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Abstract
We introduce Membrane, a set of changes to the oper-
ating system to support restartable file systems. Mem-
brane allows an operating system to tolerate a broad
class of file system failures and does so while remain-
ing transparent to running applications; upon failure, the
file system restarts, its state is restored, and pending ap-
plication requests are serviced as if no failure had oc-
curred. Membrane provides transparent recovery through
a lightweight logging and checkpoint infrastructure, and
includes novel techniques to improve performance and
correctness of its fault-anticipation and recovery machin-
ery. We tested Membrane with ext2, ext3, and VFAT.
Through experimentation, we show that Membrane in-
duces little performance overhead and can tolerate a wide
range of file system crashes. More critically, Membrane
does so with little or no change to existing file systems
thus improving robustness to crashes without mandating
intrusive changes to existing file-system code.

1 Introduction
Operating systems crash. Whether due to software
bugs [8] or hardware bit-flips [22], the reality is clear:
large code bases are brittle and the smallest problem in
software implementation or hardware environment can
lead the entire monolithic operating system to fail.

Recent research has made great headway in operating-
system crash tolerance, particularly in surviving device
driver failures [9, 10, 13, 14, 20, 31, 32, 37, 40]. Many
of these approaches achieve some level of fault toler-
ance by building a hard wall around OS subsystems using
address-space based isolation and microrebooting [2, 3]
said drivers upon fault detection. For example, Nooks
(and follow-on work with Shadow Drivers) encapsulate
device drivers in their own protection domain, thus mak-
ing it challenging for errant driver code to overwrite data
in other parts of the kernel [31, 32]. Other approaches
are similar, using variants of microkernel-based architec-
tures [7, 13, 37] or virtual machines [10, 20] to isolate
drivers from the kernel.

Device drivers are not the only OS subsystem, nor are
they necessarily where the most important bugs reside.
Many recent studies have shown that file systems contain
a large number of bugs [5, 8, 11, 25, 38, 39]. Perhaps
this is not surprising, as file systems are one of the largest

and most complex code bases in the kernel. Further,
file systems are still under active development, and new
ones are introduced quite frequently. For example, Linux
has many established file systems, including ext2 [34],
ext3 [35], reiserfs [27], and still there is great interest in
next-generation file systems such as Linux ext4 and btrfs.
Thus, file systems are large, complex, and under develop-
ment, the perfect storm for numerous bugs to arise.
Because of the likely presence of flaws in their imple-

mentation, it is critical to consider how to recover from
file system crashes as well. Unfortunately, we cannot di-
rectly apply previous work from the device-driver litera-
ture to improving file-system fault recovery. File systems,
unlike device drivers, are extremely stateful, as they man-
age vast amounts of both in-memory and persistent data;
making matters worse is the fact that file systems spread
such state across many parts of the kernel including the
page cache, dynamically-allocated memory, and so forth.
On-disk state of the file system also needs to be consis-
tent upon restart to avoid any damage to the stored data.
Thus, when a file system crashes, a great deal more care is
required to recover while keeping the rest of the OS intact.

In this paper, we introduce Membrane, an operating
system framework to support lightweight, stateful recov-
ery from file system crashes. During normal operation,
Membrane logs file system operations, tracks file sys-
tem objects, and periodically performs lightweight check-
points of file system state. If a file system crash oc-
curs, Membrane parks pending requests, cleans up ex-
isting state, restarts the file system from the most recent
checkpoint, and replays the in-memory operation log to
restore the state of the file system. Once finished with re-
covery, Membrane begins to service application requests
again; applications are unaware of the crash and restart
except for a small performance blip during recovery.

Membrane achieves its performance and robustness
through the application of a number of novel mechanisms.
For example, a generic checkpointing mechanism enables
low-cost snapshots of file system-state that serve as re-
covery points after a crash with minimal support from ex-
isting file systems. A page stealing technique greatly re-
duces logging overheads of write operations, which would
otherwise increase time and space overheads. Finally, an
intricate skip/trust unwind protocol is applied to carefully
unwind in-kernel threads through both the crashed file
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system and kernel proper. This process restores kernel
state while preventing further file-system-induced damage
from taking place.
Interestingly, file systems already contain many ex-

plicit error checks throughout their code. When triggered,
these checks crash the operating system (e.g., by calling
panic) after which the file system either becomes unus-
able or unmodifiable. Membrane leverages these explicit
error checks and invokes recovery instead of crashing the
file system. We believe that this approach will have the
propaedeutic side-effect of encouraging file system devel-
opers to add a higher degree of integrity checking in order
to fail quickly rather than run the risk of further corrupting
the system. If such faults are transient (as many important
classes of bugs are [21]), crashing and quickly restarting
is a sensible manner in which to respond to them.
As performance is critical for file systems, Membrane

only provides a lightweight fault detection mechanism
and does not place an address-space boundary between
the file system and the rest of the kernel. Hence, it is
possible that some types of crashes (e.g., wild writes [4])
will corrupt kernel data structures and thus prohibit com-
plete recovery, an inherent weakness of Membrane’s ar-
chitecture. Users willing to trade performance for relia-
bility could use Membrane on top of stronger protection
mechanism such as Nooks [31].

We evaluated Membrane with the ext2, VFAT, and ext3
file systems. Through experimentation,we find that Mem-
brane enables existing file systems to crash and recover
from a wide range of fault scenarios (around 50 fault in-
jection experiments). We also find that Membrane has less
than 2% overhead across a set of file system benchmarks.
Membrane achieves these goals with little or no intrusive-
ness to existing file systems: only 5 lines of code were
added to make ext2, VFAT, and ext3 restartable. Finally,
Membrane improves robustness with complete applica-
tion transparency; even though the underlying file system
has crashed, applications continue to run.

The rest of this paper is organized as follows. Sec-
tion 2 places Membrane in the context of other relevant
work. Sections 3 and 4 present the design and imple-
mentation, respectively, of Membrane; finally, we eval-
uate Membrane in Section 5 and conclude in Section 6.

2 Background
Before presenting Membrane, we first discuss previous
systems that have a similar goal of increasing operating
system fault resilience. We classify previous approaches
along two axes: overhead and statefulness.

We classify fault isolation techniques that incur little
overhead as lightweight, while more costly mechanisms
are classified as heavyweight. Heavyweight mechanisms
are not likely to be adopted by file systems, which have
been tuned for high performance and scalability [15, 30,

1], especially when used in server environments.
We also classify techniques based on how much system

state they are designed to recover after failure. Techniques
that assume the failed component has little in-memory
state is referred to as stateless, which is the case with
most device driver recovery techniques. Techniques that
can handle components with in-memory and even persis-
tent storage are stateful; when recovering from file-system
failure, stateful techniques are required.

We now examine three particular systems as they are
exemplars of three previously explored points in the de-
sign space. Membrane, described in greater detail in sub-
sequent sections, represents an exploration into the fourth
point in this space, and hence its contribution.

2.1 Nooks and Shadow Drivers
The renaissance in building isolated OS subsystems is
found in Swift et al.’s work on Nooks and subsequently
shadow drivers [31, 32]. In these works, the authors
use memory-management hardware to build an isolation
boundary around device drivers; not surprisingly, such
techniques incur high overheads [31]. The kernel cost of
Nooks (and related approaches) is high, in this one case
spending nearly more time in the kernel.

The subsequent shadow driver work shows how re-
covery can be transparently achieved by restarting failed
drivers and diverting clients by passing them error codes
and related tricks. However, such recovery is relatively
straightforward: only a simple reinitialization must occur
before reintegrating the restarted driver into the OS.

2.2 SafeDrive
SafeDrive takes a different approach to fault re-
silience [40]. Instead of address-space based protec-
tion, SafeDrive automatically adds assertions into device
drivers. When an assert is triggered (e.g., due to a null
pointer or an out-of-bounds index variable), SafeDrive en-
acts a recovery process that restarts the driver and thus
survives the would-be failure. Because the assertions are
added in a C-to-C translation pass and the final driver
code is produced through the compilation of this code,
SafeDrive is lightweight and induces relatively low over-
heads (up to 17% reduced performance in a network
throughput test and 23% higher CPU utilization for the
USB driver [40], Table 6.).

However, the SafeDrive recovery machinery does not
handle stateful subsystems; as a result the driver will be
in an initial state after recovery. Thus, while currently
well-suited for a certain class of device drivers, SafeDrive
recovery cannot be applied directly to file systems.

2.3 CuriOS
CuriOS, a recent microkernel-based operating system,
also aims to be resilient to subsystem failure [7]. It
achieves this end through classic microkernel techniques
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Heavyweight Lightweight
Nooks/Shadow[31, 32] SafeDrive[40]

Stateless Xen[10], Minix[13, 14] Singularity[19]
L4[20], Nexus[37]

Stateful CuriOS[7] MembraneEROS[29]

Table 1: Summary of Approaches. The table performs
a categorization of previous approaches that handle OS subsys-
tem crashes. Approaches that use address spaces or full-system
checkpoint/restart are too heavyweight; other language-based
approaches may be lighter weight in nature but do not solve the
stateful recovery problem as required by file systems. Finally,
the table marks (with an asterisk) those systems that integrate
well into existing operating systems, and thus do not require the
widespread adoption of a new operating system or virtual ma-
chine to be successful in practice.

(i.e., address-space boundaries between servers) with an
additional twist: instead of storing session state inside a
service, it places such state in an additional protection do-
main where it can remain safe from a buggy service. How-
ever, the added protection is expensive. Frequent kernel
crossings, as would be common for file systems in data-
intensive environments, would dominate performance.

As far as we can discern, CuriOS represents one of the
few systems that attempt to provide failure resilience for
more stateful services such as file systems; other heavy-
weight checkpoint/restart systems also share this prop-
erty [29]. In the paper there is a brief description of an
“ext2 implementation”; unfortunately it is difficult to un-
derstand exactly how sophisticated this file service is or
how much work is required to recover from failures. It
also seems that there is little shared state as is common in
modern systems (e.g., pages in a page cache).

2.4 Summary
We now classify these systems along the two axes of over-
head and statefulness, as shown in Table 1. From the table,
we can see that many systems use methods that are simply
too costly for file systems; placing address-space bound-
aries between the OS and the file system greatly increases
the amount of data copying (or page remapping) that must
occur and thus is untenable. We can also see that fewer
lightweight techniques have been developed. Of those,
we know of none that work for stateful subsystems such
as file systems. Thus, there is a need for a lightweight,
transparent, and stateful approach to fault recovery.

3 Design
Membrane is designed to transparently restart the affected
file system upon a crash, while applications and the rest of
the OS continue to operate normally. A primary challenge
in restarting file systems is to correctly manage the state
associated with the file system (e.g., file descriptors, locks
in the kernel, and in-memory inodes and directories).

In this section, we first outline the high-level goals for
our system. Then, we discuss the nature and types of
faults Membrane will be able to detect and recover from.
Finally, we present the three major pieces of the Mem-
brane system: fault detection, fault anticipation, and re-
covery.

3.1 Goals
We believe there are five major goals for a system that
supports restartable file systems.
Fault Tolerant: A large range of faults can occur in
file systems. Failures can be caused by faulty hardware
and buggy software, can be permanent or transient, and
can corrupt data arbitrarily or be fail-stop. The ideal
restartable file system recovers from all possible faults.
Lightweight: Performance is important to most users and
most file systems have had their performance tuned over
many years. Thus, adding significant overhead is not a vi-
able alternative: a restartable file system will only be used
if it has comparable performance to existing file systems.
Transparent: We do not expect application developers
to be willing to rewrite or recompile applications for this
environment. We assume that it is difficult for most appli-
cations to handle unexpected failures in the file system.
Therefore, the restartable environment should be com-
pletely transparent to applications; applications should
not be able to discern that a file-system has crashed.
Generic: A large number of commodity file systems exist
and each has its own strengths and weaknesses. Ideally,
the infrastructure should enable any file system to bemade
restartable with little or no changes.
Maintain File-System Consistency: File systems pro-
vide different crash consistency guarantees and users typ-
ically choose their file system depending on their require-
ments. Therefore, the restartable environment should not
change the existing crash consistency guarantees.

Many of these goals are at odds with one another. For
example, higher levels of fault resilience can be achieved
with heavier-weight fault-detection mechanisms. Thus
in designing Membrane, we explicitly make the choice
to favor performance, transparency, and generality over
the ability to handle a wider range of faults. We believe
that heavyweight machinery to detect and recover from
relatively-rare faults is not acceptable. Finally, although
Membrane should be as generic a framework as possible,
a few file system modifications can be tolerated.

3.2 Fault Model
Membrane’s recovery does not attempt to handle all types
of faults. Like most work in subsystem fault detection and
recovery, Membrane best handles failures that are tran-
sient and fail-stop [26, 32, 40].

Deterministic faults, such as memory corruption, are
challenging to recover from without altering file-system
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code. We assume that testing and other standard code-
hardening techniques have eliminated most of these bugs.
Faults such as a bug that is triggered on a given input se-
quence could be handled by failing the particular request.
Currently, we return an error (-EIO) to the requests trig-
gering such deterministic faults, thus preventing the same
fault from being triggered again and again during recov-
ery. Transient faults, on the other hand, are caused by race
conditions and other environmental factors [33]. Thus,
our aim is to mainly cope with transient faults, which can
be cured with recovery and restart.

We feel that many faults and bugs can be caught with
lightweight hardware and software checks. Other solu-
tions, such as extremely large address spaces [17], could
help reduce the chances of wild writes causing harm by
hiding kernel objects (“needles”) in a much larger ad-
dressable region (“the haystack”).
Recovering a stateful file system with lightweight

mechanisms is especially challenging when faults are not
fail-stop. For example, consider buggy file-system code
that attempts to overwrite important kernel data structures.
If there is a heavyweight address-space boundary between
the file system and kernel proper, then such a stray write
can be detected immediately; in effect, the fault becomes
fail-stop. If, in contrast, there is no machinery to detect
stray writes, the fault can cause further silent damage to
the rest of the kernel before causing a detectable fault; in
such a case, it may be difficult to recover from the fault.

We strongly believe that once a fault is detected in the
file system, no aspect of the file system should be trusted:
no more code should be run in the file system and its in-
memory data structures should not be used.

The major drawback of our approach is that the bound-
ary we use is soft: some file system bugs can still cor-
rupt kernel state outside the file system and recovery will
not succeed. However, this possibility exists even in sys-
tems with hardware boundaries: data is still passed across
boundaries, and no matter how many integrity checks one
makes, it is possible that bad data is passed across the
boundary and causes problems on the other side.

3.3 Overview
The main design challenge for Membrane is to recover
file-system state in a lightweight, transparent fashion. At
a high level, Membrane achieves this goal as follows.
Once a fault has been detected in the file system, Mem-

brane rolls back the state of the file system to a point in
the past that it trusts: this trusted point is a consistent file-
system image that was checkpointed to disk. This check-
point serves to divide file-system operations into distinct
epochs; no file-system operation spans multiple epochs.
To bring the file system up to date, Membrane re-

plays the file-system operations that occurred after the
checkpoint. In order to correctly interpret some opera-

Figure 1: Membrane Overview. The figure shows a file
being created and written to on top of a restartable file sys-
tem. Halfway through, Membrane creates a checkpoint. After
the checkpoint, the application continues to write to the file;
the first succeeds (and returns success to the application) and
the program issues another write, which leads to a file system
crash. For Membrane to operate correctly, it must (1) unwind
the currently-executing write and park the calling thread, (2)
clean up file system objects (not shown), restore state from the
previous checkpoint, and (3) replay the activity from the current
epoch (i.e., write w1). Once file-system state is restored from
the checkpoint and session state is restored, Membrane can (4)
unpark the unwound calling thread and let it reissue the write,
which (hopefully) will succeed this time. The application should
thus remain unaware, only perhaps noticing the timing of the
third write (w2) was a little slow.

tions, Membrane must also remember small amounts of
application-visible state from before the checkpoint, such
as file descriptors. Since the purpose of this replay is only
to update file-system state, non-updating operations such
as reads do not need to be replayed.

Finally, to clean up the parts of the kernel that the buggy
file system interacted with in the past, Membrane releases
the kernel locks and frees memory the file system allo-
cated. All of these steps are transparent to applications
and require no changes to file-system code. Applications
and the rest of the OS are unaffected by the fault. Figure 1
gives an example of how Membrane works during normal
file-system operation and upon a file system crash.

Thus, there are three major pieces in the Membrane de-
sign. First, fault detection machinery enables Membrane
to detect faults quickly. Second, fault anticipationmecha-
nisms record information about current file-system opera-
tions and partition operations into distinct epochs. Finally,
the fault recovery subsystem executes the recovery proto-
col to clean up and restart the failed file system.

3.4 Fault Detection
The main aim of fault detection within Membrane is to
be lightweight while catching as many faults as possible.
Membrane uses both hardware and software techniques to
catch faults. The hardware support is simple: null point-
ers, divide-by-zero, and many other exceptions are caught
by the hardware and routed to the Membrane recovery
subsystem. More expensive hardware machinery, such as
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address-space-based isolation, is not used.
The software techniques leverage the many checks that

already exist in file system code. For example, file sys-
tems contain assertions as well as calls to panic() and
similar functions. We take advantage of such internal in-
tegrity checking and transform calls that would crash the
system into calls into our recovery engine. An approach
such as that developed by SafeDrive [40] could be used
to automatically place out-of-bounds pointer and other
checks in the file system code.

Membrane provides further software-based protection
by adding extensive parameter checking on any call from
the file system into the kernel proper. These lightweight
boundary wrappers protect the calls between the file sys-
tem and the kernel and help ensure such routines are
called with proper arguments, thus preventing file system
from corrupting kernel objects through bad arguments.
Sophisticated tools (e.g., Ballista[18]) could be used to
generate many of these wrappers automatically.

3.5 Fault Anticipation
As with any system that improves reliability, there is a per-
formance and space cost to enabling recovery when a fault
occurs. We refer to this component as fault anticipation.
Anticipation is pure overhead, paid even when the system
is behaving well; it should be minimized to the greatest
extent possible while retaining the ability to recover.

In Membrane, there are two components of fault antic-
ipation. First, the checkpointing subsystem partitions file
system operations into different epochs (or transactions)
and ensures that the checkpointed image on disk repre-
sents a consistent state. Second, updates to data structures
and other state are tracked with a set of in-memory logs
and parallel stacks. The recovery subsystem (described
below) utilizes these pieces in tandem to restart the file
system after failure.

File system operations use many core kernel services
(e.g., locks, memory allocation), are heavily intertwined
with major kernel subsystems (e.g., the page cache), and
have application-visible state (e.g., file descriptors). Care-
ful state-tracking and checkpointing are thus required to
enable clean recovery after a fault or crash.

3.5.1 Checkpointing
Checkpointing is critical because a checkpoint represents
a point in time to which Membrane can safely roll back
and initiate recovery. We define a checkpoint as a consis-
tent boundary between epochs where no operation spans
multiple epochs. By this definition, file-system state at a
checkpoint is consistent as no file system operations are
in flight.

We require such checkpoints for the following reason:
file-system state is constantly modified by operations such
as writes and deletes and file systems lazily write back
the modified state to improve performance. As a result, at

any point in time, file system state is comprised of (i) dirty
pages (in memory), (ii) in-memory copies of its meta-data
objects (that have not been copied to its on-disk pages),
and (iii) data on the disk. Thus, the file system is in an in-
consistent state until all dirty pages and meta-data objects
are quiesced to the disk. For correct operation, one needs
to ensure that the file system is in a consistent state at the
beginning of the mount process (or the recovery process
in the case of Membrane).
Modern file systems take a number of different ap-

proaches to the consistency management problem: some
group updates into transactions (as in journaling file sys-
tems [12, 27, 30, 35]); others define clear consistency in-
tervals and create snapshots (as in shadow-paging file sys-
tems [1, 15, 28]). All suchmechanisms periodically create
checkpoints of the file system in anticipation of a power
failure or OS crash. Older file systems do not impose any
ordering on updates at all (as in Linux ext2 [34] and many
simpler file systems). In all cases, Membrane must oper-
ate correctly and efficiently.

The main challenge with checkpointing is to accom-
plish it in a lightweight and non-intrusive manner. For
modern file systems, Membrane can leverage the in-built
journaling (or snapshotting) mechanism to periodically
checkpoint file system state; as these mechanisms atomi-
cally write back data modified within a checkpoint to the
disk. To track file-system level checkpoints, Membrane
only requires that these file systems explicitly notify the
beginning and end of the file-system transaction (or snap-
shot) to it so that it can throw away the log records before
the checkpoint. Upon a file system crash, Membrane uses
the file system’s recovery mechanism to go back to the
last known checkpoint and initiate the recovery process.
Note that the recovery process uses on-disk data and does
not depend on the in-memory state of the file system.
For file systems that do not support any consistent-

management scheme (e.g., ext2), Membrane provides
a generic checkpointing mechanism at the VFS layer.
Membrane’s checkpointing mechanism groups several
file-system operations into a single transaction and com-
mits it atomically to the disk. A transaction is created
by temporarily preventing new operations from entering
into the file system for a small duration in which dirty
meta-data objects are copied back to their on-disk pages
and all dirty pages are marked copy-on-write. Through
copy-on-write support for file-system pages, Membrane
improves performance by allowing file system operations
to run concurrently with the checkpoint of the previous
epoch. Membrane associates each page with a check-
point (or epoch) number to prevent pages dirtied in the
current epoch from reaching the disk. It is important to
note that the checkpointing mechanism in Membrane is
implemented at the VFS layer; as a result, it can be lever-
aged by all file system with little or no modifications.
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3.5.2 Tracking State with Logs and Stacks

Membrane must track changes to various aspects of file
system state that transpired after the last checkpoint. This
is accomplished with five different types of logs or stacks
handling: file system operations, application-visible ses-
sions, mallocs, locks, and execution state.

First, an in-memory operation log (op-log) records all
state-modifying file system operations (such as open) that
have taken place during the epoch or are currently in
progress. The op-log records enough information about
requests to enable full recovery from a given checkpoint.

Membrane also requires a small session log (s-log).
The s-log tracks which files are open at the beginning of
an epoch and the current position of the file pointer. The
op-log is not sufficient for this task, as a file may have
been opened in a previous epoch; thus, by reading the op-
log alone, one can only observe reads and writes to vari-
ous file descriptors without the knowledge of which files
such operations refer to.

Third, an in-memory malloc table (m-table) tracks
heap-allocated memory. Upon failure, the m-table can
be consulted to determine which blocks should be freed.
If failure is infrequent, an implementation could ignore
memory left allocated by a failed file system; although
memory would be leaked, it may leak slowly enough not
to impact overall system reliability.

Fourth, lock acquires and releases are tracked by the
lock stack (l-stack). When a lock is acquired by a thread
executing a file system operation, information about said
lock is pushed onto a per-thread l-stack; when the lock is
released, the information is popped off. Unlike memory
allocation, the exact order of lock acquires and releases
is critical; by maintaining the lock acquisitions in LIFO
order, recovery can release them in the proper order as
required. Also note that only locks that are global kernel
locks (and hence survive file system crashes) need to be
tracked in such a manner; private locks internal to a file
system will be cleaned up during recovery and therefore
require no such tracking.

Finally, an unwind stack (u-stack) is used to track the
execution of code in the file system and kernel. By push-
ing register state onto the per-thread u-stack when the file
system is first called on kernel-to-file-system calls, Mem-
brane records sufficient information to unwind threads af-
ter a failure has been detected in order to enable restart.

Note that the m-table, l-stack, and u-stack are compen-
satory [36]; they are used to compensate for actions that
have already taken place and must be undone before pro-
ceeding with restart. On the other hand, both the op-log
and s-log are restorative in nature; they are used by recov-
ery to restore the in-memory state of the file system before
continuing execution after restart.

3.6 Fault Recovery
The fault recovery subsystem is likely the largest subsys-
tem within Membrane. Once a fault is detected, control is
transferred to the recovery subsystem, which executes the
recovery protocol. This protocol has the following phases:
Halt execution and park threads: Membrane first halts
the execution of threads within the file system. Such “in-
flight” threads are prevented from further executionwithin
the file system in order to both prevent further damage
as well as to enable recovery. Late-arriving threads (i.e.,
those that try to enter the file system after the crash takes
place) are parked as well.
Unwind in-flight threads: Crashed and any other in-
flight thread are unwound and brought back to the point
where they are about to enter the file system; Membrane
uses the u-stack to restore register values before each call
into the file system code. During the unwind, any held
global locks recorded on l-stack are released.
Commit dirty pages from previous epoch to stable
storage: Membrane moves the system to a clean starting
point at the beginning of an epoch; all dirty pages from
the previous epoch are forcefully committed to disk. This
action leaves the on-disk file system in a consistent state.
Note that this step is not needed for file systems that have
their own crash consistency mechanism.
“Unmount” the file system: Membrane consults the m-
table and frees all in-memory objects allocated by the the
file system. The items in the file system buffer cache (e.g.,
inodes and directory entries) are also freed. Conceptually,
the pages from this file system in the page cache are also
released mimicking an unmount operation.
“Remount” the file system: In this phase, Membrane
reads the super block of the file system from stable stor-
age and performs all other necessary work to reattach the
FS to the running system.
Roll forward: Membrane uses the s-log to restore the ses-
sions of active processes to the state they were at the last
checkpoint. It then processes the op-log, replays previous
operations as needed and restores the active state of the
file system before the crash. Note that Membrane uses
the regular VFS interface to restore sessions and to replay
logs. Hence, Membrane does not require any explicit sup-
port from file systems.
Restart execution: Finally, Membrane wakes all parked
threads. Those that were in-flight at the time of the crash
begin execution as if they had not entered the file system;
those that arrived after the crash are allowed to enter the
file system for the first time, both remaining oblivious of
the crash.

4 Implementation
We now present the implementation of Membrane. We
first describe the operating system (Linux) environment,
and then present each of the main components of Mem-
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brane. Much of the functionality of Membrane is encap-
sulated within two components: the checkpoint manager
(CPM) and the recovery manager (RM). Each of these
subsystems is implemented as a background thread and
is needed during anticipation (CPM) and recovery (RM).
Beyond these threads, Membrane also makes heavy use of
interposition to track the state of various in-memory ob-
jects and to provide the rest of its functionality. We ran
Membrane with ext2, VFAT, and ext3 file systems.
In implementing the functionality described above,

Membrane employs three key techniques to reduce over-
heads and make lightweight restart of a stateful file sys-
tems feasible. The techniques are (i) page stealing: for
low-cost operation logging, (ii) COW-based checkpoint-
ing: for fast in-memory partitioning of pages across
epochs using copy-on-write techniques for file systems
that do not support transactions, and (iii) control-flow
capture and skip/trust unwind protocol: to halt in-flight
threads and properly unwind in-flight execution.

4.1 Linux Background
Before delving into the details of Membrane’s implemen-
tation, we first provide some background on the operating
system in which Membrane was built. Membrane is cur-
rently implemented inside Linux 2.6.15.

Linux provides support for multiple file systems via the
VFS interface [16], much like many other operating sys-
tems. Thus, the VFS layer presents an ideal point of inter-
position for a file system framework such as Membrane.

Like many systems [6], Linux file systems cache user
data in a unified page cache. The page cache is thus tightly
integrated with file systems and there are frequent cross-
ings between the generic page cache and file system code.
Writes to disk are handled in the background (except

when forced to disk by applications). A background I/O
daemon, known as pdflush, wakes up, finds old and
dirty pages, and flushes them to disk.

4.2 Fault Detection
There are numerous fault detectors within Membrane,
each of which, when triggered, immediately begins the
recovery protocol. We describe the detectors Membrane
currently uses; because they are lightweight, we imagine
more will be added over time, particularly as file-system
developers learn to trust the restart infrastructure.

4.2.1 Hardware-based Detectors
The hardware provides the first line of fault detection. In
our implementation inside Linux on x86 (64-bit) archi-
tecture, we track the following runtime exceptions: null-
pointer exception, invalid operation, general protection
fault, alignment fault, divide error (divide by zero), seg-
ment not present, and stack segment fault. These excep-
tion conditions are detected by the processor; software
fault handlers, when run, inspect system state to determine

File System assert() BUG() panic()
xfs 2119 18 43
ubifs 369 36 2
ocfs2 261 531 8
gfs2 156 60 0
jbd 120 0 0
jbd2 119 0 0
afs 106 38 0
jfs 91 15 6
ext4 42 182 12
ext3 16 0 11
reiserfs 1 109 93
jffs2 1 86 0
ext2 1 10 6
ntfs 0 288 2
fat 0 10 16

Table 2: Software-based Fault Detectors. The table
depicts how many calls each file system makes to assert(),
BUG(), and panic() routines. The data was gathered simply
by searching for various strings in the source code. A range of
file systems and the ext3 journaling devices (jbd and jbd2) are
included in the micro-study. The study was performed on the
latest stable Linux release (2.6.26.7).

whether the fault was caused by code executing in the file
system module (i.e., by examining the faulting instruction
pointer). Note that the kernel already tracks these runtime
exceptions which are considered kernel errors and trig-
gers panic as it doesn’t know how to handle them. We
only check if these exceptions were generated in the con-
text of the restartable file system to initiate recovery, thus
preventing kernel panic.

4.2.2 Software-based Detectors
A large number of explicit error checks are extant within
the file system code base; we interpose on these macros
and procedures to detect a broader class of semantically-
meaningful faults. Specifically, we redefine macros such
as BUG(), BUG ON(), panic(), and assert() so
that the file system calls our version of said routines.
These routines are commonly used by kernel program-

mers when some unexpected event occurs and the code
cannot properly handle the exception. For example, Linux
ext2 code that searches through directories often calls
BUG() if directory contents are not as expected; see
ext2 add link() where a failed scan through the di-
rectory leads to such a call. Other file systems, such as
reiserfs, routinely call panic() when an unanticipated
I/O subsystem failure occurs [25]. Table 2 presents a sum-
mary of calls present in existing Linux file systems.

In addition to those checks within file systems, we
have added a set of checks across the file-system/kernel
boundary to help prevent fault propagation into the kernel
proper. Overall, we have added roughly 100 checks across
various key points in the generic file system and memory
management modules as well as in twenty or so header
files. As these checks are low-cost and relatively easy to
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op-log (naive)
write(A) to blk 0

A

write(B) to blk 1

B

write(C) to blk 0

C

op-log (with page stealing)
write(A) to blk 0

write(B) to blk 1

write(C) to blk 0

Page Cache

C

B

(not needed)

Figure 2: Page Stealing. The figure depicts the op-log both
with and without page stealing. Without page stealing (left side
of the figure), user data quickly fills the log, thus exacting harsh
penalties in both time and space overheads. With page stealing
(right), only a reference to the in-memory page cache is recorded
with each write; further, only the latest such entry is needed to
replay the op-log successfully.

add, we will continue to “harden” the file-system/kernel
interface as our work continues.

4.3 Fault Anticipation
We now describe the fault anticipation support within the
current Membrane implementation. We begin by present-
ing our approach to reducing the cost of operation logging
via a technique we refer to as page stealing.

4.3.1 Low-Cost Op-Logging via Page Stealing
Membrane interposes at the VFS layer in order to record
the necessary information to the op-log about file-system
operations during an epoch. Thus, for any restartable file
system that is mounted, the VFS layer records an entry for
each operation that updates the file system state in some
way.

One key challenge of logging is to minimize the amount
of data logged in order to keep interpositioning costs
low. A naive implementation (including our first attempt)
might log all state-updating operations and their parame-
ters; unfortunately, this approach has a high cost due to
the overhead of logging write operations. For each write
to the file system, Membrane has to not only record that
a write took place but also log the data to the op-log, an
expensive operation both in time and space.

Membrane avoids the need to log this data through a
novel page stealing mechanism. Because dirty pages are
held in memory before checkpointing, Membrane is as-
sured that the most recent copy of the data is already
in memory (in the page cache). Thus, when Membrane
needs to replay the write, it steals the page from the cache
(before it is removed from the cache by recovery) and
writes the stolen page to disk. In this way, Membrane
avoids the costly logging of user data. Figure 2 shows
how page stealing helps in reducing the size of op-log.

When two writes to the same block have taken place,
note that only the last write needs to be replayed. Earlier

writes simply update the file position correctly. This strat-
egy works because reads are not replayed (indeed, they
have already completed); hence, only the current state of
the file system, as represented by the last checkpoint and
current op-log and s-log, must be reconstructed.

4.3.2 Other Logging and State Tracking
Membrane also interposes at the VFS layer to track all
necessary session state in the s-log. There is little infor-
mation to track here: simply which files are open (with
their pathnames) and the current file position of each file.

Membrane also needs to track memory allocations per-
formed by a restartable file system. We added a new allo-
cation flag, GFP RESTARTABLE, in Membrane. We also
provide a new header file to include in file-system code
to append GFP RESTARTABLE to all memory allocation
call. This enables the memory allocation module in the
kernel to record the necessary per-file-system information
into the m-table and thus prepare for recovery.

Tracking lock acquisitions is also straightforward. As
we mentioned earlier, locks that are private to the file sys-
tem will be ignored during recovery, and hence need not
be tracked; only global locks need to be monitored. Thus,
when a thread is running in the file system, the instru-
mented lock function saves the lock information in the
thread’s private l-stack for the following locks: the global
kernel lock, super-block lock, and the inode lock.

Finally, Membrane must also track register state across
certain code boundaries to unwind threads properly. To do
so, Membrane wraps all calls from the kernel into the file
system; these wrappers push and pop register state, return
addresses, and return values onto and off of the u-stack.

4.3.3 COW-based Checkpointing
Our goal of checkpointing was to find a solution that is
lightweight and works correctly despite the lack of trans-
actional machinery in file systems such as Linux ext2,
many UFS implementations, and various FAT file sys-
tems; these file systems do not include journaling or
shadow paging to naturally partition file system updates
into transactions.

One could implement a checkpoint using the following
strawman protocol. First, during an epoch, prevent dirty
pages from being flushed to disk. Second, at the end of
an epoch, checkpoint file-system state by first halting file
system activity and then forcing all dirty pages to disk.
At this point, the on-disk state would be consistent. If a
file-system failure occurred during the next epoch, Mem-
brane could rollback the file system to the beginning of
the epoch, replay logged operations, and thus recover the
file system.

The obvious problem with the strawman is perfor-
mance: forcing pages to disk during checkpointing makes
checkpointing slow, which slows applications. Further,
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Figure 3: COW-based Checkpointing. The picture shows
what happens during COW-based checkpointing. At time=0, an
application writes to block 0 of a file and fills it with the contents
“A”. At time=1, Membrane performs a checkpoint, which simply
marks the block copy-on-write. Thus, Epoch 0 is over and a new
epoch begins. At time=2, block 0 is over-written with the new
contents “B”; the system catches this overwrite with the COW
machinery and makes a new in-memory page for it. At time=3,
Membrane decides to flush the previous epoch’s dirty pages to
disk, and thus commits block 0 (with “A” in it) to disk.

update traffic is bunched together and must happen dur-
ing the checkpoint, instead of being spread out over time;
as is well known, this can reduce I/O performance [23].
Our lightweight checkpointing solution instead takes

advantage of the page-table support provided by mod-
ern hardware to partition pages into different epochs.
Specifically, by using the protection features provided by
the page table, the CPM implements a copy-on-write-
based checkpoint to partition pages into different epochs.
This COW-based checkpoint is simply a lightweight way
for Membrane to partition updates to disk into different
epochs. Figure 3 shows an example on how COW-based
checkpointing works.
We now present the details of the checkpoint imple-

mentation. First, at the time of a checkpoint, the check-
point manager (CPM) thread wakes and indicates to the
session manager (SM) that it intends to checkpoint. The
SM parks new VFS operations and waits for in-flight op-
erations to complete; when finished, the SM wakes the
CPM so that it can proceed.
The CPM then walks the lists of dirty objects in the

file system, starting at the superblock, and finds the dirty
pages of the file system. The CPM marks these kernel
pages copy-on-write; further updates to such a page will
induce a copy-on-write fault and thus direct subsequent
writes to a new copy of the page. Note that the copy-on-
write machinery is present in many systems, to support
(among other things) fast address-space copying during
process creation. This machinery is either implemented
within a particular subsystem (e.g., file systems such as
ext3cow [24], WAFL [15] manually create and track their
COW pages) or inbuilt in the kernel for application pages.
To our knowledge, copy-on-write machinery is not avail-
able for kernel pages. Hence, we explicitly added support

for copy-on-write machinery for kernel pages in Mem-
brane; thereby avoiding extensive changes to file systems
to support COW machinery.
The CPM then allows these pages to be written to disk

(by tracking a checkpoint number associated with the
page), and the background I/O daemon (pdflush) is free
to write COW pages to disk at its leisure during the next
epoch. Checkpointing thus groups the dirty pages from
the previous epoch and allows only said modifications to
be written to disk during the next epoch; newly dirtied
pages are held in memory until the complete flush of the
previous epoch’s dirty pages.
There are a number of different policies that can be

used to decide when to checkpoint. An ideal policy would
likely consider a number of factors, including the time
since last checkpoint (to minimize recovery time), the
number of dirty blocks (to keep memory pressure low),
and current levels of CPU and I/O utilization (to perform
checkpointing during relatively-idle times). Our current
policy is simpler, and just uses time (5 secs) and a dirty-
block threshold (40MB) to decide when to checkpoint.
Checkpoints are also initiated when an application forces
data to disk.

4.4 Fault Recovery
We now describe the last piece of our implementation
which performs fault recovery. Most of the protocol is
implemented by the recovery manager (RM), which runs
as a separate thread. The most intricate part of recovery
is howMembrane gains control of threads after a fault oc-
curs in the file system and the unwind protocol that takes
place as a result. We describe this component of recovery
first.

4.4.1 Gaining Control with Control-Flow Capture
The first problem encountered by recovery is how to gain
control of threads already executing within the file sys-
tem. The fault that occurred (in a given thread) may have
left the file system in a corrupt or unusable state; thus, we
would like to stop all other threads executing in the file
system as quickly as possible to avoid any further execu-
tion within the now-untrusted file system.
Membrane, through the RM, achieves this goal by im-

mediately marking all code pages of the file system as
non-executable and thus ensnaring other threads with a
technique that we refer as control-flow capture. When a
thread that is already within the file system next executes
an instruction, a trap is generated by the hardware; Mem-
brane handles the trap and then takes appropriate action
to unwind the execution of the thread so that recovery
can proceed after all these threads have been unwound.
File systems in Membrane are inserted as loadable ker-
nel modules, this ensures that the file system code is in
a 4KB page and not part of a large kernel page which
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could potentially be shared among different kernel mod-
ules. Hence, it is straightforward to transparently identify
code pages of file systems.

4.4.2 Intertwined Execution and
The Skip/Trust Unwind Protocol

Unfortunately, unwinding a thread is challenging, as the
file system interacts with the kernel in a tightly-coupled
fashion. Thus, it is not uncommon for the file system to
call into the kernel, which in turn calls into the file system,
and so forth. We call such execution paths intertwined.
Intertwined code puts Membrane into a difficult posi-

tion. Ideally, Membrane would like to unwind the execu-
tion of the thread to the beginning of the first kernel-to-
file-system call as described above. However, the fact that
(non-file-system) kernel code has run complicates the un-
winding; kernel state will not be cleaned up during recov-
ery, and thus any state modifications made by the kernel
must be undone before restart.
For example, assume that the file system code is exe-

cuting (e.g., in function f1()) and calls into the kernel
(function k1()); the kernel then updates kernel-state in
some way (e.g., allocates memory or grabs locks) and then
calls back into the file system (function f2()); finally,
f2() returns to k1()which returns to f1()which com-
pletes. The tricky case arises when f2() crashes; if we
simply unwound execution naively, the state modifica-
tions made while in the kernel would be left intact, and
the kernel could quickly become unusable.

To overcome this challenge, Membrane employs a care-
ful skip/trust unwind protocol. The protocol skips over file
system code but trusts the kernel code to behave reason-
able in response to a failure and thus manage kernel state
correctly. Membrane coerces such behavior by carefully
arranging the return value on the stack, mimicking an er-
ror return from the failed file-system routine to the kernel;
the kernel code is then allowed to run and clean up as it
sees fit. We found that the Linux kernel did a good job of
checking return values from the file-system function and
in handling error conditions. In places where it did not
(12 such instances), we explicitly added code to do the
required check.

In the example above, when the fault is detected in
f2(), Membrane places an error code in the appropri-
ate location on the stack and returns control immediately
to k1(). This trusted kernel code is then allowed to ex-
ecute, hopefully freeing any resources that it no longer
needs (e.g., memory, locks) before returning control to
f1(). When the return to f1() is attempted, the control-
flow capture machinery again kicks into place and enables
Membrane to unwind the remainder of the stack. A real
example from Linux is shown in Figure 4.

Throughout this process, the u-stack is used to capture
the necessary state to enable Membrane to unwind prop-

Figure 4: The Skip/Trust Unwind Protocol. The fig-
ure depicts the call path from the open() system call through
the ext2 file system. The first sequence of calls (through
vfs create()) are in the generic (trusted) kernel; then the
(untrusted) ext2 routines are called; then ext2 calls back into the
kernel to prepare to write a page, which in turn may call back
into ext2 to get a block to write to. Assume a fault occurs at this
last level in the stack; Membrane catches the fault, and skips
back to the last trusted kernel routine, mimicking a failed call
to ext2 get block(); this routine then runs its normal fail-
ure recovery (marked by the circled “3” in the diagram), and
then tries to return again. Membrane’s control-flow capture ma-
chinery catches this and then skips back all the way to the last
trusted kernel code (vfs create), thus mimicking a failed call
to ext2 create(). The rest of the code unwinds with Mem-
brane’s interference, executing various cleanup code along the
way (as indicated by the circled 2 and 1).

erly. Thus, both when the file system is first entered as
well as any time the kernel calls into the file system, wrap-
per functions push register state onto the u-stack; the val-
ues are subsequently popped off on return, or used to skip
back through the stack during unwind.

4.4.3 Other Recovery Functions
There are many other aspects of recovery which we do not
discuss in detail here for sake of space. For example, the
RM must orchestrate the entire recovery protocol, ensur-
ing that once threads are unwound (as described above),
the rest of the recovery protocol to unmount the file sys-
tem, free various objects, remount it, restore sessions, and
replay file system operations recorded in the logs, is car-
ried out. Finally, after recovery, RM allows the file system
to begin servicing new requests.

4.4.4 Correctness of Recovery
We now discuss the correctness of our recovery mecha-
nism. Membrane throws away the corrupted in-memory
state of the file system immediately after the crash. Since
faults are fail-stop in Membrane, on-disk data is never cor-
rupted. We also prevent any new operation from being is-
sued to the file system while recovery is being performed.
The file-system state is then reverted to the last known
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checkpoint (which is guaranteed to be consistent). Next,
successfully completed op-logs are replayed to restore the
file-system state to the crash time. Finally, the unwound
processes are allowed to execute again.
Non-determinism could arise while replaying the com-

pleted operations. The order recorded in op-logs need not
be the same as the order executed by the scheduler. This
new execution order could potentially pose a problem
while replaying completed write operations as applica-
tions could have observed the modified state (via read) be-
fore the crash. On the other hand, operations that modify
the file-system state (such as create, unlink, etc.) would
not be a problem as conflicting operations are resolved by
the file system through locking.
Membrane avoids non-deterministic replay of com-

pleted write operations through page stealing. While re-
playing completed operations, Membrane reads the final
version of the page from the page cache and re-executes
the write operation by copying the data from it. As a re-
sult, write operations while being replayed will end up
with the same final version no matter what order they
are executed. Lastly, as the in-flight operations have not
returned back to the application, Membrane allows the
scheduler to execute them in arbitrary order.

5 Evaluation
We now evaluate Membrane in the following three cate-
gories: transparency, performance, and generality. All ex-
periments were performed on a machine with a 2.2 GHz
Opteron processor, two 80GB WDC disks, and 2GB of
memory running Linux 2.6.15. We evaluated Membrane
using ext2, VFAT, and ext3. The ext3 file system was
mounted in data journaling mode in all the experiments.

5.1 Transparency
We employ fault injection to analyze the transparency of-
fered by Membrane in hiding file system crashes from ap-
plications. The goal of these experiments is to show the
inability of current systems in hiding faults from applica-
tion and how using Membrane can avoid them.
Our injection study is quite targeted; we identify places

in the file system code where faults may cause trouble,
and inject faults there, and observe the result. These
faults represent transient errors from three different com-
ponents: virtual memory (e.g., kmap, d alloc anon), disks
(e.g., write full page, sb bread), and kernel-proper (e.g.,
clear inode, iget). In all, we injected 47 faults in differ-
ent code paths in three file systems. We believe that many
more faults could be injected to highlight the same issue.
Table 3 presents the results of our study. The caption

explains how to interpret the data in the table. In all ex-
periments, the operating system was always usable after
fault injection (not shown in the table). We now discuss
our major observations and conclusions.
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create null-pointer o o d
create mark inode dirty o o d
writepage write full page o d s d
writepages write full page o d s d
free inode mark buffer dirty o o d
mkdir d instantiate o d s d
get block map bh o o d
readdir page address G G d
get page kmap o o d
get page wait page locked o o d
get page read cache page o o d
lookup iget o o d
add nondir d instantiate o d e d
find entry page address G G d
symlink null-pointer o o d
rmdir null-pointer o o d
empty dir page address G G d
make empty grab cache page o o d
commit chunk unlock page o d e d
readpage mpage readpage o i d

vfat vfat+ vfat+
vfat Function Fault boundary Membrane

create null-pointer o o d
create d instantiate o o d
writepage blk write fullpage o d s d
mkdir d instantiate o d s d
rmdir null-pointer o o d
lookup d find alias o d e d
get entry sb bread o o d
get block map bh o o d
remove entries mark buffer dirty o d s d
write inode mark buffer dirty o d s d
clear inode is bad inode o d s d
get dentry d alloc anon o o d
readpage mpage readpage o o d

ext3 ext3+ ext3+
ext3 Function Fault boundary Membrane

create null-pointer o o d
get blk handle bh result o d s d
follow link nd set link o d e d
mkdir d instantiate o d s d
symlink null-pointer o d d
readpage mpage readpage o d d
add nondir d instantiate o o d
prepare write blk prepare write o i e d
read blk bmap sb bread o o d
new block dquot alloc blk o o d
readdir null-pointer o o d
file write file aio write G i e d
free inode clear inode o o d
new inode null-pointer o i d

Table 3: Fault Study. The table shows the results of fault
injections on the behavior of Linux ext2, VFAT and ext3. Each
row presents the results of a single experiment, and the columns
show (in left-to-right order): which routine the fault was injected
into, the nature of the fault, how/if it was detected, how it af-
fected the application, whether the file system was consistent af-
ter the fault, and whether the file system was usable. Various
symbols are used to condense the presentation. For detection,
“o”: kernel oops; “G”: general protection fault; “i”: invalid
opcode; “d”: fault detected, say by an assertion. For applica-
tion behavior, “ ”: application killed by the OS; “ ”: appli-
cation continued operation correctly; “s”: operation failed but
application ran successfully (silent failure); “e”: application
ran and returned an error. Footnotes: - file system usable, but
un-unmountable; - late oops or fault, e.g., after an error code
was returned.
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ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Seq. read 17.8 17.8 17.8 17.8 17.7 17.7
Seq. write 25.5 25.7 56.3 56.3 18.5 20.2
Rand. read 163.2 163.5 163.2 163.2 163.5 163.6
Rand. write 20.3 20.5 65.5 65.5 18.9 18.9
create 34.1 34.1 33.9 34.3 32.4 34.0
delete 20.0 20.1 18.6 18.7 20.8 21.0

Table 4: Microbenchmarks. This table compares the exe-
cution time (in seconds) for various benchmarks for restartable
versions of ext2, ext3, VFAT (onMembrane) against their regular
versions on the unmodified kernel. Sequential read/writes are 4
KB at a time to a 1-GB file. Random reads/writes are 4 KB at
a time to 100 MB of a 1-GB file. Create/delete copies/removes
1000 files each of size 1MB to/from the file system respectively.
All workloads use a cold file-system cache.

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Sort 142.2 142.6 152.1 152.5 146.5 146.8
OpenSSH 28.5 28.9 28.7 29.1 30.1 30.8
PostMark 46.9 47.2 478.2 484.1 43.1 43.8

Table 5: Macrobenchmarks. The table presents the per-
formance (in seconds) of different benchmarks running on both
standard and restartable versions of ext2, VFAT, and ext3. The
sort benchmark (CPU intensive) sorts roughly 100MB of text us-
ing the command-line sort utility. For the OpenSSH benchmark
(CPU+I/O intensive), we measure the time to copy, untar, con-
figure, and make the OpenSSH 4.51 source code. PostMark (I/O
intensive) parameters are: 3000 files (sizes 4KB to 4MB), 60000
transactions, and 50/50 read/append and create/delete biases.

First, we analyzed the vanilla versions of the file sys-
tems on standard Linux kernel as our base case. The re-
sults are shown in the leftmost result column in Table 3.
We observed that Linux does a poor job in recovering
from the injected faults; most faults (around 91%) trig-
gered a kernel “oops” and the application (i.e., the pro-
cess performing the file system operation that triggered
the fault) was always killed. Moreover, in one-third of the
cases, the file system was left unusable, thus requiring a
reboot and repair (fsck).

Second, we analyzed the usefulness of fault detection
without recovery by hardening the kernel and file-system
boundary through parameter checks. The second result
column (denoted by +boundary) of Table 3 shows the re-
sults. Although assertions detect the bad argument passed
to the kernel proper function, in the majority of the cases,
the returned error code was not handled properly (or prop-
agated) by the file system. The application was always
killed and the file system was left inconsistent, unusable,
or both.
Finally, we focused on file systems surrounded by

Membrane. The results of the experiments are shown
in the rightmost column of Table 3; faults were handled,
applications did not notice faults, and the file system re-
mained in a consistent and usable state.

In summary, even in a limited and controlled set of fault
injection experiments, we can easily realize the usefulness
of Membrane in recovering from file system crashes. In
a standard or hardened environment, a file system crash
is almost always visible to the user and the process per-
forming the operation is killed. Membrane, on detecting a
file system crash, transparently restarts the file system and
leaves it in a consistent and usable state.

5.2 Performance
To evaluate the performance of Membrane, we run a series
of both microbenchmark and macrobenchmark workloads
where ext2, VFAT, and ext3 are run in a standard environ-
ment and within the Membrane framework.
Tables 4 and 5 show the results of our microbenchmark

and macrobenchmark experiments respectively. From the

tables, one can see that the performance overheads of our
prototype are quite minimal; in all cases, the overheads
were between 0% and 2%.

Data Recovery
(MB) time (ms)

10 12.9
20 13.2
40 16.1

(a)

Open Recovery
Sessions time (ms)

200 11.4
400 14.6
800 22.0

(b)

Log Recovery
Records time (ms)

1K 15.3
10K 16.8
100K 25.2

(c)

Table 6: Recovery Time. Tables a, b, and c show re-
covery time as a function of dirty pages (at checkpoint), s-log,
and op-log respectively. Dirty pages are created by copying new
files. Open sessions are created by getting handles to files. Log
records are generated by reading and seeking to arbitrary data
inside multiple files. The recovery time was 8.6ms when all three
states were empty.

Recovery Time. Beyond baseline performance under no
crashes, we were interested in studying the performance
of Membrane during recovery. Specifically, how long
does it take Membrane to recover from a fault? This met-
ric is particularly important as high recovery times may
be noticed by applications.

We measured the recovery time in a controlled environ-
ment by varying the amount of state kept by Membrane
and found that the recovery time grows sub-linearly with
the amount of state and is only a few milliseconds in all
the cases. Table 6 shows the result of varying the amount
of state in the s-log, op-log and the number of dirty pages
from the previous checkpoint.

We also ran microbenchmarks and forcefully crashed
ext2, ext3, and VFAT file systems during execution
to measure the impact in application throughput inside
Membrane. Figure 5 shows the results for performing re-
covery during the random-read microbenchmark for the
ext2 file system. From the figure, we can see that Mem-
brane restarts the file system within 10ms from the point
of crash. Subsequent read operations are slower than the
regular case because the indirect blocks, that were cached
by the file system, are thrown away at recovery time in
our current prototype and have to be read back again after
recovery (as shown in the graph).

12
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Figure 5: Recovery Overhead. The figure shows the over-
head of restarting ext2 while running random-read microbench-
mark. The x axis represents the overall elapsed time of the mi-
crobenchmark in seconds. The primary y axis contains the ex-
ecution time per read operation as observed by the application
in milliseconds. A file-system crash was triggered at 34s, as a
result the total elapsed time increased from 66.5s to 67.1s. The
secondary y axis contains the number of indirect blocks read by
the ext2 file system from the disk per second.

In summary, both micro and macrobenchmarks show
that the fault anticipation in Membrane almost comes for
free. Even in the event of a file system crash, Membrane
restarts the file system within a few milliseconds.

5.3 Generality
We chose ext2, VFAT, and ext3 to evaluate the generality
of our approach. ext2 and VFAT were chosen for their
lack of crash consistency machinery and for their com-
pletely different on-disk layout. ext3 was selected for
its journaling machinery that provides better crash con-
sistency guarantees than ext2. Table 7 shows the code
changes required in each file system.

File System Added Modified
ext2 4 0
VFAT 5 0
ext3 1 0
JBD 4 0

Individual File-system Changes
Components No Checkpoint With Checkpoint

Added Modified Added Modified
FS 1929 30 2979 64
MM 779 5 867 15
Arch 0 0 733 4
Headers 522 6 552 6
Module 238 0 238 0
Total 3468 41 5369 89

Kernel Changes

Table 7: Implementation Complexity. The table presents
the code changes required to transform a ext2, VFAT, ext3, and
vanilla Linux 2.6.15 x86 64 kernel into their restartable counter-
parts. Most of the modified lines indicate places where vanilla
kernel did not check/handle errors propagated by the file system.
As our changes were non-intrusive in nature, none of existing
code was removed from the kernel.

From the table, we can see that the file system spe-
cific changes required to work with Membrane are min-
imal. For ext3, we also added 4 lines of code to JBD

to notify the beginning and the end of transactions to the
checkpoint manager, which could then discard the opera-
tion logs of the committed transactions. All of the addi-
tions were straightforward, including adding a new header
file to propagate the GFP RESTARTABLE flag and code
to write back the free block/inode/cluster count when the
write super method of the file system was called. No
modification (or deletions) of existing code were required
in any of the file systems.
In summary, Membrane represents a generic approach

to achieve file system restartability; existing file systems
can work with Membranewith minimal changes of adding
a few lines of code.

6 Conclusions
File systems fail. With Membrane, failure is transformed
from a show-stopping event into a small performance is-
sue. The benefits are many: Membrane enables file-
system developers to ship file systems sooner, as small
bugs will not cause massive user headaches. Membrane
similarly enables customers to install new file systems,
knowing that it won’t bring down their entire operation.
Membrane further encourages developers to harden

their code and catch bugs as soon as possible. This fringe
benefit will likely lead to more bugs being triggered in the
field (and handled by Membrane, hopefully); if so, diag-
nostic information could be captured and shipped back to
the developer, further improving file system robustness.
We live in an age of imperfection, and software imper-

fection seems a fact of life rather than a temporary state
of affairs. With Membrane, we can learn to embrace that
imperfection, instead of fearing it. Bugs will still arise,
but those that are rare and hard to reproduce will remain
where they belong, automatically “fixed” by a system that
can tolerate them.
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