains Count Sum Avg. Max. (Virtual)
altavista 14.2 (3.1) 13.3 (2.2) 0.7 1.1 2 4 13.6 3.4 10.1 8.2
mail 43.3 (5.5) 34.5 (3.4) 1.0 1.3 4 11 36.7 3.3 11.0 8.5
yahoo 38.8 (4.1) 35.0 (3.1) 1.1 1.5 6 16 60.3 3.8 36.0 13.8
go 90.3 (11.5) 69.2 (4.5) 2.0 2.8 3 29 92.8 3.2 51.8 10.7
bbc 93.7 (9.1) 72.6 (6.1) 2.1 3.0 2 35 72.5 2.1 38.4 8.0
amazon 102.3 (9.8) 76.4 (7.7) 2.1 2.9 3 42 91.9 2.2 46.8 9.6
aol 105.5 (11.5) 80.0 (7.3) 2.7 3.4 8 66 168.5 2.6 21.7 16.9
sourceforge 107.2 (11.7) 92.1 (6.1) 2.6 2.9 5 53 132.3 2.5 40.3 11.5
fortunecity 121.3 (9.0) 114.4 (7.1) 3.0 3.6 1 46 168.7 3.7 59.1 11.8
cnn 204.0 (17.6) 196.3 (12.4) 3.1 4.2 6 67 186.8 2.8 22.3 7.6

Table 1: Web download latencies (using Mozilla/HTTP/1.1) over GPRS WWAN and other characteristics
for different websites and their content distribution. Standard deviations for the download times of Wired
and 802.11 were low and not shown. In these tests, mobile host was stationary with reasonably good link
conditions (average measured C/I > 15dB).

domain names. These modified domain names were made
available to the DNS. Additionally we updated the URLs
pointing to the embedded content to reflect the new do-
main names. Thus, in a virtual web hosting experiment
when a mobile client attempts to download a webpage, it
would have to appropriately resolve different domain names
for the different content servers similar to the case of a real
web download.

The experiments performed using virtual web hosting repli-
cate the key components of the real web browsing perfor-
mance in the same manner as any WWAN user would ex-
perience with actual web servers. However, there are a few
differences between overall performance observed using the
real web servers and the virtual web hosting scenario:

• Server-side Load: The load at the real web servers
may be different than at the web servers in virtual
web hosting scenario. Typically real web servers expe-
rience significant variation in the user load. However,
we were interested in quantifying the differences due to
protocol techniques and not the server load, and hence
this was particularly beneficial for us.

• Pre-emptive Server FINs: Web downloads using
the HTTP/1.1 protocol [29] make use of persistent con-
nections, i.e. multiple objects from a specific server are
downloaded using the same TCP connection. Padman-
abhan and Mogul in [28] first showed that such a be-
havior can significantly improve the web download per-
formance over the original behavior of the HTTP/1.0
protocol, where each object is downloaded by a sepa-
rate TCP connection. However we have observed that
some popular web servers explicitly close TCP con-
nections by sending a pre-emptive FIN after having
transmitted a few objects over that connection. Con-
sequently the client has to open a new connection to
resume downloading the remaining objects in the web-
page.

In some cases, web servers perform such ‘early-close’
to avoid holding state for too many outstanding TCP
connections, thereby improving server performance [6]
and also guarding against possible DDoS attacks. We
illustrate this behavior in Figure 2 which shows the

total number of TCP connections required to down-
load the main webpage of 10 popular websites. When
the HTTP/1.0 protocol is used each client needs to
open a large number of TCP connections to down-
load all embedded objects of a webpage. When using
HTTP/1.1, if the web servers faithfully implement per-
sistent connections, then the number of opened con-
nections should vastly reduce, as is the case for Go,
Fortunecity, etc. However, for the websites that em-
ploy pre-emptive server FINs (even when the client
uses HTTP keep-alive), e.g. BBC, AOL, the total
number of TCP connections opened by the HTTP/1.0
and HTTP/1.1 versions differ by less than 20%. Clearly,
some of the advantages of using HTTP/1.1 protocol
are lost for web servers that employ pre-emptive FINs.
In experiments involving web servers in a virtual web
hosting scenario, we chose to adhere strictly to the
HTTP/1.1 protocol. Thus, web downloads using web
servers in our virtual web hosting scenario, will not
explicitly close (FIN) TCP connections.

• Web Content: Apart from static content, many web
servers dynamically generate additional content which
is downloaded by the clients. It is difficult to exactly
replicate such behavior in the virtual web hosting sce-
nario. In many cases the total number of objects and
the amount of content downloaded from a virtually-
hosted website is lower than the actual website.

We emphasize that none of the above performance differ-
ences change the qualitative nature of the results when com-
paring the different optimization techniques. In fact, there
is significant value in using the more controlled virtual web-
hosting setup to study application performance over WWAN
environments in Table 1.

In the table we illustrate some of these above differences.
WWAN-Real corresponds to downloads from the real servers
of some popular websites, while WWAN-Virtual corresponds
to downloads from our virtual-hosting system (the values in
parenthesis are the standard deviations). We can observe
that the downloads from real websites experience a much
higher variation, most of which are due to frequent changes
in content and varying server loads. Additionally we can
observe that the mean download latencies is lower (by 5-
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Figure 3: Timeline for an example web download
over WWAN networks, using Mozilla/HTTP/1.1.
The web content is spread over 6 servers and multi-
ple connections are opened by the browser to these
servers. As the HTTP/1.1 default behavior dictates,
only two simultaneous TCP connections are opened
to a specific server. Each small rise in the lines indi-
cates a separate GET request made using that spe-
cific connection.

10%) for the virtual-hosting system. This is because of the
absence of the dynamically generated content in the virtual-
hosting case. Finally, the columns labeled Wired and 802.11
list the corresponding web download times over 100 Mbps
Ethernet and 11 Mbps 802.11-based wireless LAN environ-
ments. Clearly, the download performance in such environ-
ments is orders of magnitude better. In fact, the key differ-
ence between these wired and wireless LAN environments
to that of WWAN environments is the high and variable
Round Trip Times (RTTs) seen on the latter. For example,
the first packet in a burst of back-to-back WWAN packets
experience WWAN link latencies in the range of 600 ms to 3
seconds under different channel conditions. Based on these
observations we can conclude that the net effect of the dif-
ferences in virtual web hosting scenario from the actual one
is marginal, when compared to the overwhelming impact of
the WWAN environment itself.

We now focus on our main application, wireless web brows-
ing, and quantify the causes of its poor performance over
WWAN wireless links.

3. BENCHMARKING PERFORMANCE
Our experimental evaluation is focused on the web-browsing

performance over a WWAN network. We have experimented
with different standard web-browsers available (e.g. Mozilla,
Internet Explorer, Netscape). Though there are minor vari-
ations in their implementations, we observed that their per-
formance is roughly similar. In the experimental results re-
ported in this paper, we use the Mozilla browser version
1.4. In its default setting Mozilla opens upto 8 simultaneous
TCP connections per web-server using HTTP 1.0 and upto
2 TCP connections using HTTP/1.1, Mozilla also supports
proposed experimental features in HTTP/1.1, e.g. pipelin-
ing. Due to its open source nature, it was easier to alter the

File Size (KB) FTP-throughput (Kbps)
1 13.2 (1.5)
5 18.1 (0.9)
10 18.8 (2.1)
50 29.7 (3.3)
100 30.5 (3.2)

Table 2: Data throughputs achieved for ftp-
downloads over WWAN wireless links using a single
TCP connection. TCP achieves good throughput
for larger files.

default browser to suit experimental needs. Our experiments
reported in this paper were performed using a laptop with a
1.4 GHz processor running Linux (kernel 2.4.20) which con-
nects to the WWAN network using a ‘3+1’ GPRS phone,
which has an ideal downlink channel data rate of 39.6 Kbps.
Unless otherwise stated, all experiments were repeated 20
or more times and typically report the mean and standard
deviations, in parenthesis, of these values. (In some tables
we omit the standard deviation values for ease of exposition
and clarity.)

In Figure 3 we plot an example timeline to download
http://www.cnn.com when using the HTTP/1.1 protocol.
The plot shows the progress of a download with time, the cu-
mulative count for the number of TCP connections opened,
the duration of these connections, and the extent of data
download activity through these connections over the WWAN
network.

We ran similar experiments for a large number of differ-
ent websites which we summarize in Table 1. The download
latencies of the different websites have significant variabil-
ity due to the diversity in content and the multiplicity of
servers. The table also indicates the overall data through-
put achieved in downloading these websites. We can observe
that the overall throughput is significantly low. It varies
between only 7.5 Kbps to 17 Kbps for different websites,
even though the ideal downlink data-rate is 39.6 Kbps. We
can contrast the performance of this web download to ftp-
like data transfers presented in Table 2. In this table we
present the throughput achieved when we downloaded files
of different sizes over the same WWAN wireless link. The
throughput achieved in such file transfer experiments were
significantly higher than the web downloads. For example
in similar network conditions the web download throughput
for amazon.com with a total content size of 91.9 KB was 9.6
Kbps, while the download of a single 50 or 100 KB file was
around 30 Kbps! The high file transfer data throughput
confirms prior observations made by Ludwig et. al. [31] and
Benko et.al. [8] that TCP performs quite well over GSM-
based wireless links.

Note that such under-performance of web browsing appli-
cations is not unique to GPRS-based 2.5G cellular networks
alone. As presented in Section 5, even 3G wireless links like
CDMA 2000 3G1X exhibit similar traits. We performed ex-
periments on a CDMA 2000 network using a phone with
ideal downlink data rate of 144 Kbps. TCP itself achieves
a data throughput between 95-125 Kbps [14]. In contrast
the web download time for Yahoo’s main webpage (total
data volume of about 60.3 KB in this case) was around 12
seconds, i.e., a data throughput of mere 41 Kbps.

While we have performed a detailed experimental evalu-
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ation using all websites listed in Table 1, in the rest of this
paper we present experimental results for four of them for
the sake of clarity and of exposition. These four websites
were chosen based on the diversity of their characteristics,
content types, content volumes, and number of servers used.
They were a news web-site (cnn.com with 186.8 KB over 6
servers), an online e-commerce store (amazon.com 91.9 KB
over 3 servers), a popular mail web-site (mail.com 36.7 KB
and 4 servers) and search portal (yahoo.com 60.3 KB and 4
servers).

To further understand the performance bottlenecks in web
downloads, we partition the download latency over WWAN
links for these four websites into constituent factors. We did
this by obtaining and analyzing appropriate tcpdump traces
at the mobile client as well at the web servers.

• Payload Transfer Time: This component accounts
for the time when some useful data transfer is taking
place over the WWAN link.

• DNS lookups: This accounts for the latency that
is incurred over the WWAN link for different DNS
lookups during downloads. (Note that more look-ups
lead to more ‘idle-time’ instances.)

• TCP 3W/SS: This component accounts for the under-
utilization of WWAN links during TCP’s initial 3-way
handshake and slow start phases.

• Other under utilization: This accounts for all the
other link-layer and protocol inefficiencies, which can
lead to under-utilization. The overall effect is that
link is never able to achieve the expected data rate
due to several reasons – physical (e.g. handover) and
environmental (e.g. fading) effects, protocol under-
performance (e.g. HTTP GET and TCP congestion
control) etc.

In the plot we observe that for the smaller websites (e.g.
mail.com) DNS lookup latency, TCP’s initial 3-way hand-
shake and slow start contributes to a significant fraction of

the total latency incurred, e.g., about 29% for mail.com.
These delays are, however, amortized over the downloads
for the larger websites. The websites are sorted in the in-
creasing order of their content size, and we can see a clear
progression of this amortization as the content increases in
size.

More importantly we can observe that a WWAN link is
under-utilized for a large fraction of the download varying
between 35% to 55% for different websites.

A contributing factor of this under-utilization is the dis-
tribution of object sizes and the manner in which the HTTP
protocol performs the downloads. A large fraction of the ob-
jects in popular web sites have very small sizes (e.g. CNN
has more than 70% of the objects less than 2 KB in size).
Therefore, using HTTP/1.1 in the default mode (with two
TCP connection) leads to a ‘stop-and-go’ behavior — the
client makes a GET request for an object, receives it com-
pletely, and then makes the next GET request. Such a be-
havior minimally impacts application performance in low-
latency networks like 802.11-based wireless LANs, but leads
to significant performance degradation in high-latency wire-
less links of the WWAN environments.

Other factors include physical channel fading effects, pres-
ence of large queues in typical WWAN networks and their
impact round-trip time, and retransmission timeout infla-
tion in TCP, etc.

These results indicate that there are significant opportu-
nities for optimizing web browsing performance for WWAN
networks.

4. PERFORMANCE OPTIMIZATIONS
We have examined and characterized the performance of

a wide-selection of optimization techniques that have been
proposed at the different layers of the protocol stack —
application, session, transport, and link. As discussed in
Section 2 some of these optimization techniques relied on a
transparent or explicit proxy that was located in our lab-
oratory. In this section we will quantify the relative bene-
fits observed by each of these techniques, except for the ex-
plicit dual-proxy techniques in most cases. The dual-proxy
techniques works with very different assumptions of deploy-
ment and hence it is not possible to make a fair comparison
of these techniques with the no-proxy or single-proxy tech-
niques. Therefore, we will present the benefits of the dual-
proxy schemes individually and comment on their combined
effects in the summary of results (Section 4.5).

4.1 Application Level Techniques
We consider three application-level optimization techniques.

First, we examine content compression and its impact on
web download performance. Our results show that web con-
tent is highly compressible, but this does not translate to
commensurate benefits in web download performance. Next,
we examine the various choices available through the HTTP
protocol, e.g. HTTP/1.1 with persistent connections and
HTTP request pipelining [27, 29]. Our results show that the
default configuration parameters of most browsers (typically
chosen to work well in wired networks or wireless LANs) per-
form poorly in WWAN environments. Finally, we explore
some advanced techniques including delta encoding [26] and
extended caching.

4.1.1 Dynamic Content Compression



The total size of content of many webpages is quite large
relative to the downlink data rate of WWAN networks. Hence,
content compression is a natural candidate to further reduce
download latencies. We first examine the “compressibility”
of the different websites. We classify content into two parts
— fixed fidelity content (which includes all HTML, CSS,
JS, files) and variable fidelity content (which includes all
images). For all fixed fidelity data we applied lossless data
compression, using gzip and for all variable fidelity data
we applied lossy data compression, by reducing the depth
level of images. Note that other forms of data compression,
e.g. html reformatting, image resizing, etc. could also be
applied here. However, we do not employ such techniques
in our proxy, since they require significant knowledge of the
content semantics. We implement dynamic content com-
pression using an application-level proxy operating in the
transparent as well as the explicit dual-proxy mode.

Website Fixed-fidelity Variable-fidelity Total
Orig. Lossless Orig. Lossy Compression

mail 11.8 3.0 17.4 8.8 59.6%
yahoo 36.8 7.1 24.9 11.7 69.5%
amazon 45.4 9.5 46.0 20.7 67.6%
cnn 160.0 65.3 35.4 27.6 52.6%

Table 3: Amount of compression achievable on the
content of the four popular websites. For fixed fi-
delity content (HTML/CSS/JS objects) we apply
lossless compression, and for variable fidelity con-
tent (jpeg/gif/bmp) we apply lossy compression).
Data in KB.

In Table 3 we present the “compressibility” of the content
in the four popular websites. All the content in the various
website allow significant opportunities for data compression
(between 52% to 70%).

Website HTTP/1.1-def. HTTP/1.1-def. + Compression
(2 conn.) Lossy Lossless Full Improv.

mail 34.5 32.6 31.9 28.4 17.7%
yahoo 35.1 32.2 23.6 20.7 40.9%
amazon 76.4 71.5 69.2 62.7 17.9%
cnn 196.3 187.5 183.1 174.3 11.2%

Table 4: Mean webpage download times improve-
ments for dynamic content compression. Full com-
pression implies both lossy and lossless compres-
sions. Improvement with respect to HTTP/1.1-
default that uses at most two simultaneous TCP
connections (first column). Download time in sec-
onds.

In Table 4 we present the performance benefits of con-
tent compression of web download latencies. When lossless
compression is used, the client needed to perform an un-
compress operation. (However the extra CPU overhead to
uncompress, say a 100 KB data file, is of the order of a few
milliseconds for most handheld devices and is insignificant.)
We can observe that although the content in the different
websites are very compressible, the benefits of compression
on application performance is not as substantial (except for
Yahoo). We can explain this apparent anomalous behavior

based on the object size distribution of the webpages. We
can observe that most of the objects in the webpages are
small, e.g. nearly 60% of the objects in CNN are less than 1
KB (typically 1 TCP segment, assuming 1460 byte payloads
of IP packets). Any amount of compression would clearly
not change the number of segments below one. Therefore the
overheads of issuing individual GET requests for these ob-
jects sequentially over the two TCP connections dominates
the transfer time of these objects and hence the improvement
in data transfer latency due to compression will be minimal
in these cases. In contrast, the distribution of object sizes
in the Yahoo website is skewed towards larger values (the
average object size is 3.8KB in Yahoo, as opposed to 2.2 KB
and 2.8 KB of Amazon and CNN respectively, listed in Ta-
ble 1). Data compression has a significantly better impact
on download latencies of such websites.

4.1.2 Optimizing HTTP using Pipelining
Many current web browsers continue to use non-persistent

connections (HTTP/1.0), which opens-up new TCP connec-
tion for every object downloaded. In contrast, HTTP/1.1 in
its default mode opens two TCP connections to each server
which are used to download all the objects from that server.
Our results in Figure 4 show that HTTP/1.1-default suffers
from significant under-utilization of the WWAN link. There-
fore we now study the impact of the HTTP/1.1-Pipelining
feature which is an experimental option in the standard [29].
In Table 5 we summarize the different variants of the HTTP
protocol that we study in this section and Section 4.2.1.

A browser that implements HTTP request pipelining is
allowed to issue new GET requests without waiting for the
entire response of the previous ones. Hence a browser can
use this mechanism to issue simultaneous GET requests and
ensure that the TCP connections are fully utilized for data
transfer. This is in contrast to the HTTP/1.1-default (non-
pipelined) which issues GET requests sequentially over each
open TCP connection. In fact, it is precisely this ‘stop-
and-go’ GET behavior of HTTP/1.1-default which leads to
significant of under-utilization of the WWAN link.

Mechanism Description
HTTP/1.0 Use of separate TCP conn. for

each object downloaded
HTTP/1.1-def. Use of two “persistent” TCP

conn. to download all objects.
HTTP/1.1-Pipelining Use of 2 “persistent” TCP conn.

with simultaneous GETs (Sec. 4.1.2)
HTTP/1.1-Opt. Use of 6 “persistent” TCP conn.

(Sec. 4.2.1)

Table 5: Annotation of different HTTP mechanisms
being discussed in this paper.

In Table 6 we can see that HTTP Pipelining provides
between 35% to 56% benefit for the different websites. The
benefit is particularly high for large websites like CNN with
many objects in their webpage. We explain this using the
distribution of object sizes shown earlier in Table 1. Most of
the objects in these popular webpages have a large number of
small objects (e.g. CNN has more than 60% of the objects
less than 1 KB in size). The default HTTP/1.1 protocol
gets each of these small objects sequentially over its two
TCP connections, and waits numerous times between the



Website Default Pipel. Improv. Opt. Improv.
(2 conn.) (6 conn.)

mail 34.5 15.2 55.9% 21.5 37.7%
yahoo 35.1 22.7 35.3% 24.2 31.1%
amazon 76.4 39.2 48.7% 43.5 43.1%
cnn 196.3 89.1 54.6% 123.0 37.3%

Table 6: Mean webpage download times improve-
ments for optimizations to browser configurations.
Opt. is HTTP/1.1-Opt. (Sec. 4.2.1). Pipel. is
HTTP/1.1-Pipelining (Sec. 4.1.2). Improvement
with respect to the HTTP/1.1-default (2 connec-
tions).

completion of each GET request and the beginning of the
next. In contrast, pipelining allows many GET requests to
be issued simultaneously by the mobile client and hence the
objects are fetched without any intervening gaps.

HTTP pipelining is an an experimental technique in the
HTTP/1.1 standard and we found that, unfortunately, most
browsers do not enable this feature by default. Additionally
our experiments show that the web servers of many pop-
ular websites currently do not respect this pipelining fea-
ture. Therefore, the real performance benefits of this mech-
anism on wireless web browsing can be quite limited. In all
our subsequent experimentation, we will ignore HTTP/1.1-
pipelining technique for this reason and re-visit it in our
summary of results (Section 4.5). In Section 4.2.1 we will
study the impact of a session layer technique in which we
vary the number of simultaneous TCP connections and how
it can approximate the behavior of HTTP pipelining.

4.1.3 Extended Caching and Delta Encoding
In this explicit, dual-proxy based optimization, we evalu-

ated extended content-hash based cachingand delta encod-
ing schemes [26].

In this scheme, a ‘client-proxy’ software was installed in
the mobile device which interacted with the server-side proxy
located on the WWAN infrastructure as shown in Figure 1.
In the extended caching scheme, the client as well as the
server proxy indexes web-objects by their SHA-1 fingerprint,
which we call Content Hash Key (CHK). Each time the
client attempts to download a webpage, it gets a CHK list
of all the objects in the webpage from the server-side proxy.
Using this information, the client makes request for only
single instance of objects, even if they point to multiple
URLs (same response but aliased to multiple URLs). Ex-
periments have shown that in many dynamically generated
websites (e.g. bbc.co.uk) such a phenomenon is common-
place (also known as response aliasing [21]). Hence, CHK-
based caching is able to eliminate redundant data transfer
over WWAN, save disk space and also improve overall web
download times.

When the data being downloaded is a different version
of the same object previously cached (i.e. same URL but
different CHK), a delta encoding scheme is used. Delta en-
coding is a standard technique in which the server (in our
case the server-side proxy) sends only the differences be-
tween the new and old versions of a document to the client.
This technique is very useful for websites like cnn.com and
bbc.co.uk, where the content changes incrementally, but

frequently. Our experience shows that the use of CHK-based
caching and delta-encoding on average improves real web-
browsing performance by about 3-6% in such fast-changing
web-sites.

4.2 Session-layer Techniques
The goal of the session-layer optimizations is to mitigate

the link ‘idle time’ effects incurred during DNS lookups and
some other factors during web downloads. We performed a
detailed study of the performance enhancement schemes for:
(1) impact of multiple simultaneous transport connections
as typical in standard web browsers, (2) impact of DNS
look-ups on web downloads [32], and, (3) server ‘parse-and-
push’ technique. We study URL-rewriting/DNS-boosting
with the transparent proxy, and Parse-and-Push scheme as
an explicit dual-proxy approach.

4.2.1 Varying Number of TCP Connections
In Section 4.1.2 we showed that the HTTP pipelining

feature has significant impact on web browsing performance
in WWAN environments. Unfortunately, the pipelining fea-
ture is not faithfully supported by many commercial web
servers. Therefore we look at an alternative session layer
technique where we treat each HTTP download as a single
session and optimally choose the number of simultaneous
TCP connections opened by the client to the server.

Figure 5 shows how the normalized web-download per-
formance varied with number of simultaneous TCP connec-
tions in use. The normalization was done with respect to
HTTP/1.1-default (two connections). In all the cases, we
found the best performance when 6 connections were used
(we call this HTTP/1.1-Opt). The download latency for
HTTP/1.1-Opt reduced by 35-42% for the different web-
sites. The number of parallel GET operations increase with
the number of connections, thus, decreasing the total ‘idle
time’ on the wireless channel. However, we observe no addi-
tional benefits of increasing the number of connections be-
yond six, at which point the download performance is lim-
ited by other inefficiencies (e.g. DNS lookups, TCP 3-way
handshake and slow start effects, etc.). In fact the perfor-
mance degrades due to interaction between the TCP con-
nections.

The optimal number of TCP connections that minimizes
download latency is a property of the wireless interface and
the network. Our results indicate that 6 TCP connections
provide maximum throughput when using a GRPS network
with an ideal downlink data rate of 39.6 Kbps. The optimal
number of TCP connections can vary for a CDMA 2000
network with an ideal downlink data rate of 144 Kbps, and
we recommend an empirical configuration of the browser
settings based on such properties of the WWAN network.

Increasing the number of simultaneous TCP connections
is an aggressive behavior. However, for bandwidth-depleted
environments like WWAN environments, such a behavior
leads to significant improvement in the user experience (i.e.
for CNN the download latency reduces from 196.3 seconds
to 123.0 seconds).

In Table 6 we can observe that the use of HTTP/1.1-
Opt (6 connections) leads to significant performance benefits
for web downloads. While the performance improvement of
HTTP/1.1-Opt is similar to that of HTTP/1.1-Pipelining, it
is somewhat lower in some cases. This is because HTTP/1.1-
Opt is only able to approximate the behavior of HTTP/1.1-
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Figure 5: Download performance as the num-
ber of simultaneous TCP connections was varied.
Download times normalized with respect to the
HTTP/1.1 default of two TCP connections.

Pipelining by carefully choosing the number of simultaneous
TCP connections.

The goal of both these optimizations, in the WWAN con-
text, are similar — to reduce the number and overall du-
ration of idle times between successive GET requests over
each TCP connection. Since most web servers currently do
not support the HTTP pipelining option, HTTP/1.1-Opt is
an alternative approximation that may be used by WWAN
clients to realize similar benefits.

4.2.2 URL-rewriting/DNS-boosting
These are two almost equivalent techniques that transpar-

ently reduce the DNS lookup overheads at the mobile client
[32]. In the URL re-writing technique, the proxy in the cel-
lular provider’s network intercepts the GET request issued
by the client for a webpage, say index.html, and makes
appropriate server requests on the client’s behalf. On re-
ceiving the index.html page, the proxy parses the contents,
and identifies the names of all other servers that holds dif-
ferent embedded objects and replaces them with its own

IP address similar to schemes employed by Content Distri-
bution Networks [22]. It then responds with this modified
index.html to the client. The client now directly contacts
the proxy using the latter’s IP address for these embedded
objects through subsequent GET requests. The proxy again
(pre-)fetches these objects from the other servers and in turn
serves them to the client, much like a web caching system.
Thus the client needs to perform at most one DNS lookup.

DNS-boosting achieves the same effect as URL re-writing,
but by intelligently manipulating DNS queries from the client.
By responding to the DNS queries with a fixed IP address,
the DNS-booting technique implicitly forces the client to
point to one single server so that client can open optimal
number of TCP connections thereby improving overall per-
formance. Thus, we find that both schemes can benefit per-
formance in two ways: (1) by avoiding extra DNS Lookups,
and, (2) by using optimal choice of TCP connections opened
by a web browser to the server. More detailed description
of both the schemes is available in [32].

To quantify the benefits of these schemes, we implemented

Includes App. Opts: Full Compression
1.1-def. 1.1-Opt 1.1-Opt + Improv.

Website only DNS-b/URL-r
mail 28.4 17.7 16.5 58.1%
yahoo 20.7 14.3 13.4 64.7%
amazon 62.7 35.7 33.8 53.9%
cnn 174.3 109.2 101.1 58.0%

Table 7: Additional benefits of session-level tech-
niques. Download time in seconds. Improvement
with respect to HTTP/1.1-def. (first column).

the DNS-boosting/URL-rewriting proxy and performed down-
load experiments for different websites. We present the re-
sults in Table 7. Since we wanted to quantify the addi-
tional benefits of the different session level techniques, we
performed the application-level optimizations (not including
HTTP/1.1-pipelining since its prevalence is still limited in
commercial web servers) in all these experiments. As noted
before, use of HTTP/1.1-Opt itself leads to significant per-
formance benefits, i.e. between 37-44%, while elimination of
the DNS lookup overhead adds another 5-9% improvement
in the download latency. The combined improvements due
to these session layer techniques are between 53-65%.

4.2.3 Server-side Parse-and-Push
Parse-and-push is a session-level, explicit, dual-proxy scheme

where the server-side proxy located at the other end of the
wireless link in the WWAN network attempts to specula-
tively ‘push’ objects towards the client that it knows the
client will have to download. For example, when the client
makes a request for the index.html page, the server-side
proxy will begin pushing the various objects embedded in
the index.html file even before the client makes explicit
GET requests for it. Parse-and-push emulates deterministic
content pushing towards the mobile client, when the wireless
downlink would have been otherwise left idle. While sup-
porting parse-and-push mechanism requires explicit client-
side software update, the scheme helps to improve overall
utilization of the link. Our experiments have shown that
parse-and-push can provide an additional 5%-12% improve-
ment in the web-page download latency for popular websites.

4.3 Transport-layer Techniques
We now examine two optimization techniques in the trans-

port layer that have been proposed in recent literature [12,
13]. The first one is a transparent-proxy solution that at-
tempts to optimize TCP performance using a ‘transparent’
proxy located in the cellular provider’s network [13]. We
refer to this technique as TCP-WWAN. The other is an
‘explicit dual-proxy’ solution which defines a custom pro-
tocol based on UDP [12] (we call it UDP-GPRS.) While
TCP is designed to operate over a wide-range of network
and link conditions, the optimized protocols studied in this
section specifically leverage the knowledge of the underlying
WWAN wireless links and hence achieve improved perfor-
mance. Due to space constraints we only summarize the
key features of both these implementations.

4.3.1 TCP WWAN
TCP WWAN defines a transparent proxy-based solution

in which the proxy is located in the cellular provider’s net-



Website App. + Session Opts: 1.1-Opt + DNS-b/URL-r
None T1 Improv. T2 Improv.

mail 16.5 15.7 11.2% 14.2 13.6%
yahoo 13.4 11.6 12.7% 11.4 14.2%
amazon 33.8 30.8 8.6% 29.9 11.3%
cnn 101.1 96.24 4.8% 92.7 7.7%

Table 8: Benefits of transport-level optimizations
techniques. Download time in seconds. None im-
plies no transport optimizations, T1 is TCP-WWAN
and T2 is UDP-GPRS. Improvements with respect
to None (first column).

work [13]. It specifically addresses some of the main perfor-
mance problems of TCP for web downloads over WWANs.
For example, instead of using TCP slow start, it uses a
pre-determined value of the bandwidth-delay product and
performs aggressive recovery during packet losses and link
stalls. Note that such aggressive behavior can be very dis-
ruptive if implemented in the Internet. However, TCP-
WWAN is implemented only within the cellular provider’s
network which already implement appropriate bandwidth
sharing mechanisms between users at lower layer of the pro-
tocol stack.

Standard TCP leads to large queue build-up due to gen-
erous buffer provisioning in most WWAN networks. This
impacts TCP performance over WWAN links to be some-
times degraded due to spurious timeouts. When the wireless
link ‘stalls’ occur, undelivered TCP segments accumulate in
these large queues. However, once the link returns to nor-
malcy, these segments are then correctly re-transmitted by
the reliable WWAN link layer on link repair (causing ‘delay
spikes’), but the TCP sender timeouts because its retrans-
mission timer has expired meanwhile. TCP-WWAN can es-
timate the available bandwidth on the wireless link and reg-
ulate the flow of TCP segments towards the mobile client
such that such queue build-up is avoided inside WWAN net-
works. This prevents the TCP sender from spuriously timing
out, when such wireless link stalls occur. We implemented
a TCP-WWAN proxy for an experimental evaluation of this
technique based on the description in [13].

4.3.2 Custom Transport Protocol
UDP-GPRS [12] is an explicit dual-proxy based scheme

to improve the transport performance of web downloads.
This scheme defines a reliable protocol using UDP and im-
plements ordered, reliable, message transfer. The protocol
is optimized specifically for GPRS networks by leveraging
its knowledge of the GPRS wireless link. For example, this
protocol is aware that the GPRS link layers offer reliable
in-order data delivery. Hence it uses a selective repeat with
Negative Acknowledgements for loss recovery. Using such
specific properties and characteristics of GPRS links, this
protocol responds efficiently even in the event of common
patterns of packet losses. Periodic messages are generated
every few seconds which allow hosts to detect serious link
stalls. If such a link stall is detected, the client discon-
nects and re-attaches to the GPRS network. Experience
has shown that this action often repairs the link failures.
An unaware transport protocol (e.g. default TCP) will ex-
perience severe back-offs and failures under similar circum-

stances. UDP-GPRS, by design, also avoids TCP’s connec-
tion setup and slow start delays. While TCP has to operate
over links with widely varying qualities, being a custom so-
lution UDP-GPRS can make many more assumptions about
the underlying network. For instance, since GPRS networks
implement a mechanism to share bandwidth between users,
there is no need for the UDP-GPRS protocol to implement
its own congestion avoidance mechanisms. Instead, it em-
ploys a simple credit-based flow control scheme. The credit
value is so chosen to ensure that the wireless link remains
fully utilized even though the buffer occupancy in the cellu-
lar network remains low. This avoids excess queueing that
some long-lived TCP flows cause.

In Table 8, we present the additional performance benefits
of applying the above transport-level optimizations. We can
observe that TCP-WWAN achieves between 5-13% addi-
tional benefits for the different websites. UDP-GPRS lever-
ages its specific knowledge of the wireless link characteristics
to improve the download performance further (between 7-
14% for the different websites).

4.4 Link-layer Techniques
We finally present an evaluation of link-layer mechanisms

and their impact on user performance. WWAN wireless
links use two different schemes to provide reliability across
the wireless links over a wide range of channel noise con-
ditions. The first of this is a data encoding scheme with
various levels of Forward Error Correction (FEC). For ex-
ample, GPRS networks use four different FEC schemes (CS-
1 to CS-4) [9, 10]. The choice of the appropriate encoding
scheme is made statically by the Radio Link Control (RLC)
layer. Most current GPRS WWANs make use of the CS-
2 scheme, which allows good data protection in moderate
to high noisy radio conditions [20]. The second one is an
Automatic Repeat Request (ARQ) scheme that works ag-
gressively to recover any data transfer losses through re-
transmissions. Since re-transmissions incur delays, all short
term link outages are hidden from the higher layers and
manifest as increased delays. The higher layers will detect
losses only for (1) deep fading that leads to bursty losses,
or (2) cell-reselection due to the cell update procedure that
leads to ‘black-outs’.

In this section we study mechanisms that will allow the
RLC to dynamically choose the encoding schemes in con-
junction with the ability to enable or disable ARQ, and the
impact of such mechanisms on applications. Performing ac-
tual experimentation for all of this study was difficult since
we had no control on the encoding schemes used by the Base
Station to transmit data the mobile client. At the mobile
client we only had the flexibility to enable or disable ARQ,
and the ability to disable FECs. In order to study the trade-
offs between ARQ-based and variable FEC-based link layer
reliability approaches, in some cases we relied on trace-based
simulations (the traces were generated from actual experi-
ments on our testbed).

Our traces were generated as follows: we sent a stream
of UDP packets from the proxy (shown in Figure 1) to the
mobile client. The WWAN wireless link is the bottleneck in
this system, and therefore, these UDP packets will queue at
the base station. The RLC layer will appropriately fragment
these UDP/IP packets into blocks and pace them out to the
mobile client at the rate permissible by the wireless link.
To generate our traces, we disable ARQ. Additionally we
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Figure 6: Impact of FEC-based link-layer data re-
covery for GPRS wireless links on bulk data down-
loads under different channel conditions (WWAN
trace-driven simulations).

set the RLC layer at the mobile client to deliver all packets
up to the IP layer (including packets in error) 1. The RLC
blocks are sub-divided into slots, and we can infer which
slots are corrupted over the wireless link. We then apply
various levels of FEC-based encodings and ARQ on these
traces and observe their performance on the applications.

We consider two kinds of applications in this study: (a)
reliable data transfer applications (like ftp and web traf-
fic), and, (b) non-reliable data transfer applications (like
streaming media). For reliable data transfer applications,
we assume that the link layer can dynamically choose an
amount of FEC (including none) to apply on the RLC data
blocks. For ease of exposition, we assume that the FEC is
applied at the granularity of slots. If there are 100 slots to
a block and the amount of FEC applied is 5%, then 5 out of
these 100 slots are used to redundantly encode the remain-
ing 95. Slots that are not recovered after FEC is applied
(due to higher channel error conditions) are recovered using
the ARQ scheme. For the non-reliable data transfer appli-
cations we completely disable ARQ. Hence data that could
not be recovered after FEC is applied, is lost.

4.4.1 Reliable Data Transfer Applications
In Figure 6, we plot the normalized data download latency

for reliable data transfer for a large data file for different
channel conditions and amount of FEC (the data is normal-
ized with respect to the experiment with the best channel
condition and no FEC). It is easy to see that for each differ-
ent channel condition there is an optimal value of FEC that
leads to the least download latency. For example a moder-
ately poor channel, with an error rate of 0.9% on the GPRS
channel, 5-6% FEC is the optimal choice to minimize down-
load times. By doing so, the data latency reduces by about
21.9%. In a better channel (say with 0.2% error rate) the
corresponding benefit is about 5%. The amount of required
FEC for such optimal performance increases with increase
in channel error rates. This data suggests that, instead of
using a fixed value of FEC (e.g. CS-2 in GPRS), networks

1Blocks with corrupted headers could not not be correctly
interpreted and hence was not delivered to the upper layers.
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should implement an RLC that can continuously monitor
the channel conditions and dynamically choose the amount
of FEC to be applied on reliable data transfers across the
wireless links.

4.4.2 Non-Reliable Data Transfer Applications
An important consideration for non-reliable data transfer

applications like media streaming is the jitter experienced
by the data stream. Our experiments indicate that use of
ARQ schemes for data recovery incurs a high jitter on traffic
— it can vary between 600 ms to 3 seconds depending on
the number of re-transmissions attempted. For such non-
reliable data applications we consider the scenario where
ARQ is completely disabled. Only variable amounts of FEC
is used to recover from link layer losses. Use of FEC in-
curs constant delay overhead even when the channel is loss
free. While this would decrease jitter between successive
data packets, under high noise channel conditions it would
also incur packet losses. In Figure 7 we show how the choice
of FEC impacts losses experienced by a streaming applica-
tion. We can see that even a low amount of FEC is sufficient
to obtain a low loss performance for streaming applications,
while maintain low jitter. However, a disadvantage of using
FEC to handle losses is a reduction in data throughput. For
example, when the channel error rate is 0.9%, 5-6% FEC
is useful to eliminate most of the channel errors. However,
this also leads to a reduction of useful data bandwidth by
5-6%. The gains of such FEC-based approaches are in cor-
responding reduction in jitter.

4.5 Summary of Results
In the previous sections, we presented a number of differ-

ent optimization techniques to improve web download per-
formance. We now summarize the main results. In this sec-
tion, we assume a reasonably good wireless link, (error less
than 0.2%) where dynamic FECs provide a latency improve-
ment of upto 5%. This value is derived from our trace-based
simulations. The benefits of dynamic FECs will increase
with poorer wireless channel conditions and decrease with
further improved channel conditions.

We have explored two classes of optimizations — those
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that require re-configuration or software update in the mo-
bile client, i.e. uses an explicit proxy, (called Client-reconf.)
and those that have no such requirements (called No-reconf.).
In Figure 8, we plot the relative contribution of the No-
reconf. schemes when all of them are applied simultaneously.

The optimizations include, Full Compression, HTTP/1.1-
Opt, DNS-boosting/URL-rewriting, TCP-WWAN, and dy-
namic FECs. For example, in Amazon application, ses-
sion, transport, and link layer techniques contribute 17.9%,
37.8%, 5.1%, and 2.2%, respectively. The improvement pro-
vided by all the techniques applied simultaneously were the
sum of these values, 63.0%, which brought the download la-
tency from 76.4 seconds to 29.3 seconds. In general, we
can observe that application and session layer tech-
niques dominate improvements in web performance.
They lead to 48-61% performance improvements for
our example websites.

Thus our work demonstrates that the application and
session-level mechanisms currently deployed for web brows-
ing applications make poor use of the relatively efficient
lower layers. Employing appropriate optimizations at these
layers (as described in this paper) can help bridge this per-
formance gap observed between the upper and lower layers.

Website No-reconf.-I No-reconf.-II Client-reconf.
Lat. Improv. Lat. Improv. Lat. Improv.

mail 15.7 54.4% 13.2 61.6% 12.4 64.0%
yahoo 11.6 66.9% 11.4 67.2% 9.9 71.7%
amazon 30.8 59.6% 27.4 64.1% 24.3 68.1%
cnn 96.2 50.9% 65.1 66.8% 59.3 69.7%

Table 9: Relative improvement, with respect to
HTTP/1.1-default, provided by the No-reconf. and
Client-reconf. based schemes. Download latency in
seconds.

Note that transport and link layers optimizations typically
provide 5-10% additional performance improvements, which
is still significant for web downloads over WWAN links.

In Table 9 we compare the total benefits of the No-reconf.
and the Client-reconf. solutions. We distinguish between

two different No-reconf. solutions: No reconf.-I uses HTTP/1.1-
Opt while No reconf.-II uses HTTP/1.1-Pipelining. Note
that these two techniques are interchangeable since they
have the same goal with somewhat similar effect. In both
these solutions we also apply all the other No. reconf. so-
lutions at the different layers. The Client-reconf. solu-
tion includes Full compression, Delta encoding and extended
caching, Parse-and-push, and UDP-GPRS. As we would ex-
pect, the Client-reconf. solution leverages extra functional-
ity between the client and the server-side proxy to achieve
better performance than the No-reconf. techniques. Addi-
tionally we can observe that between the two No-reconf. so-
lutions, the pipelining-based technique achieves better per-
formance than the HTTP/1.1-Opt based technique. This
indicates that pipelining is a very crucial technique to im-
prove performance and should be enabled by all web servers.

5. DISCUSSION
The results presented in this paper indicate that the op-

timizations at all layers of protocol stacks are necessary to
achieve significant performance benefits in GPRS environ-
ments. The summary presented in Section 4.5 also quantifies
the specific benefits of these optimizations at these different
layers.

In this section we discuss the following related questions:

• Are these optimization-based benefits specific to 2.5G
GPRS-based WWAN networks or do we expect simi-
lar performance benefits in the next generation (3G)
networks as well? Hence we first present a preliminary
case study of a specific 3G CDMA-based network and
demonstrate that our observations in this paper would
largely extend to these environments.

• Are WWAN environments a special case of low-bandwidth
high-latency networks? In particular should we ex-
pect that the optimizations studied in this paper in
the context of WWANs would also lead to equivalent
performance improvements in wired dial-up environ-
ments? Hence we next present a similar study for
web applications run over wired dialup environments
to demonstrate that WWAN environments have sig-
nificantly different characteristics and performance.

We present these results in two tables (Tables 10 and 11) for
FTP and web throughputs respectively as we discuss later.

Finally we will conclude this section with a discussion of
limitations of proxy-based solutions and the implications of
such limitations in the context of the results presented.

Implications in 3G Networks. To evaluate the potential
impact of our results on 3G WWAN environments, we con-
ducted experiments over a commercial CDMA 3G-1X net-
work. In these experiments we used a Samsung VGA1000
CDMA 3G-1X handset (with a maximum downlink data-
rate of 144Kbps) to measure FTP and web throughputs.
The goal of our study was to examine the potential ben-
efits of optimizations to 3G networks. Hence we present
the FTP throughputs in Table 10 for different file sizes and
the unoptimized web throughput in Table 11 for the four
websites and compare them with the corresponding per-
formance of our GPRS experiments. In both these tables
we quantify the under-performance of the two data transfer
protocols — the under-performance indicates the reduction



File Size WWAN 2.5G WWAN 3G Wired (dial-up)
(KB) T’put % dgr. T’put % dgr. T’put % dgr.
1 13.2 -67% 16.3 -87% 29.1 -48%
5 18.1 -66% 23.3 -84% 35.6 -37%
10 18.8 -54% 37.8 -74% 44.3 -22%
50 30.5 -23% 87.5 -39% 46.1 -18%
100 30.5 -23% 94.1 -34% 45.8 -19%

Table 10: Ftp-throughputs in Kbps for different file-
sizes over different links. Degradation (in %) with
respect to the ideal downlink data rates in each case.

in actual data throughput in comparison to the maximum
achievable downlink data rate in the respective networks.
In these tables we can observe that both 2.5G (GPRS) and
3G (CDMA) networks exhibit a significant additional under-
performance between FTP throuhgput and web throughput.
The FTP throughput in the 3G case for a 100 KB file is
about 34% less than the ideal downlink data rate of 144
Kbps, whereas the web download of CNN shows a signifi-
cantly greater under-performance (i.e., 77% lower than the
ideal downlink data rate).

Website WWAN 2.5G WWAN 3G Wired (dial-up)
(Virtual) T’put % dgr. T’put % dgr. T’put % dgr.
mail 8.5 -79% 34.6 -76% 37.1 -34%
yahoo 13.8 -66% 41.2 -71% 42.8 -24%
amazon 9.6 -75% 38.4 -73% 43.1 -23%
cnn 7.6 -81% 32.8 -77% 38.5 -32%

Table 11: Web download throughputs (in Kbps)
over different links without performance optimiza-
tions. Performance degradation (in %) is relative to
the ideal downlink data rate.

Note that in these experiments we do not apply any per-
formance optimizations at any layer. In Table 10 we show
the FTP-throughputs achieved over 3G-1X. These results
demonstrate that performance mismatch as seen over 2.5G
(GPRS) WWAN are also present in the 3G WWAN envi-
ronments. Hence we expect that our evaluations presented
in this paper to extend to these environments as well.

Wired Dial-up Environments. We also experimentally in-
vestigated performance of wired (dial-up) environments. We
conducted experiments using a standard V90 56Kbps dial-
up modem. It is interesting to note that there exists no
significant mismatch between FTP and web throughputs in
the wired dial-up scenarios. The performance degradation
(with respect to the ideal data rate of 56 Kbps) of a 100 KB
FTP is 19%, while that of a large website like CNN is 32%.
This is very unlike the characteristics experienced in WWAN
environments. We attribute this difference to the following
two reasons. First, the RTTs for dial-up modems (in the
100-150 ms range for 64 byte packets) is relatively lower in
comparison to the significantly higher values encountered in
WWAN links (in the 600 ms to few seconds range for same
packet size). Hence the ‘stop-and-go’ behavior of default the
HTTP protocols in default settings leads to greater under-
utilization in WWAN links than it does in dial-up wired
environments. Clearly, the optimizations studied in this pa-

per will lead to improvement in download performance over
dial-up modems as well [17], but the impact of these tech-
niques are significantly higher in WWANs. Second, the RTT
variability on dial-up links is marginal when compared to
that of WWAN links. Finally, losses encountered in wired
dial-up links are few and far in between (unlike WWAN
environments). Hence although the wired dial-up environ-
ments have low bandwidths, their impact of data transfer
applications is relatively benign. It allows modems to imple-
ment additional stateful packet and connection compression
techniques that are more difficult to implement in WWAN
environments.

Trade-offs in Proxy Deployments over WWANs. Our re-
sults demonstrate that proxy-based solutions provides sig-
nificant benefits to the end-user experience over WWANs.
However, the presence of the proxy can split the “end-to-
end” properties of an application and has security and other
related implications. For example, if the webpage contents
are digitally signed by the content provider, then any up-
dates e.g. URL-rewriting or content compression, will vio-
late the security guarantees of the client.

Part of the problem would be solved if the content source
itself implemented such proxy functionality. Even more re-
alistically, it may be necessary to provide the clients with
the appropriate choice to trade-off performance against end-
to-end guarantees. For example, a client browsing news at
CNN may accept some susceptibility to insecure data at the
cost of significant performance improvements in download
latencies. The same client may not use a proxy-based solu-
tion when downloading stock-quotes and instead prefer the
rigid security properties of end-to-end encryption.

The explicit proxy based solutions define customized mech-
anisms to provide the best-known benefits to WWAN clients.
However, client re-configuration or a client-side software up-
date is an intrinsic requirement of such schemes. This in-
creases the deployment overhead of such schemes higher
than the other class of schemes. In many cases it is ex-
pensive for cellular operators to provide such updates to
existing client equipment. The price performance trade-off
of the wireless cellular operators will finally determine the
deployment of such mechanisms in WWAN environments.

6. RELATED WORK
Researchers have examined various optimization choices

at the different layers of the protocol stack in the context
of both wired, wireless, and also for WWAN environments.
However, much of the prior research has focussed mainly on
isolated performance optimizations.

Piror research in WWANs have primarily focussed on the
following three aspects: (a) improving TCP performance
over WWANs (e.g. [14, 33]), (b) passive analysis of TCP
traffic traces (e.g. [8]), and, (c) cross-layer interaction and
optimizations of TCP with the link-layer [25, 30]. Our work
in this paper differs from all prior work in WWANs in several
ways. In our study (1) we quantify the causes of poor ap-

plication performance and examine the user experience over
WWANs, (2) we measure the different components that con-
tribute to the latencies during web downloads for a range of
popular websites, (3) we use virtual web hosting as an im-
portant construct to perform repeatable and reproducible
web browsing experiments over WWANs, (4) we benchmark
all standard web browsers, protocols, and techniques with



respect to their performance, and, (5) we implement and
study a wide selection of optimization techniques at differ-
ent layers and their cross layer interactions on application
performance.

At the link layer, TULIP [11] describes a transport un-
aware ARQ mechanism to improve TCP performance. A.
Chokalingam et al. in [15] and Ayanoglu et al. in [2] exam-
ine the interaction between ARQ and FEC-based link recov-
ery mechanisms in the context of wireless networks through
detailed simulations and is related to our discussion in Sec-
tion 4.4. Balakrishnan et. al. [4] use explicit loss notifica-
tion (ELN) from the wireless link, mostly in the context of
wireless LANs, to improve the performance of applications
like HTTP.

For the transport layer new mechanisms have been de-
fined to improve the end-to-end performance of reliable ap-
plications in wireless LAN environments. Examples of this
are Snoop [5], I-TCP [3], M-TCP [34] etc. Unfortunately,
solution meant for wireless LANs may not work that well
over WWAN. Researchers have also demonstrated that the
GPRS link layer and TCP do not adversely interact with
each other [25, 31]. Similarly, link layer (RLP) retransmis-
sions for 3G-1x links ensure packet loss probability of less
than 1% that minimizes impact on TCP [14]. While our re-
sults agree with these above observations that the link-layer
is generally well-tuned for transport TCP protocol to oper-
ate over WWANs, the end-result (i.e. user experience) for
TCP-based applications like web browsing remains remark-
ably different. Our work also demonstrates that employ-
ing appropriate optimizations at the application and session
layers (as described in this paper) can provide significant
benefits to actual user (web) experience.

In other important works, R. Ludwig et. al. [31] examine
the performance of TCP over GSM cellular links and subse-
quently propose specific link layer mechanisms (e.g. frame
size adaptations) that are necessary to improve TCP per-
formance in such environments [30]. In [33], P. Sinha et
al. introduce WTCP as one of the first solution to over-
come performance problems seen for TCP over CDPD-based
WWAN links. Many of the link-related performance is-
sues (high RTTs, black-outs etc.) observed in CDPD-based
WWANs are similar to that observed in GPRS and 3G-
1x based WWANs. In [14], M. C. Chan and R. Ramjee
proposed ACK Regulator for improving TCP performance
over CDMA-based 3G-1X links. Unlike GSM-based GPRS,
3G-1X links exhibit much higher delay and rate variations
and transport-layer optimizations like ACK regulator can be
used to significantly benefit TCP performance in such envi-
ronments.

IETF RFC 3135 [16] and RFC 3481 [18] provide further
details of different mechanisms to improve TCP performance
in different wireless environments. Research has also inves-
tigated some TCP performance issues over GPRS, e.g., a
large-scale passive analysis of end-to-end TCP flows [8].

Proxy and caching based schemes to improve web perfor-
mance, similar to the ones we have explored in this paper
for WWAN environments, have been already extensively ex-
plored in the prior literature mostly in the context of wired
environments, e.g. Cache Digests [23], response-aliasing in
web transactions [21] etc. A detailed description of caching
schemes is presented in [7]. Similarly, delta encoding is also
a well-known and useful technique to improve HTTP perfor-
mance [26]. WebExpress [19] from IBM defines some appli-

cation level techniques, including caching, differencing, and
header-reduction mechanisms, and is related to some of the
techniques explore in this paper. In the context of WWAN
environments, Liljeberg et. al. developed Mowgli Communi-
cation Architecture [24] that uses a pair of proxies to define
employs a custom protocol tailored for the GSM link. Their
solution is similar to (UDP-GPRS) [12].

The Wireless Application Protocol [1] is another related
mechanism that employs explicit proxies (optional but highly
recommended) to improve web experience of WWAN users.
The optimization choices discussed in this paper can be ap-
plied in the context of WAP 2.0, specifically for improve-
ments suggested in “wireless-profiled” TCP and HTTP [1].

7. CONCLUSIONS
We conducted a detailed comparative performance study

of a wide selection of optimizations choices applicable for
WWANs. Ours is the first significant study to have at-
tempted to address important questions like: Why is the
web so slow over WWANs? Even though TCP is relatively
well-tuned to perform efficiently in these environments, why
is the performance of HTTP applications significantly worse?
While prior studies have examined the problems of TCP
in WWAN environments, we are not aware of any prior
research that presents a detailed evaluation of application
performance. Our performance study also provides impor-
tant insights in understanding what optimization choices
can yield how much benefit. The performance optimiza-
tions at each individual layer, studied in this paper, lever-
age well-adapted and optimized lower layers. This was done
to avoid any inefficient cross-layer design including adverse
inter-layer interactions.

The following are some of our important observations:

1. There is a significant mismatch in the performance of
default HTTP protocols and its underlying transport
mechanism TCP. Unlike the wired (e.g. dial-up) en-
vironments, we find that standard web browsers are
unable to exploit the meagre resources of the WWAN
links.The achieved throughput is sometimes 70% lower
than the ideal downlink data rate (Table 11).

2. Significant application performance benefits can be re-
alized (about 48-61% improvements) by suitable opti-
mizations implemented at the application and session
layers (Figure 8).

3. Proxy-based solutions are most effective in improving
in application performance than non-proxy based ap-
proaches (Table 9).

Our performance study has broad implications. The sig-
nificant benefits resulting from using HTTP pipelining in
WWANs highlights the need to implement this feature in
all commercial class web servers and standard web browsers.
Hence, appropriate support from web server vendors, con-
tent providers and browser designers will go a long way in
the success of the next generation ‘mobile’ Internet.

We find that a collective suite of performance optimiza-
tions implemented using proxies at different layers can re-
duce the client-response times by at least a factor of two.
This is possible because the proxies are specifically aware
of the characteristics of the WWAN environment and hence
makes more ‘intelligent’ decisions to adapt the performance



of data delivery mechanisms. Such awareness of client char-
acteristics is crucial for improving the overall end user-experience.
This can imply any one of the following two things: (1)
Proxy-based solutions should not be restrictively viewed as
a short-term solution. Instead, cellular operators should de-
sign, implement and deploy such proxies within their net-
work and end-users should be given the choice to use such
proxies, thus, trading off security with performance. Such
an approach may be acceptable in certain scenarios. (2) The
intelligence of the proxies should be implemented in the web
servers, content providers, as well as the web browsers. Such
an approach will maintain “end-to-end”ness of the protocols,
however, will require significant collaborative effort between
all these diverse vendors of different applications.

Other than performance, it is important to consider the
trade-offs between the cost and the ease of deployment as-
sociated with such proxy installations. As previously dis-
cussed in our study, transparent proxies are the easiest to
deploy since they require no changes or configuration to the
mobile-end client systems. However, from a performance
perspective, dual-proxy based solutions seems to provide the
most significant benefits. Unfortunately, such an approach
requires either a reconfiguration or a software update in the
mobile client. This increases its deployment overhead. In
many cases it is expensive for the cellular operators to pro-
vide such updates to the existing client equipment.

This paper presents an extensive study of the performance
of web applications over GPRS-based WWAN environments.
In Section 5 we also present our preliminary work in under-
standing the performance characteristics in other WWAN
environments, e.g. 3G technologies like CDMA 2000. We
believe that a further detailed characterization of these en-
vironments will be very useful. Our hope is that others
will also perform similar studies of actual user experience

over such wireless environments (e.g. W-CDMA UMTS and
CDMA 2000) so that extensive benchmarks could be ob-
tained and eventually lead to adoption of a “best of both
worlds” solution.
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