
ARCHITECTURE AND SOFTWARE SUPPORT FOR
PERSISTENT AND VAST MEMORY

by

Swapnil Haria

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2019

Date of final oral examination: 6/10/19

The dissertation is approved by the following members of the Final Oral Committee:
Mark D. Hill, Professor, Computer Sciences
Michael M. Swift, Professor, Computer Sciences
Andrea Arpaci-Dusseau, Professor, Computer Sciences
Kimberly Keeton, Distinguished Technologist, Hewlett Packard Labs
Mikko Lipasti, Professor, Electrical and Computer Engineering

i

Dedicated to my family who have always sacrificed so that I may succeed.

ii

Acknowledgments

And what would humans be

without love?

"RARE", said Death.

Terry Pratchett

I have been supported by many people to get to and through graduate school.

First, I am grateful to my advisors, Mark Hill and Mike Swift. Mark Hill taught me

about asking the right questions, identifying the essence of a problem, communicating

ideas clearly and being organized in work and in life. Moreover, he has always given me

great advice for every situation. Mike Swift taught me to love implementation-level details,

how to evaluate ideas thoroughly and to effectively critique research literature. Their

complementary strengths in domains and skills resulted in a great team and provided me

with two great role models for my career.

I thank my committee members for improving my research with their unique perspec-

tives. Kimberly Keeton inspired many design decisions in our persistent memory hardware

with her insightful questions. Our hardware primitives for persistent memory were directly

inspired by Andrea Arpaci-Dusseau’s research in filesystems. Mikko Lipasti taught me a

lot about computer architecture when I was a young graduate student and I have often

been inspired by his encyclopedic knowledge of architecture history.

I would like to thank my colleagues and friends who made me survive grad school. I

iii

shared a common office with Jason Lowe-Power and Nilay Vaish and common grievances

with Lena Olson. I learned a lot from all three of them about how to do research in computer

architecture. I am also grateful to Jayneel Gandhi, Mark Mansi, Pratyush Mahapatra and

others in the Multifacet group as well as Hongil Yoon. Finally, I enjoyed many discussions

with the architecture reading and lunch groups: Gokul Ravi, Vinay Gangadhar, Vijay

Thiruvengadam, Newsha Ardalani, Tony Nowatzki, David Schlais, Kyle Daruwalla, Carly

Schwartz, Ravi Raju, Shyam Murthy, Suchita Pati and many others.

I thank Akshay Sood for many adventures around Madison, Arpit Agarwal and Sachin

Muley for many refreshing lunches and dinners, and Yash Agarwal, Neha Govind, Ritika

Oswal, Akhil Guliani, Shaleen Deep, Amrita Roy Chowdhury, Samartha Patel and many

others for many fun events that kept me sane. During my early days in grad school, Urmish

Thakker, Lokesh Jindal, Roney Michael, Mihir Patil and many others helped me decide to

stay on for a PhD and believed in me even when I did not.

I am forever indebted to RaviGroup and PJGroup in NVIDIA Bangalore for sparking my

interest in computer architecture. In particular, I thank Ravikrishnan Sree, Jayakumar Para-

suraman, Sumit Shrivastava, Ajay Ganesh, Srikanth Muralidharan, Naveen Yagnamurthy

and Akshay B. for patiently answering questions and teaching me a lot about computer

processors.

I am also grateful to the Berta Armacanqui and her family who have provided me with

a familial atmosphere and treated me and my wife as one of their own. I also thank Dawn

and Randy Dorning and their family who have helped me and countless other international

students feel at home in Madison.

Most importantly, I thank my family who have always supported me and deserve all

the credit for my success. My partner, Sukriti Singh, is most responsible for my survival in

graduate school. She has always offered a convenient escape from the rigors of work. My

sister, Apexa Haria, has done more than her fair share to help me out and protect me over

the years. My parents, Madhuri and Dinesh Haria, are responsible for always nurturing my

iv

curiosity and teaching me the values I needed for success. Without my family’s sacrifices

over the years, I would not have been in the position I am today.

v

Contents

Abstract xiii

1 Introduction 1

1.1 Challenges of PM technologies . 3

1.2 Contributions . 4

1.3 Thesis Organization . 7

2 Persistent Memory Background 8

2.1 System Model . 8

2.2 Hardware Primitives for Ordering and Durability 9

2.3 Programming Recoverable Applications . 10

3 Hands-Off Persistence System 16

3.1 Insights from Workload Analysis . 18

3.2 New Hardware Primitives . 19

3.3 Memory Persistency Model . 23

3.4 HOPS Design . 28

3.5 Evaluation . 35

3.6 Comparing Related Work with HOPS . 38

3.7 Conclusion . 40

vi

4 Minimally Ordered Durable Datastructures for Persistent Memory 41

4.1 Background on Functional Programming . 44

4.2 Ordering & Flushing Overheads on Optane DCPMMs 46

4.3 Minimally Ordered Durable Datastructures . 49

4.4 Implementation Details . 60

4.5 Extensions for Concurrency . 62

4.6 Evaluation . 63

4.7 Comparing Related Work with MOD . 70

4.8 Conclusion . 73

5 Devirtualized Memory for Heterogeneous Systems 74

5.1 Chapter Background . 78

5.2 Devirtualizing Memory . 79

5.3 Implementing DVM for Accelerators . 82

5.4 Discussion . 90

5.5 Evaluation . 93

5.6 Towards DVM across Heterogeneous Systems . 99

5.7 Related Work in VM for Accelerators and Vast Memory 102

5.8 Conclusion . 104

6 Conclusions and Future Work 105

Bibliography 110

vii

List of Tables

2.1 Comparison of x86-64 primitives for PM. 10

3.1 Comparison of HOPS and x86-64 primitives for PM. 22

3.2 Ordering rules in TSO-BEP. 28

3.3 Handling of major events in HOPS. 34

3.4 Configuration of Simulated System. 36

4.1 Test Machine Configuration. 64

4.2 Benchmarks developed and used for this study. Each workload performs 1

million iterations of the operations described. We consider workloads marked

with asterisk* to be write-intensive. 66

4.3 Number of update operations needed to double memory usage of datastructures

with 1M entries with memory reclamation disabled. For PMDK map, set and

vector, update operations happen in place without allocating memory. 70

5.1 Page Table Sizes for PageRank (first four rows) and Collaborative Filtering

(last three rows) for different input graphs. PEs reduce the page table size by

eliminating most L1PTEs. 86

5.2 Simulation Configuration Details . 94

5.3 Graph Datasets Used for Evaluation . 95

5.4 Percentage of total system memory successfully allocated with identity mapping. 99

viii

5.5 Lines of code changed in Linux v4.10 split up by functionality. *Changes for

memory-mapped segments affect heap segment, so we only count them once. . 100

ix

List of Figures

2.1 Target System with both DRAM and PM. Structures colored orange are in the

volatile domain, green in the persistent domain and yellow in the persistent

domain only in presence of certain optimizations. 9

2.2 Execution Timeline for weakly ordered flushes to PM on x86-64 systems. 11

2.3 Different PM programming approaches illustrated using a sample program

which updates a persistent struct pt and then set a persistent flag: (a) Low-

Level Epochs, (b) High-level failure-atomic code sections, (c) Software Transac-

tional Memory for PM. 13

2.4 Example of STM implementation for PM with undo-logging. 14

3.1 Guarantees provided by (a) ofence, (b) dfence and (c) x86-64 primitives. In (c),

if the clwb is removed, there will not be any happens-before relationship. 20

3.2 PM-STM implementation with (a) x86-64 primitives and (b) HOPS primitives. . 21

3.3 Comparing HOPS and x86-64 primitives. Sample program written with (a)

epochs, (b) x86-64 primitives and (c) HOPS primitives. Programmer intends for

all PM stores to be durable at the end of this program. 22

3.4 Example of necessary ordering (PMO) of stores to different addresses from

different threads. Using two flags, programmer desires S4 to be ordered after

S1 in PMO. 26

x

3.5 Example of reads-from (rf) and epoch-happens-before (ehb) relations. 27

3.6 Simple example showing the use of timestamps and dependency tuples for

indicating PMO happens-before relationships in HOPS. Stores shown inside a

cloud are in the same epoch and thus unordered with respect to each other. . . 30

3.7 HOPS System Design, with hardware modifications marked in blue. 31

3.8 Example execution showing ofence and dfence implementation in HOPS. Persist

Buffer entries in green are not yet flushed and in yellow have been flushed but

flush ACKs are pending. 33

3.9 Performance of HOPS relative to x86-64 primitives, and an ideal but non crash-

consistent implementation. 37

4.1 PM-STM overheads in recoverable PM workloads implemented using PMDK v1.5. 43

4.2 Implementing prepend operation for linked list (defined in (a)) as (b) impure

function where original list L is modified and (c) pure function where a new

updated list shadowL is created and returned; application uses the returned list

as the latest updated list. (d) shadowL reuses nodes of original list L to reduce

space overheads. 45

4.3 Average Latency of a PM cacheline flush on test machine with Optane DCPMM

and compared to our analytical model based on Amdahl’s law. 47

4.4 Functional Shadowing in action on (a) MOD vector. (b) Shadow is created on

Append (i.e., push_back) operation that reuses data from the original vector. (c)

Application starts using updated shadow, while old and unused data is cleaned

up. 50

4.5 Failure-Atomic Code Sections (FASEs) with MOD datastructures using (a) single-

versioned interface to update one datastructure and (b) multi-versioned interface

to atomically update multiple datastructures, dsPtr1 and dsPtr2. Datastruc-

tures in red are temporary shadow datastructures. 54

4.6 Failure-atomic append (i.e., push_back) on single-versioned MOD vector. 54

xi

4.7 Using multi-versioned MOD datastructures for failure-atomically (a) appending

an element to a vector, (a) swapping two elements of a vector and (c) swapping

two elements of two different vectors. 57

4.8 Implementation of single-versioned interface as a wrapper around the multi-

versioned interface. 57

4.9 Commit implementation shown for multi-update FASEs operating on (a) single

datastructure, (b) multiple datastructures pointed to by common parent object,

and (c) (uncommon) multiple unrelated datastructures. 60

4.10 Execution Time of PM workloads, normalized to PMDK v1.4 implementation

of each workload. Queue-pop* is queue-pop with the first pop operation being

untimed. 65

4.11 Flushing and ordering behavior of PM workloads. queue-pop (not shown) has

1 fence and 104 flushes per operation due to pathological case described earlier. 67

4.12 L1D Cache miss ratios for our workloads. 68

5.1 Heterogeneous systems with (a) conventional VM with translation on critical

path and (b) DVM with Devirtualized Access Validation alongside direct access

on reads. 75

5.2 TLB miss rates for Graph Workloads with 128-entry TLB 79

5.3 Address Space with Identity Mapped and Demand Paged Allocations. 80

5.4 Memory Accesses in DVM . 81

5.5 4-level Address Translation in x86-64 . 84

5.6 Structure of a Permission Entry. PE: Permission Entry, P15-P0: Permissions. . . 86

5.7 Pseudocode for Identity Mapping . 88

5.8 Execution time for accelerator workloads, normalized to runtime of ideal imple-

mentation. 95

5.9 Dynamic energy spent in address translation/access validation, normalized to

the 4KB, TLB+PWC implementation. 97

xii

5.10 Runtime of CPU-only workloads, normalized to the ideal case. 102

xiii

Abstract

Emerging non-volatile memory technologies promise new opportunities by offering data

persistence and vast memory capacity but also face substantial challenges. Data persis-

tence enables application data to survive both planned and unplanned power outages.

Unfortunately, applications must use fine-grained cacheline flush instructions to explicitly

move data from volatile caches to persistent memory (PM) and rely on expensive ordering

instructions to enable consistent recovery. Meanwhile, these new technologies also allow

applications to store large amounts of data in memory. However, virtual memory (VM)

techniques, which were designed for small, megabyte-sized memories, cause significant

overheads with terabyte-scale memories.

In this dissertation, we first propose new hardware primitives to improve the perfor-

mance and programmability of applications that leverage data persistence. Recently added

x86-64 primitives require programmers have to track modified cachelines and individually

flush them to PM. Moreover, ordering primitives that are frequently used by applications

cause expensive serialization of long latency cacheline flushes. We propose new hardware,

the Hands-Off Persistence System (HOPS), to implement a lightweight ordering fence and a

separate durability fence. HOPS introduces new hardware to track stores to PM, thereby

automating and lowering the cost of data movement from volatile caches to persistent

memory. HOPS improves application performance by 24% on average over x86-64 systems

in simulation.

xiv

Second, to improve application performance on unmodified hardware, we minimize

the number of expensive ordering operations in PM applications via Minimally Ordered

Durable (MOD) datastructures, a software-only proposal. Currently, PM applications rely

on software transactional memory implementations for PM (PM-STM) to ensure atomicity

of updates across power failures. On actual Intel Optane DC Persistent Memory Modules,

we show that flushing and frequent ordering points in these PM-STM implementations

cause overheads of up to 11× over an un-recoverable baseline without flushing or ordering

points. By leveraging existing implementations of immutable datastructures from func-

tional languages, we create MOD datastructures that offer failure-atomic updates with

only a single ordering operation in the common case. We develop a C++ library of MOD

datastructures with vector, map, set, stack and queue implementations, and show that

these datastructures improve application performance by 60% on average compared to

state-of-the-art PM-STM implementations.

Finally, we address the problem of rising virtual memory overheads due to vast mem-

ories. These overheads are most acute in compute units that cannot justify large and

power-hungry address translation hardware, such as emerging accelerators. However,

programmers still rely on VM for memory protection and to simplify programming. To

minimize VM overheads, we propose Devirtualized Memory (DVM), which eliminates ex-

pensive address translation on most memory accesses. We achieve this by allocating most

memory so that its virtual address matches its physical address. When implemented on a

graph-processing accelerator, DVM reduces VM overheads to less than 4% compared to an

unsafe baseline without VM support. We also discuss how DVM can be extended for use

with general-purpose CPUs.

1

1

Introduction

Everything starts somewhere,

though many physicists disagree.

Terry Pratchett

Non-Volatile Memory (NVM) is here—NVM systems are already offered in a limited

manner by Google Cloud [46] and have been announced to ship by late 2019 [66, 67]. Many

different NVM technologies are being developed in industry for both general-purpose

systems and specialized domains like Internet of Things (IoT) devices. These technologies

include 3D XPoint™ [59], Phase Change Memory [144], Resistive RAM [25, 71], Spin-

transfer Torque Magnetic RAM [57], Conductive-Bridge RAM [45] and (perhaps) Mem-

ristors [129, 140]. While these technologies differ in their physical characteristics, we can

collectively abstract them as fast, high-capacity, byte-addressable and non-volatile main

memory devices. When such devices are attached on the memory bus and can be ac-

cessed by applications using regular load/store instructions, we refer to them as Persistent

Memory (PM).

The slowdown in capacity scaling of conventional DRAM technology [68] has paved

the way for rapid development and widespread adoption of PM. While DRAM has been

commercially available since 1970, 64 gigabyte (GB) DRAM devices were released for the

first time in 2018 [97]. In contrast, the first generation of Intel Optane DC Persistent Memory

Module (DCPMM) includes 128, 256 and 512 GB devices [67]. These memory capacities

2

enable systems with vast memory, i.e., memory greater than 1 terabyte (TB) per socket,

Notably, all experiments in Chapter 4 of this thesis were run on a system with 3 TB of PM

comprising engineering samples of 256 GB Optane DCPMMs. Furthermore, both DRAM

and Optane DCPMMs are comparable in terms of cost at $7.07 per GB [17] and $6.57 per

GB [134] respectively.

By offering low-latency access to vast capacities of memory, PM is highly attractive

for today’s data-centric workloads. Data is being generated at a very prodigious pace by

modern applications, e.g., Twitter (62.5 GB/hour) [125], genomics (0.99 TB/hour) [128],

YouTube (7.2 TB/hour) [98] and astronomy (27 PB/hour by one project alone, the Australian

Square Kilometre Array Pathfinder [96]). Keeping such huge TB-sized datasets in memory

is beneficial for important workloads such as data analytics and model training for machine

learning.

While memory capacity is the initial selling point for PM devices, the property of data

persistence promises to have a more disruptive impact on computer systems. PM enables

applications to durably store in-memory state including pointer-based datastructures.

Without PM, applications must serialize such datastructures to block devices like disks

or solid-state drives for durability, which is both slow and complicated. Fortunately,

application state stored in PM survives both planned and unplanned power outages, a

desirable quality for workloads like databases, key-value stores and long-running scientific

computations [18, 82].

The emergence of Persistent Memory signals a paradigm shift, uniting volatile memory

and persistent storage for the first time since the dawn of computing. By providing much

lower latencies and eliminating the need for data serialization, PM can replace disks for

important usecases that require temporary but persistent data storage such as checkpoint-

ing and staging areas for streaming workflows [39]. Moreover, it enables new system

abstractions like virtual address spaces existing independently of process lifetimes [38].

3

1.1 Challenges of PM technologies

Although persistent and vast memory devices offer new opportunities, they expose sub-

stantial limitations in existing systems that are designed for small or volatile memory. In

this thesis, we identify and mitigate two major challenges faced by persistent and vast

memory systems that degrade both performance and programmability of such systems. We

present a brief overview of these challenges in this section and defer a detailed description

to later chapters.

First, even as main memory becomes persistent, many essential hardware structures

such as CPU registers, caches and various buffers are likely to remain volatile and not

durable in the near future. As a result, application data may either be in the volatile domain

(mainly caches) or persistent domain (mainly PM). However, application data in the volatile

domain is lost on a power failure and is not accessible in future executions.

Hence, computer systems must now provide new hardware and software abstractions

to handle data movement from the volatile to the persistent domain. Unfortunately, current

architectural support for PM pushes this burden onto the programmer by requiring explicit

data movement for durability and consistency. To facilitate PM programming, we need

better abstractions that are both efficient and programmer-friendly.

Second, the overheads of conventional VM techniques scale with increasing memory

capacities [6], especially as relevant hardware structures such as translation lookaside

buffers (TLB) fail to scale proportionally. Both Intel and Linux have recently added support

for 5-level paging [124, 65], which increases the upper bound on Physical Memory (PhysM1)

from 64 TB to 4 Petabytes. However, adding another level of page tables increases the

address translation latency on a TLB miss.

Even though VM overheads threaten significant performance degradation, VM offers a

convenient abstraction that improves the programmability of computer systems and offers

memory protection. Given the high salaries commanded by programmers, programma-
1In this thesis, we use the term PM to refer to Persistent Memory and PhysM for Physical Memory.

4

bility is a first-order concern in modern computers. Hence, it is important to design new

techniques that preserve the useful features of VM, while reducing its overheads in systems

with vast memory.

Thus, in this dissertation, we propose architectural and software techniques to improve

the performance and programmability of systems with persistent and vast memory.

1.2 Contributions

In the first two parts of this dissertation, we develop one architectural and one software

technique to tackle overheads in applications relying on memory persistence. In the third

part, we address virtual memory overheads arising due to vast memory capacity.

Contribution 1: Improving Performance and Programmability of PM Applications

Currently, programmers seeking to exploit the durability of PM must use cacheline flush

instructions to move data from volatile caches to durable PM. Moreover, they must order

these flushes carefully to ensure consistency of application data across unplanned power

outages. However, currently available ordering and durability primitives are too low-level

for most programmers as they operate on data at a cacheline granularity. Additionally, we

show that these primitives are inefficient and contribute to significant overheads in PM

applications.

To support high-level and efficient primitives for ordering and durability, we propose

the Hands-Off Persistence System (HOPS) in Chapter 3. We use insights from an analysis of

realistic PM workloads to guide the design of HOPS. Our analysis shows that ordering

events occur much more frequently than durability events in PM applications. Hence,

HOPS decouples ordering from durability and offers a lightweight ordering fence and a

separate durability fence. Using these primitives, programmers can indicate ordering and

durability guarantees at different points in the program execution instead of on individual

5

cachelines of data. The HOPS hardware automatically tracks PM writes to enforce these

guarantees at a cacheline granularity. HOPS improves the performance of PM applications

by 24% on average over existing x86-64 PM primitives in simulation.

This chapter was published as Section 6 of "An Analysis of Persistent Memory Use with

WHISPER" in The Proceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2017 [94]; in this dis-

sertation, we add a formal specification of the memory persistency model in HOPS and a

longer exposition of the design and implementation.

Contribution 2: Reducing Ordering Constraints in PM Applications

In the near future, applications are more likely to use PM devices for higher capacities

than for persistence. As such, it may be difficult to justify intrusive hardware modifications

to improve the performance of a small set of recoverable applications. However, the high

overheads of data persistence may deter programmers from creating new recoverable

applications. To break this catch-22 situation, we must initially rely on software-only

proposals to tolerate the high overheads found in such applications.

To improve the performance of PM applications on unmodified hardware, we introduce

minimally ordered durable (MOD) datastructures in Chapter 4. We define MOD datastruc-

tures as those that enable failure-atomic sections (similar to transactions) with only a single

ordering point in the common case. We present a simple recipe to create MOD datas-

tructures from existing purely functional datastructures, allowing us to leverage significant

research efforts from the domain of functional languages as opposed to handcrafting new

recoverable datastructures. We develop a C++ library of MOD datastructures with vector,

map, set, stack and queue implementations. This library improves application performance

by 60% on average compared to state-of-the-art software transactional memory (STM)

implementations for PM, on systems with Optane DCPMMs.

This chapter is currently under review for publication.

6

Comparing Contributions 1 and 2. HOPS and MOD are orthogonal approaches that seek

to improve the performance of recoverable PM applications by reducing the overheads of

ordering points. We observed two trends in PM applications running on x86-64 systems.

First, ordering events are very common in PM applications to enable consistent recovery in

case of crash. Second, ordering events are very expensive on x86-64 systems, as ordering

is coupled with durability which requires long-latency cacheline flushes to PM. HOPS

introduces a lightweight hardware primitive for ordering two PM writes (decoupled from

a separate durability primitive) to lower the cost of frequent ordering events in PM ap-

plications. However, HOPS primitives are restricted to new hardware. In contrast, MOD

lowers the frequency of expensive ordering events significantly to improve performance

on current, unmodified x86-64 hardware. Unfortunately, being a software-only approach,

MOD cannot address the programmability issues with x86-64 primitives, which is an added

benefit in HOPS.

Contribution 3: Reducing Virtual Memory Overheads

While new NVM technologies have greatly increased memory capacity, this has been

accompanied by a corresponding rise in virtual memory overheads. Server-class CPUs can

partly mitigate these overheads using complicated, large and power-hungry TLB designs.

Unfortunately, special-purpose accelerators that have become common in such systems

cannot justify such expensive hardware structures. Moreover, TLBs are not scaling in

proportion to increasing memory capacity [6] and may not be sufficient for CPUs in the

future. Consequently, many accelerators either do not have access to virtual memory [99, 73]

or have direct access to physical memory [91], choosing performance over programmability

and safety.

To combine the protection and programmability of VM with the performance of direct

access to PM, we propose De-Virtualized Memory (DVM) in Chapter 5. By allocating

data such that its physical and virtual addresses are usually identical (VA==PA), DVM

7

eliminates expensive page-level address translation on most memory accesses. Moreover,

DVM leverages the commonly occurring contiguity of page permissions to implement

efficient memory protection. Our implementation of DVM requires modest OS and IOMMU

changes, and is transparent to applications. It reduces VM overheads to less than 4% on

average on a graph-processing accelerator with highly irregular memory access patterns.

This chapter was published as "Devirtualizing Memory in Heterogeneous Systems"

in The Proceedings of the Twenty-Third International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2018 [51]. The DVM evaluation

uses vast volatile DRAM, rather than PM, as vast PM was not available at the time of the

original evaluation. Given the longer latencies of PM devices as compared to DRAM, it

stands to reason that page tables will remain in DRAM for the near future. Thus, our

results stay unaffected as the high cost of address translation that we improve will either

stay constant or increase further. Also, this chapter differs from the original paper in one

significant way along with other cosmetic changes. In light of recent microarchitectural side-

channel attacks [83, 77], we have eliminated a Meltdown-susceptible preload optimization

from our default design and made it optional for use when security is not essential.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides the background on memory persis-

tence, needed for Chapters 3 and 4. Chapter 3 presents efficient hardware primitives for

specifying ordering and durability requirements in PM applications. Chapter 4 describes

the design of recoverable datastructures that improve PM application performance on

unmodified hardware. Then, we shift our discussion from persistence to vast memory

by developing a low-overhead virtual memory technique in Chapter 5. Finally, Chapter 6

summarizes our contributions and discusses future research directions.

8

2

Persistent Memory Background

So much universe, and so little time.

Terry Pratchett

In this thesis, we tackle the challenges caused by persistent and vast memory. This

chapter provides some background details on the newfound persistence of memory, as it

is a more radical development than increased memory capacity. We discuss the relevant

background for vast memory systems in Chapter 5.

2.1 System Model

In our target systems, the physical address space is partitioned into volatile DRAM and

durable PM, as shown in Figure 2.1. Hardware structures may be either in the volatile or

the persistent domain. In case of a system failure or power down, data in the persistent

domain is preserved while structures in the volatile domain such as DRAM, CPU registers,

caches, etc., are wiped clean and their data is lost. This system model is similar to most

prior work [20, 85, 94, 139] and representative of Optane DCPMM [67, 70].

Some systems may contain optimizations that extend the persistent domain to additional

structures. For instance, Asynchronous DRAM Refresh (ADR) on Optane DCPMMs brings

the memory controller for persistent memory (PM-MC) into the persistent domain by

9

providing sufficient battery backup to flush out all buffered data at the PM-MC to PM in

case of system failure [63]. With such optimizations, applications must no longer wait for

data to be written to PM (slower than DRAM) to be considered durable.

Private L1

Shared LLC

Memory
Controller

CPU

Private L1

CPU

Memory
Controller

PMDRAM

Figure 2.1: Target System with both DRAM and PM. Structures colored orange are in the
volatile domain, green in the persistent domain and yellow in the persistent domain only
in presence of certain optimizations.

2.2 Hardware Primitives for Ordering and Durability

Both x86-64 and ARMv8 architectures have added (or plan to add) support for PM in the

form of two types of instructions for durability and ordering: flush instruction variants

to explicitly writeback a cacheline from the volatile caches to the persistent domain, and

fence instruction variants to order subsequent instructions after preceding flushes become

durable.

In this dissertation, we focus on the x86-64 architecture, which supports both strongly

ordered flushes (clflush) and weakly ordered flushes (clflushopt, clwb). Strongly or-

dered flushes stall the CPU pipeline till the flush is acknowledged as completed. In contrast,

weakly ordered flushes perform flushes as a posted operation and commit instantly, as

shown in Figure 2.2. However, ordering points (sfence) stall the CPU until inflight flushes

are completed. Thus, frequent ordering points degrade performance by bringing the flush

10

Ordering Durability Granularity Other Effects
clflush Yes Yes Cacheline -
clwb,clflushopt Yes (with sfence) Cacheline -
sfence Yes (with clwb) Control-flow Serializing Instruction

Table 2.1: Comparison of x86-64 primitives for PM.

latency of weakly ordered flushes to the critical path. In the rest of this dissertation, we

use the term flushes to refer to weakly ordered flushes.

The two weakly ordered flushes in the x86-64 architecture have different behavior. The

clflushopt instruction evicts a cacheline from the cache to write it back to PM. On the

other hand, the clwb instruction offers a hint to the hardware that the cacheline may be used

in the future. Hence, an optimized implementation would clean the appropriate cacheline

by writing back the dirty data but not evict it from the caches. In the implementations

discussed in the following chapters, we use clwb instructions to flush out data to PM.

We discuss the drawbacks of these primitives by comparing against our proposed

primitives in Section 3.2. One major issue is that the x86-64 primitives are too fine-grained

and operate at a cacheline granularity, which complicates and slows the development of

recoverable applications. Specifically, programmers are required to perform manual data

movement at the granularity of individual cachelines. We present a comparison of these

primitives in Table 2.1.

2.3 Programming Recoverable Applications

We refer to applications that leverage the persistence of PM as recoverable applications. Such

applications store some or all application state durably in PM. When such applications

start executing, they check the state of their data in PM. If they find durable state from an

earlier execution, they can use it to restore progress made in previous executions instead

of starting from scratch.

Two major challenges exist in programming for PM. First, data is only durable when it

11

CPU
Time

SerialParallel Stall

Cacheline Flush Latency

Concurrent
 Flushes

CLWBs issue
and commit

instantly

Program Execution

SFENCE issues
and stalls CPU

SFENCE commits
when inflight flushes

"complete"

CLWB A

CLWB B

CLWB C

SFENCE

1

2

3

4

Figure 2.2: Execution Timeline for weakly ordered flushes to PM on x86-64 systems.

reaches the persistent domain; data in the volatile domain is lost on a power failure. As a

result, applications that require durability must ensure that sufficient data is moved into

the persistent domain to preserve application progress in case of failure. Second, system

crashes at inopportune moments such as amidst datastructure modifications may result

in partially updated and inconsistent datastructures. Hence, applications must explicitly

order flushes to PM, to ensure that recovery code can restore any partially updated data to

a consistent and usable state.

Essentially, recoverable PM applications need to order some PM writes before others

to enable consistent recovery, e.g., log write before corresponding data write. To achieve

this, such applications need to reason about how the underlying hardware may reorder

PM stores. Accordingly, these applications can indicate specific ordering constraints that

must be enforced by the hardware to avoid data corruption.

In this section, we first describe persistency models that are specified by architectures to

help programmers reason about ordering of PM stores. As these persistency models are too

low-level for most application programmers, researchers have also developed high-level

programming models for PM, which we describe subsequently.

12

Low-level Persistency Models

Persistency models are specifications of possible orders in which stores update PM [105].

Persistency models are an extension of memory consistency models which specify possible

orders in which stores become visible to all cores.

With the introduction of PM, programmers must now reason about two separate mem-

ory orders in addition to program order. Program order (PO) refers to the total order in

which instructions are dynamically executed by a software thread. Volatile memory order

(VMO) is governed by the memory consistency model and is the order in which memory

operations become visible to all cores. Additionally, we now have the persistent memory

order (PMO) which is the order in which stores update PM. A prefix of the stores in PMO

is guaranteed to have updated PM and become durable in case of a power outage.

There are two popular persistency models: Strict and Buffered Epoch persistency [105,

72]. Strict persistency ties the persistency model to the consistency model. At the time of

failure, any updates that are visible as per VMO are also made durable. Logically, each store

to PM is made durable before the next store in program order can be issued. Hence, strict

persistency aims for simplicity at the cost of performance. Buffered Epoch Persistency

(BEP) is a relaxed model that enforces ordering at an epoch granularity. An epoch is a group

of instructions from one thread contiguous in program order. PM stores within the same

epoch can be made durable in any order. A PM store from an earlier epoch is made durable

before a PM store from a later epoch. Thus, programmers can order two PM stores by

separating them with an epoch boundary. Note that BEP as defined above allows for PM

stores to be buffered, i.e., does not require PM stores to become durable synchronously at

the end of their epoch. Thus, BEP enables high-performance implementations that allow

the core to execute past epoch boundaries.

For the proposals in this thesis, we limit our discussions to the x86-TSO consistency

model and Buffered Epoch Persistency only.

13

High-level Programming Models

A popular high-level programming model that abstracts away the complexities of the

underlying persistency model is failure-atomic code sections (FASEs) [20]. FASEs are code

segments with the guarantee that all PM writes within a FASE happen atomically with

respect to system failure. For example, prepending to a linked list (Figure 4.2b) in a FASE

guarantees that either the linked list is successfully updated with its head pointing to the

durable new node or that the original linked list can be reconstructed after a crash. FASEs

are commonly implemented either as durable transactions, custom logging mechanisms in

lock-based code [20] or shadow-copying techniques [136].

PM libraries [26, 61, 139] typically implement FASEs with software transactions (PM-

STM) that guarantee atomicity, consistency and durability. All updates made within a

transaction are durable when the transaction commits. If a transaction gets interrupted

due to a crash, write-ahead logging techniques are used to allow recovery code to clean

up partial updates and return persistent data to a consistent state. Hence, recoverable

applications can be written by allocating datastructures in PM and only updating them

within PM transactions.

TX_BEGIN {
 pt->x = 1
 pt->y = 1
 flag = 1
} TX_END

(b) (c)

// Begin-FASE
pt->x = 1
pt->y = 1
flag = 1
// End-FASE

(a)

Epoch 1:
pt->x = 1
pt->y = 1

Epoch 2:
flag = 1

Figure 2.3: Different PM programming approaches illustrated using a sample program
which updates a persistent struct pt and then set a persistent flag: (a) Low-Level Epochs,
(b) High-level failure-atomic code sections, (c) Software Transactional Memory for PM.

PM-STM implementations perform write-ahead logging with either undo-logging [26,

61], redo-logging [30, 43, 84, 139] or hybrid undo-redo logging [62, 100]. These techniques

require a durable log (stored in PM). Before every store to an address in PM, we append a

new log entry with the address of the store and either the new value (in redo logging) or the

14

old value at that address (in undo logging). Subsequently, the store is performed in-place

overwriting the old value (undo logging) or buffered elsewhere (redo logging) until commit.

To enforce these ordering rules, i.e., log append is ordered before data write, transactions

rely on epoch boundaries. On the x86-64 hardware, these epoch boundaries guarantee

durability in addition to ordering resulting in inefficient and slow transactions [94]. A

transaction implemented with undo-logging and broken down into logical epochs is shown

in Figure 2.4.

Acquire Lock

Prepare Log Entry

Commit Transaction

Release Lock

1 N

Mutate Data Structure 1 N

Epoch Boundaries
(Ordering + Durability)

Figure 2.4: Example of STM implementation for PM with undo-logging.

Qualitative Comparison

We illustrate the difference between low-level epochs and higher-level programming models

using a simple program (Figure 2.3). This program first updates struct pt which has two

members x and y and is stored durably in PM. Then, the program uses a flag stored in PM to

indicate that pt is updated and durable. The ordering required is that the flag update must

not happen earlier in PMO than the pt updates. We can achieve this by first using an epoch

to update pt and using a subsequent epoch to update flag (Figure 2.3a). Here, updates to x

and y can be freely reordered by hardware without adversely affecting consistent recovery.

Alternatively, we can perform all updates in one FASE (Figure 2.3b). If the FASE completes

15

successfully, all updates will happen atomically in PMO, thereby preserving the required

ordering. If there is a crash within the FASE, recovery code will undo all updates from this

incomplete FASE. Lastly, while epochs and FASEs are logical constructs, we show how the

actual implementation of the code using a PM-STM implementation (Figure 2.3c).

This chapter has provided background on PM systems, hardware primitives and pro-

gramming models, which now enables us to move on to this dissertation’s contributions.

16

3

Hands-Off Persistence System

Memory can play tricks after the

first ten thousand years.

Terry Pratchett

1 The persistence of emerging NVM devices marks a paradigm shift as it collapses the

traditional storage/memory hierarchy: applications can access and persist data directly

with the interface and performance of memory and the persistence of storage. Such

persistent memory enables recoverable applications that preserve in-memory data across

planned and unplanned outages. These applications can access durable data in PM at the

granularity of bytes and persist complex pointer-rich datastructures without needing to

serialize them to disk. Such properties are highly desirable for workloads like databases,

key-value stores and long-running scientific computations [18, 82].

However, the potential of persistent memory is marred by both excessive overheads

and programming challenges. Regular loads and stores can be used to access data in PM,

but these memory operations can be reordered by modern CPUs and memory subsystems.

Some reorderings could result in data loss or corruption in the case of an ill-timed system

crash. To be able to recover after a crash without losing all prior progress, applications

must carefully order and persist stores to PM. For instance, applications must update and
1The introductions of Chapters 3 and 4 have some redundancies with Chapter 1 to facilitate readers mostly
interested in reading a standalone chapter.

17

flush data before updating a persistent pointer that points to the data, or atomically do

both.

To enable consistent and durable updates to PM, Intel has recently added new hardware

primitives to the x86-64 architecture for recoverable applications. Applications can use

cacheline flush instructions to move data from volatile caches to durable PM. Additionally,

applications order these flushes carefully using fence instructions to ensure consistency.

These new x86-64 primitives suffer from both performance and programmability issues.

First, these primitives enforce ordering between two PM stores by waiting for the first store

to become durable, which is a slow operation due to the high NVM write latency. Second,

programmers are required to explicitly perform data movement at a cacheline-granularity

from the volatile caches to persistent memory. Such low-level primitives complicate and

slow the development of PM applications. Thus, there is a need for efficient, programmer-

friendly and hardware-enforced primitives for ordering and durability separately.

We propose the Hands-Off Persistence System (HOPS) to make recoverable applications

both fast and easy to program. We use insights from our comprehensive analysis of realistic

PM applications to guide the HOPS design. In our analysis, we found that applications

require ordering guarantees much more frequently than durability. Thus, we introduce

two distinct hardware primitives, a more common, lightweight, ordering fence (ofence)

and the rarer durability fence (dfence). HOPS can order PM stores without making them

durable to improve performance. Moreover, our proposed primitives take no parameters

and operate at the control-flow level and not at a cacheline-granularity.

HOPS tracks and buffers PM stores in hardware, and automatically enforces the ordering

and durability requirements indicated by the programmer. HOPS makes minimal changes

to the existing cache hierarchy to avoid degrading the performance of accesses to volatile

DRAM, which comprise 96% of all accesses in the PM applications we studied. Furthermore,

HOPS can buffer multiple stores to the same cacheline from different epochs (a common

occurrence) without requiring long-latency cacheline flushes. Beyond the improvements

18

in programmability, our evaluation shows that HOPS improves application performance

by 24% on average compared to a baseline x86-64 system.

In this chapter, we attempt to improve the performance and programmability of recov-

erable PM applications, making the following contributions:

• We offer design guidelines for efficient PM hardware based on observations from

realistic PM applications.

• We propose new hardware primitives, ofence and dfence, to enable programmers

to reason about ordering and durability at a high-level

• We present an efficient hardware design to implement our new hardware primitives

by track PM stores in hardware.

3.1 Insights from Workload Analysis

We believe that analysis precedes good design. Accordingly, we created the first benchmark

suite of realistic recoverable PM applications called Wisconsin-HP Labs Suite for Persistence

or WHISPER. We analyzed these applications to find characteristic trends to guide the

design of HOPS. Another student (Sanketh Nalli) led the development of the benchmark

suite and its analysis to which we contributed. Here, we summarize the key observations

of our analysis along with the design goals inspired by each observation. We published

the full analysis in Section 4-5 of our ASPLOS paper [94], where Section 6 presented HOPS,

the subject of this dissertation chapter.

Observation 1: Accesses to volatile DRAM make up about 96% of all accesses.

Design Goal 1: Any PM-specific additions to caches and other structures shared between

PM and DRAM should not adversely impact volatile memory accesses.

Observation 2: ACID transactions involve 5-50 ordering points.

19

Design Goal 2: As ordering points occur frequently, they must be fast and inexpensive.

More importantly, ordering must be decoupled from more expensive durability

operations.

Observation 3: Epochs from different threads rarely conflict with each other.

Design Goal 3: Hardware can separately track PM writes from each thread, but rare inter-

thread conflicts must still be handled correctly.

Observation 4: There are frequent conflicts between epochs from the same thread.

Design Goal 4: Intra-thread conflicts lead to flushing on the critical path, as dirty cache-

lines from older epochs must be flushed first to avoid reordering epochs. To prevent

this, hardware must be capable of simultaneously tracking multiple updates to the

same cacheline from different epochs.

In subsequent sections, we use these design guidelines to drive the design of efficient

hardware support for PM.

3.2 New Hardware Primitives

HOPS adds two hardware primitives to allow programmers to specify ordering as well as

durability requirements separately and at a high-level, e.g., without specifying individual

cachelines to be persisted. These primitives are thread-local and apply to stores from

the same thread, like the x86-64 primitives for PM. Here, we describe the semantics of

these primitives and defer the discussion of an efficient hardware implementation until

Section 3.4.

Ordering. First, we add a lightweight ordering fence (ofence) that always executes immedi-

ately and does not stall the core. In the absence of ofence instructions, stores can update

PM in any order. The ofence instruction ensures that all stores from the same thread earlier

than the ofence in program order will update PM before stores from the same thread later

than the ofence in the program order. Figure 3.1a illustrates the behavior of ofence.

20

(a)

(b)

(c)

Program Order

Persistent
 Memory Order

ST A=1 ST B=1

sfence

ST A=1 ST B=1

Happens
 Before

CLWB A

Program Order

Persistent
 Memory Order

ST A=1 ST B=1

ofence

ST A=1 ST B=1

Happens
 Before

Program Order

Persistent
 Memory Order

ST A=1 ST B=1

dfence

ST A=1 ST B=1

Happens
 Before

Figure 3.1: Guarantees provided by (a) ofence, (b) dfence and (c) x86-64 primitives. In (c),
if the clwb is removed, there will not be any happens-before relationship.

Durability. Second, we propose the durability fence (dfence) that stalls the core until all

outstanding PM stores from the same thread become durable. The dfence instruction

synchronously guarantees the durability of all PM stores (from the same thread) earlier in

the program order than the dfence. Due to the high cost of making data durable, dfence

is more expensive than ofence. Figure 3.1b illustrates the behavior of dfence. Operating

Systems can use the dfence instruction to ensure the durability of outstanding PM stores

on context switches.

Constructing Epochs. Programmers can use either of the two primitives to demarcate an

epoch boundary as two PM stores cannot be reordered if separated by either ofence or

dfence. The difference between the two primitives lies in the fact that the ofence primitive

21

does not guarantee that preceding PM stores have become durable, similar to theoretical

epoch boundaries [105]. Accordingly, we use the lightweight ofence primitive for all

epoch boundaries except when durability of earlier stores is a requirement. For instance,

programmers can use ofence for internal ordering points within a transaction and dfence

only at the end of the transaction to guarantee durability or before performing irreversible

and externally visible I/O operations. We show an example of an undo-logging based

transaction implemented using both x86-64 and HOPS primitives in Figure 3.2. The x86-

64 implementation uses heavyweight epoch boundaries that guarantee durability at all

internal ordering points of the transaction, resulting in low performance.

Acquire Lock

Prepare Log Entry

Commit Transaction

Release Lock

1 N

Mutate Data Structure 1 N

Epoch Boundaries
(Ordering + Durability)

Acquire Lock

Prepare Log Entry

Commit Transaction

Release Lock

1 N

Mutate Data Structure 1 N Epoch Boundary (ofence)

Epoch Boundary (dfence)

(a) (b)

Figure 3.2: PM-STM implementation with (a) x86-64 primitives and (b) HOPS primitives.

Comparison with x86-64 primitives. The ofence and dfence primitives offer two advan-

tages over existing primitives in the x86-64 architecture like clwb and sfence. First, x86-64

primitives do not distinguish between ordering and durability. To order two PM stores in

an x86-64 system, programmers must make the first store durable (an expensive operation)

before performing the second store. Effectively, the x86-64 primitives ensure durability

of inflight stores at every epoch boundary, which is overkill. This behavior is illustrated

in Figure 3.1c as the update to address A must be made durable before the sfence com-

mits. This is a significant performance bottleneck as our application analysis [94] found

that applications rely on ordering guarantees much more frequently than on durability

22

Architecture Primitive Ordering Durability Other Effects
x86-64 clflush Yes Yes -
x86-64 clwb,clflushopt Yes (with sfence) -
x86-64 sfence Yes (with clwb) Serializing Instruction
HOPS ofence Yes -
HOPS dfence Yes Yes Serializing Instruction

Table 3.1: Comparison of HOPS and x86-64 primitives for PM.

guarantees.

Second, HOPS primitives allow programmers to reason about ordering and durability

points in an application’s control flow. In contrast, existing x86-64 primitives like clwb and

sfence force programmers to manually move individual cachelines to durable PM. Missing

or misplaced clwbs have been shown to be a major cause of correctness and performance

issues in PM applications [86]. Figure 3.3 shows how a simple program with two logical

epochs is represented using x86-64 and HOPS primitives. This figure also shows how PM

programs written with HOPS primitives closely resemble the abstract and intuitive epochs.

We present a qualitative comparison of HOPS and x86-64 primitives in Table 3.1.

pt->x = 1
pt->y = 1
clwb (&(pt->x))
clwb (&(pt->y))
sfence

flag = 1
clwb (&flag)
sfence

(b) (c)(a)

Epoch 1:
pt->x = 1
pt->y = 1

Epoch 2:
flag = 1

pt->x = 1
pt->y = 1
ofence

flag = 1
dfence

Epoch Model HOPSx86-64

Figure 3.3: Comparing HOPS and x86-64 primitives. Sample program written with (a)
epochs, (b) x86-64 primitives and (c) HOPS primitives. Programmer intends for all PM
stores to be durable at the end of this program.

23

3.3 Memory Persistency Model

We now discuss the memory persistency model supported by HOPS. As described earlier

in Chapter 2, these models specify the possible orderings in which PM stores can become

durable [105]. Consequently, these models help programmers reason about how to use

available hardware primitives to avoid reorderings of updates that preclude effective crash

recovery.

HOPS implements the Buffered Epoch Persistency model (BEP) [72, 105] on top of

the x86-TSO memory consistency model [120]. This combination (TSO-BEP) allows us to

extend a simple and well-understood memory consistency model with a persistency model

that allows useful performance optimizations. Specifically, BEP allows the overlapping of

long-latency flushes to PM for stores belonging to the same epoch. While the BEP model

has been described previously with prose [72, 105] (also in Section 2.3), we seek to precisely

specify it using axiomatic notation here. An operational and axiomatic model of TSO-BEP

using slightly different hardware primitives has been developed by others [111] since our

original paper.

We use the following notation for memory operations (inspired by [81]) to describe

these models:

• Li
a: Load from thread i to address a.

• Si
a: Store from thread i to address a.

• Mi
a: Load or Store from thread i to address a.

• Fi: mfence (from x86-64 ISA) on thread i.

• Xi: ofence or dfence (from HOPS) on thread i.

To express the ordering of memory operations, we define three partial orders that each

order a subset of memory references:

24

• Mi
a <po Mi

b : Mi
a precedes Mi

b in program order (PO).

• Mi
a <vmo Mj

a : Mi
a precedes Mj

a in volatile memory order (VMO).

• Mi
a <pmo Mj

a : Mi
a precedes Mj

a in persistent memory order (PMO).

Below, we describe the specific memory references that are ordered in the x86-TSO

consistency model and BEP persistency model in HOPS. For instance, PMO only orders

some stores and never loads, ofences or dfences. This is because PMO defines the state

of PM at the time of failure, and PM is only updated by stores. PO is the order in which

instructions from the same thread are dynamically executed by the processor.

Background on x86-TSO

x86-TSO refers to the Total Store Order memory consistency model that appears to match

the memory consistency model implemented in the x86-64 architecture. It preserves the

relative order of most pairs of memory accesses (Equations 3.1-3.3) except for the store-

to-load ordering. Particularly, a store followed by a load in PO are not guaranteed to be

ordered equivalently in the VMO. To enforce such an ordering, the two operations must be

separated by an mfence operation (Equation 3.4).

Li
a <po Li

b ⇒ Li
a <vmo Li

b (3.1)

Li
a <po Si

b ⇒ Li
a <vmo Si

b (3.2)

Si
a <po Si

b ⇒ Si
a <vmo Si

b (3.3)

Si
a <po Fi <po Li

b ⇒ Si
a <vmo Li

b (3.4)

25

HOPS Persistency Model

We now discuss the ordering of stores in PMO as per the TSO-BEP model. We first present

the simpler case of ordering two stores to the same address, followed by a longer discussion

on ordering two stores to different addresses.

Stores to the Same Address

TSO-BEP always orders two stores to the same address as per VMO (Equation 3.5). This

property is referred to as strong persist atomicity [105]. One special case is for two stores to

the same address from the same thread (i.e., Si
a and Ŝi

a), whose relative order in VMO (and

thus PMO) is determined by PO (Equation 3.6). Across threads, the relative order in VMO

depends on how memory accesses from different threads get interleaved at the caches.

Programmers can influence this order by using appropriate synchronization techniques.

Si
a <vmo Sj

a ⇒ Si
a <pmo Sj

a /* Same address */ (3.5)

Si
a <po Ŝi

a ⇒ Si
a <pmo Ŝi

a /* Same address, same thread */ (3.6)

Stores to Different Addresses

To describe the ordering of stores to different addresses, we introduce the relation epoch-

happens-before (ehb−−→). Before defining this relation, we assert that TSO-BEP only orders two

stores to different addresses in case of epoch-happens-before:

Si
a

ehb−−→ Sj
b ⇒ Si

a <pmo Sj
b /* Different addresses */ (3.7)

With three equations, we define epoch-happens-before using a simple base case (Equa-

tion 3.8) and extend it recursively in two ways (Equations 3.9 and 3.10). In the base case,

store S1 ehb−−→ S2 if they are from the same thread and separated by an epoch boundary,

i.e., ofence or dfence. In other words, store S1 belongs to an earlier epoch and store S2

26

belongs to a later epoch.

Si
a <po Xi <po Si

c ⇒ Si
a

ehb−−→ Si
c /* Same Thread */ (3.8)

The ordering of PM stores to different addresses from different threads is more chal-

lenging. We want to order such stores only in case of explicit dependencies and not because

they happen to be arbitrarily ordered in VMO in an execution. For example, data updates

on one thread must be ordered before another thread updates a pointer to point to the data.

We illustrate this case using Figure 3.4 where the programmer’s intent is to order S4 after

S1 in PMO. We revisit this example at the end of this section to describe how TSO-BEP

preserves the necessary ordering. However, two unrelated stores from different programs

must not be ordered.

Thread 3

L2: LD flag2, r2

if (r2 != 1)
 goto L2

S4: ST ptr = &data

Thread 1

S1: ST data = 1

ofence

S2: ST flag1 = 1

Thread 2

L1: LD flag1, r1

if (r1 != 1)
 goto L1

S3: ST flag2 = 1

Figure 3.4: Example of necessary ordering (PMO) of stores to different addresses from
different threads. Using two flags, programmer desires S4 to be ordered after S1 in PMO.

Accordingly, we seek to order stores in presence of read-after-write (RAW) dependencies

in VMO to enable many forms of cross-thread communication and synchronization. For

this, we use the reads-from (rf) relation Si
a

rf−→ Lj
a [118], that indicates load Lj

a returns the

value written previously by store Si
a during an execution, i.e., a RAW dependency from Si

a

to Lj
a in VMO.

We now extend the definition of epoch-happens-before to include reads-from dependencies:

Mi
a

ehb−−→ Sj
c

rf−→ Lk
c ⇒Mi

a

ehb−−→ Lk
c /* reads-from across threads */ (3.9)

27

The above equation is not useful on its own as the order of loads is not reflected in PMO.

However, our real intention is to correctly order any stores following these ordered loads in

program order. Hence, we add the final extension to the definition of epoch-happens-before:

Mi
a

ehb−−→Mj
b <po Sj

c ⇒Mi
a

ehb−−→ Sj
c /* program order within thread */ (3.10)

Thread 3

L2: LD flag2, r2

if (r2 != 1)
 goto L2

S4: ST ptr = &data

Thread 1

S1: ST data = 1

ofence

S2: ST flag1 = 1

Thread 2

L1: LD flag1, r1

if (r1 != 1)
 goto L1

S3: ST flag2 = 1

rf rf

ehb

po po po

po
ehb

ehb

ehb ehb

Figure 3.5: Example of reads-from (rf) and epoch-happens-before (ehb) relations.

We demonstrate epoch-happens-before and reads-from relations in our earlier example

(Figure 3.4) using Figure 3.5. Under all executions, S1 ehb−−→ S2 due to the intervening ofence

(per Equation 3.8). When the if-statement on Thread 2 is evaluated true, we know that L1

read the value written by S2, i.e. S2 rf−→ L1. According to Equation 3.9, S1 ehb−−→ S2 rf−→ L1

results in S1 ehb−−→ L1. According to Equation 3.10, S1 ehb−−→ L1 <po S3 results in S1 ehb−−→ S3.

By extending this similarly to Thread 3, we can also show that: S1 ehb−−→ S4. Accordingly, S1

precedes S4 in PMO (per Equation 3.7), correctly preserving programmer intent. In this

example, note that there is no epoch-happens-before relation between S2 and S4.

One might think that our three-equation (Equations 3.8-3.10) definition of epoch-happens-

before is unduly complex. Alternatively, it might seem simpler to order persistent stores

with the transitive closure of program order and reads-from. While simpler, this alternative

formulation orders stores too much and would be detrimental to performance. In particular,

it would order in PMO, two stores by a thread to different addresses in the same epoch

(no intervening ofence), making it difficult to concurrently handle the stores, e.g., overlap

28

Ordering Rules

Stores to Same Address S1 <vmo S2⇒ S1 <pmo S2

Stores to Different Addresses S1 ehb−−→ S2⇒ S1 <pmo S2

Table 3.2: Ordering rules in TSO-BEP.

flushes to separate persistency memory controllers. Our defintion leaves these stores

unordered, facilitating concurrent handling and good performance, as we will see.

We summarize all store-to-store orderings in Table 3.2. Programmers can use these

rules to ensure that any required ordering in PMO between stores is enforced by HOPS.

3.4 HOPS Design

We now describe the HOPS design that efficiently implements our new hardware primitives.

First, we present the timestamp mechanism that enforces our persistency model. Then,

we describe the hardware structures introduced in HOPS to implement this mechanism.

Lastly, we evaluate the HOPS design qualitatively against our design goals from Section 3.1.

Timestamp-based Ordering

HOPS uses a mechanism inspired by the vector clocks algorithm [40, 89] for determining

the order in which stores can update PM (i.e., PMO). All hardware threads get a local

timestamp (LocalTS) that indicates the timestamp of the current inflight epoch. Every PM

store is associated with a timestamp that matches the LocalTS when the store exits the CPU

write buffer. Epoch boundaries (i.e., ofence or dfence) increment the LocalTS.

Ordering stores from one thread

For single-threaded applications, the timestamps associated with PM stores are sufficient

to determine relative positions in the PMO. Specifically, a PM store with timestamp LTSi is

29

ordered after other stores from the same thread with timestamp < LTSi in PMO i.e., stores

from earlier epochs are ordered before stores from later epochs. There are no ordering

constraints among stores with equal timestamps, i.e., they belong to the same epoch.

Ordering stores from different threads

For multi-threaded applications, HOPS must enforce ordering between stores from two

different threads, even as our analysis showed these cases to be rare (Table 3.2). To handle

such instances, each store is also associated with a dependency tuple (Ti:LTSi) that consists

of a thread id (Ti) and LocalTS (LTSi) on that thread. HOPS identifies such dependencies

by monitoring coherence activity as described later in Section 3.4. In the absence of any

such dependencies (common case), the dependency tuple is empty. In PMO, a store with

dependency tuple (Ti:LTSi) is ordered after stores from thread Ti with timestamps < LTSi.

Additionally, this store must also follow ordering rules described in the previous paragraph.

A cross-thread dependency is also treated as an epoch boundary, leading to the creation

of a new epoch to avoid any circular dependencies. This approach is borrowed from the

epoch deadlock avoidance mechanism proposed by others [72].

Figure 3.6 illustrates the use of timestamp-based ordering in HOPS. Most stores in the

figure are only associated with a timestamp, which orders them with other stores from the

same thread. The store to address G from thread 0 additionally has a dependency tuple

that indicates it should be ordered after all stores from thread 1 with timestamp <= 3. In

this particular example, the cross-thread dependency occurs due to strong persist atomicity

(Section 3.3, Equation 3.5).

HOPS Hardware Modifications

In this section, we describe the new hardware introduced in the HOPS implementation,

namely timestamp registers and persist buffers. The HOPS system design is illustrated in

Figure 3.7.

30

ST G=2 2 1:3

ST D=1 3 -

ST E=1 3 -

ST A=1 1 -

ST B=1 1 -

Thread 0 Thread 1

ST Z=1 1 -

ST W=1 2 -

ST V=1 4 -

ST U=1 4 -

ST G=1 3 -Precedes in VMO

ST A=1 1 2:3
Timestamp

Dependency Tuple
Thread ID : Timestamp

Legend

Figure 3.6: Simple example showing the use of timestamps and dependency tuples for
indicating PMO happens-before relationships in HOPS. Stores shown inside a cloud are in
the same epoch and thus unordered with respect to each other.

Timestamp Registers

HOPS uses timestamps for ordering PM updates. We add a local timestamp (LocalTS)

register for each hardware thread, which indicates the epoch number of the inflight epoch.

The LocalTS is incremented on an ofence or dfence. A global timestamp (GlobalTS) register

is maintained at the LLC, which is a vector of timestamps (T0, T1, ..., Tn) where Ti indicates

that all stores from thread i with timestamp < Ti have been made durable. The GlobalTS is

updated based on messages received from the Persist Buffers (described next). Note that

the LocalTS and GlobalTS values are unaffected by a thread context switch.

Persist Buffers

Persist Buffers (PBs) are per-thread first-in first-out (FIFO) structures that buffer inflight

PM stores before they become durable. When a PM store exits the write buffer, the store

31

Private L1

Shared LLC
 Volatile

loads + stores
Non-volatile

loads

Memory
Controller

Non-volatile
stores

Persist Buffer

CPU 0

Private L1

CPU 1

Memory
Controller

PMDRAM

Persist Buffer

LocalTSLocalTS

GlobalTS

Figure 3.7: HOPS System Design, with hardware modifications marked in blue.

gets buffered at the tail of its thread’s Persist Buffer and also updates the appropriate

cacheline in the caches. The cached copy is used for exploiting temporal or spatial locality

but never written back to PM. Instead, the cacheline is simply discarded when it gets

evicted. Note that the PBs are multi-versioned which allows multiple updates to the same

address to be buffered separately as part of the same or different epochs. This allows PBs

to handle self-dependencies without stalling. On a context switch, the core’s Persist Buffer

is completely flushed using a dfence instruction.

PBs implement the timestamp mechanism (Section 3.4) to write back the buffered stores

to PM in a legal order under TSO-BEP. For this purpose, each PB entry contains the address

and data of a PM store along with the store’s timestamp and dependency tuple. Starting

from the head, a PB writes back buffered stores following the ordering rules specified in the

previous section. If the buffered entries have empty dependency tuples, a PB concurrently

writes back all entries with the same timestamp by sending write requests to the appropriate

memory controllers. Before proceeding with stores with later timestamps, the PB waits for

memory controllers to acknowledge the durability of previous write requests.

Finally, PBs rely on the GlobalTS register to enforce rare cross-thread dependencies. At

32

regular intervals, a PB updates the GlobalTS register with the timestamp of the latest store

written back to PM. Then for any buffered store with a dependency tuple (Ti:LTSi), the

PB polls the GlobalTS register to ensure that the timestamp corresponding to thread Ti is

> LTSi. Once this condition is met, the buffered store is guaranteed to be ordered correctly

in the PMO as per our TSO-BEP ordering rules. At this point, the buffered store can be

written back to PM.

Figure 3.8 demonstrates the role of PBs for implementing ofence and dfence instruc-

tions in a sample code sequence.

Extensions to Cache Coherence Mechanism

HOPS monitors cache coherence activity to identify rare cross-thread RAW dependencies.

Consider the case when a (source) thread writes to an address resulting in a dirty cacheline

in the thread’s L1 cache. Subsequently, if another (dependent) thread issues a read request

for the same address, its L1 cache requests a shared copy of the cacheline. This creates a

cross-thread RAW dependency that can be identified by an incoming coherence request

from another cache for a dirty cacheline in an L1 cache. This is a conservative indication

due to the possibility of false-sharing.

This RAW dependency is communicated to the dependent thread’s PB by sending a

dependency tuple along with the coherence response. The dependency tuple is created

using the source thread’s ID as well as its LocalTS. The timestamp in the dependency

tuple should ideally be the TS associated with the original write to the cacheline. However,

this requires a fully associative lookup in the PB for the relevant address. To avoid this

expensive operation, we use the LocalTS which is acceptable as it is more recent than the

timestamp of the original write.

When the dependent thread’s L1 cache receives a coherence response with an additional

dependency tuple, it forwards the tuple to the thread’s PB. The PB appends the dependency

tuple to its tail entry. Thus, the next PM store performed by the thread will get a PB entry

33

26

Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(e)

A = 2

B = 1

A = 2 26

B = 1 25

A = 1 25 H

T

26
Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(d)

A = 1

B = 1

B = 1 25

A = 1 25 H

T

25
Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(c)

A = 1

B = 1

B = 1 25

A = 1 25 H

T

25
Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(a)

Head, Tail

25
Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(b)

A = 1

A = 1 25 H

T

27
Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(f)

A = 2

B = 1

A = 2 26

B = 1 25

A = 1 25 H

T

25
Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(g)

A = 2

B = 1

A = 1 26 H

T

Both entries from epoch 25 flushed together

After ACKs for epoch 25, flush epoch 26

25
Local TS

Persist BufferL1 Cache

1. ST A = 1
2. ST B = 1
3. ofence
4. ST A = 2
5. dfence

(h)

A = 2

B = 1

H,T

DFENCE completes when PB is empty

Store updates both cache and PB

Local TS is updated on ofence

Store to A overwrites cached value but not PB

Figure 3.8: Example execution showing ofence and dfence implementation in HOPS. Persist
Buffer entries in green are not yet flushed and in yellow have been flushed but flush ACKs
are pending.

34

Events Action
ofence Increment Thread TS to end current epoch.
dfence Increment Thread TS to end current epoch, and stall

thread till local PB is flushed clean.
L1 read hit, miss No change.
L1 write hit, miss Get exclusive permissions (miss), update cache line

and mark clean. Create PB entry with epoch TS =
thread TS and dependency pointer (if any).

Forwarded GET Respond with data and (if line cached exclusively)
dependency pointer (thread ID, TS) to requestor.

LLC hit No change.
LLC miss Send request to MC, which stalls request if address

present in any PB.

Table 3.3: Handling of major events in HOPS.

with a dependency tuple, marking the cross-thread dependency.

To handle the case when a L1 cache P writes back a dirty cacheline, we rely on the sticky-

M state (similar to LogTM [148]). Accordingly, the lower-level cache receiving the dirty

cacheline transitions into a new state "sticky-M@P". When another L1 cache Q requests this

cacheline non-exclusively, the directory forwards the request to P in addition to responding

with the cacheline. When P receives the forwarded request for an uncached cacheline, it

responds to Q with an empty coherence message along with the dependency tuple. If an

L1 cache R requests this cacheline exclusively, the same steps are followed as described

above, but the directory transitions out of the sticky-M state into the conventional Modified

state.

In Table 3.3, we summarize the actions taken in HOPS design for executing major events

i.e., new primitives as well as coherence messages.

Qualitative Evaluation

We now evaluate the HOPS design in terms of the design goals laid out in Section 3.1.

Design Goal 1. HOPS tracks PM stores outside of the cache hierarchy in separate PBs.

Cache modifications are restricted to a single bit per cacheline for identifying PM cachelines

and sticky information in the directory, which does not affect cache access latencies. Thus,

35

HOPS preserves the performance of DRAM accesses, which comprise 96% of accesses in

applications.

Design Goal 2. HOPS adds support for lightweight ordering points (i.e., ofences). The

ofence instruction is implemented by incrementing the LocalTS register and always exe-

cutes immediately. HOPS also introduces the separate durability fence (dfence) for use

when durability guarantees are required.

Design Goal 3. HOPS tracks ordering information in per-thread PBs as cross-thread

dependencies are rare. Cross-dependencies are handled correctly using global ordering

information from the GlobalTS register.

Design Goal 4. Multiple stores from a thread to the same address can be buffered in a

PB and are written back in TSO-BEP order. Self-dependencies do not incur any stalls or

long-latency flushes, except in the rare instances when the PB is full.

3.5 Evaluation

Methodology.

For our evaluation, we used full-system mode in the gem5 microarchitectural simulator [15].

The simulated system is a four-core (one hardware thread per core) 8-way out-of-order x86

processor with a two-level cache hierarchy and two memory controllers. Table 3.4 shows

the relevant configuration parameters of the simulated system.

We extended the MOESI-hammer cache coherence protocol in gem5 to add support for

the clwb operation. We also modified the sfence implementation to stall the core until all

outstanding clwbs are completed. We added support for optional persistent write-pending

queues (PWQ) in the memory controller [63]. With PWQs, all memory requests buffered

at the persistent memory controller are guaranteed to be durable in case of failure. Thus,

flushes can be acknowledged early, when they reach the memory controller, instead of

waiting for the long-latency write to an NVM device.

36

Finally, we implemented 32-entry PBs in gem5. To evaluate our implementation, we

used a subset of applications from the WHISPER benchmark suite [94] and run them to

completion. These applications were run on top of Linux v3.10 running in the simulator.

CPU Cores 4 cores, 8-way OOO, 2Ghz
CPU L1 Caches private, 64 KB, Split I/D
CPU L2 Caches private, 2 MB
Cache Policy writeback, exclusive
Coherence MOESI hammer protocol
DRAM 4GB, 40 cycles read/write latency
PM 4GB, 160 cycles read/write latency

Table 3.4: Configuration of Simulated System.

Compared Implementations.

We evaluated five distinct implementations:

• x86-64 (NVM): x86-64 implementation with clwb and sfence primitives, with each

clwb acknowledged when the flush updates the NVM device. This implementation

is our baseline.

• x86-64 (PWQ): x86-64 implementation, with each clwb acknowledged when the flush

is queued in the PWQ.

• HOPS (NVM): HOPS implementation with ofence and dfence primitives, with PB

flushes acknowledged when the NVM device is updated.

• HOPS (PWQ): HOPS implementation, with PB flushes acknowledged when they are

queued in the PWQ.

• Ideal (Non-CC): x86-64 implementation, but with applications never performing any

flushes or fences. This implementation provides the upper bound on performance

but is not crash-consistent.

37

echo ycsb redis ctree hashmap vacation average
0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
liz

e
d

R
u
n
ti
m

e

x86-64 (NVM) x86-64 (PWQ) HOPS (NVM) HOPS (PWQ) IDEAL (NON-CC)

Figure 3.9: Performance of HOPS relative to x86-64 primitives, and an ideal but non crash-
consistent implementation.

Performance Comparison

Figure 3.9 shows application runtimes (so smaller is better) normalized to the x86-64 (NVM)

implementation.

We make the following observations:

• x86-64 (PWQ) lowers average runtimes by 15.5% compared to x86-64 (NVM), by

reducing the cost of each ordering point due to lower flush latencies.

• HOPS (NVM) outperforms x86-64 (NVM) by 24.3% on average, by commonly using

lightweight ofence instructions and only guaranteeing durability when needed (e.g.,

transaction commit).

• For the same reasons, HOPS (NVM) outperforms x86-64 (PWQ) by 10% on average.

• HOPS (PWQ) improves performance by 1.4% over HOPS (NVM) as the PWQ only

lowers the cost of rare dfence operations.

• The Ideal (but unsafe) implementation outperforms the baseline (x86-64 NVM) by

40.7% and HOPS (NVM) by 19.7%.

38

Thus, we see that introducing the HOPS primitives offers a greater performance im-

provement than a PWQ. However, there is still an opportunity for new optimizations to

bridge the performance gap with the ideal implementation.

3.6 Comparing Related Work with HOPS

In this section, we first discuss prior software and hardware proposals for PM. Then, we

look at a proposal to decouple ordering and durability, similar to our approach, but aimed

at filesystems. We discuss these here—rather than in Chapter 2—so that we can compare

them with HOPS.

Software/Hardware support for PM.

There have been many hardware proposals facilitating fast PM accesses. BPFS [27] proposed

augmenting caches with epoch ordering hardware to allow software control of the order of

writebacks. Efficient Persist Barriers (EPB) [72] builds on this idea to provide lightweight

epoch ordering and efficiently support inter-thread dependencies. Both proposals lack

the durability needed for ACID transactions. Kiln [149] supports hardware transactions

but without isolation guarantees. These proposals add substantial state to volatile caches

proportional to the log of number of inflight epochs as well as number of cores, which can

adversely affect the latency of all cache tag accesses, including those to volatile DRAM. In

contrast, HOPS requires the addition of one bit per cacheline to identify cachelines corre-

sponding to addresses in PM and sticky information at the directory controller. Moreover,

Kiln requires a non-volatile last-level cache, which does not seem practical in the near

future.

Most closely related is Delegated Persist Ordering (DPO), a concurrent proposal that

shares with HOPS the development of persist buffers, similar in name but implemented

differently [80]. Like HOPS, DPO optimizes for fast epoch boundaries by ordering epochs

39

without making their updates durable, handles inter-thread and intra-thread conflicts

without explicit flushes and provides an express lane for persists. However, DPO does not

make clear how applications ensure data is durable, e.g., for implementing ACID transac-

tions. Additionally, DPO enforces Buffered Strict Persistency (BSP) with a relaxed memory

consistency model (ARMv7). While DPO allows concurrent flushing of updates from the

same epoch in systems with a single MC, it is unclear if BSP permits such concurrency

in systems with multiple MCs. DPO’s precise cross-dependency tracking mechanism

requires that all incoming snoop requests, including common volatile accesses, snoop fully

associative PBs. HOPS’s epoch-granular dependency tracking eliminates this overhead at

the cost of false positives. Unlike HOPS, DPO also requires a global broadcast on every

flush of a buffered update from the PBs.

Techniques like deferred commit and execute in log have been proposed to optimize per-

sistent transactions [79, 87]. Although these techniques consider an idealistic view of

persistent transactions (e.g., all modified cachelines are known at the start of the transaction

and four ordering points per transaction) that differs from our observations of real-world

workloads, the proposed techniques can be used even for transactions implemented with

ofence and dfence.

Loose-Ordering Consistency (LOC) [88] also proposes relaxing the ordering constraints

of transactions. LOC introduces eager commit and speculative persistence to reduce intra-

transaction and inter-transaction dependencies. In contrast, HOPS seeks to handle such

dependencies efficiently.

ThyNVM [115] proposes hardware checkpointing for crash-consistency. Although

transparent checkpointing removes the burden of modifying code to support persistent

memory, it precludes the use of heterogeneous memory systems that include both volatile

and persistent memory.

Ordering and durability. An analogous problem of conflated ordering and durability

in file systems was solved by Optimistic Crash Consistency [24]. OCC introduces two

40

new primitives—osync and dsync—to improve file system performance while satisfying

application-level consistency requirements. We follow a similar approach in this work.

3.7 Conclusion

Programming persistent memory (PM) applications is challenging as programmers must

reason about crash consistency and use low-level programming models. To remove these

constraints, we proposed the Hands-off Persistence System to efficiently order PM updates

in hardware using persist buffers. HOPS provides high-level ISA primitives for applications

to express durability and ordering constraints separately, to enable efficient transactions.

41

4

Minimally Ordered Durable Datastructures

for Persistent Memory

The trouble about obeying orders is,

it becomes a habit. And then

everything depends on who’s

giving the orders.

Terry Pratchett

Recoverable applications rely on consistent and durable updates to PM to prevent data

loss or corruption in case of an ill-timed crash. For this purpose, programmers commonly

rely on failure-atomic sections (FASEs) [20]. FASEs are code segments with the property that

all PM updates within a FASE are guaranteed to happen durably and atomically with respect

to failure i.e., either all updates or none survive in durable PM. PM libraries [26, 61, 139]

typically implement FASEs via software transactional memory (PM-STM), offering failure-

atomicity, consistency and durability.

Unfortunately, PM-STM implementations such as Intel’s PMDK library [61] have fre-

quent ordering points (5-50 per transaction [94]), which are extremely expensive on current

hardware. Such frequent ordering often results in a single strongly ordered cacheline

flush between ordering points, degrading application performance, particularly in small

transactions. We measured the latency of a strongly ordered cacheline flush to be 4.2× the

42

latency of DRAM accesses on real hardware—Intel Optane DCPMM. Consequently, we

observed that PM workloads implemented with PMDK suffer from flushing overheads

of up to 11× over a baseline implementation without crash-consistency (Figure 4.1). In

comparison, logging overheads from additional instructions and PM writes are much lower

at about 0.6× on average. In such situations, we can either seek to improve the performance

of each ordering point or reduce the number of ordering points in PM applications.

In Chapter 3, we proposed the Hands-Off Persistence System to add architectural sup-

port for lightweight ordering points (ofences). HOPS decouples ordering from durability

and eliminates long-latency cacheline flushes on ordering points. Unfortunately, the ben-

efits of HOPS require hardware changes and thus HOPS is not beneficial in the short

term.

On current x86-64 hardware, we can improve performance by reducing ordering points

in an application and thus overlapping long-latency flushes to PM. x86-64 cacheline flushes

are typically implemented as posted operations that do not wait for a response. However,

ordering points (i.e., sfence) stall the CPU until all earlier flushes are acknowledged

as completed. Our experiments on Optane DCPMM show that flushes (i.e., clwb) slow

execution more when they are more frequently ordered. When ordered by a single sfence,

2 overlapped clwbs can be performed in 1.2 × the latency of a single clwb, and 8 clwbs

in 2 × the latency. However, as overlapped flushes can update PM in any order, ordering

points between flushes can only be eliminated if the flushes can be reordered safely i.e.,

without violating crash-consistency.

This thesis chapter proposes minimally ordered durable (MOD) datastructures that allow

failure-atomic updates to be performed with only one ordering point in the common case

on current, unmodified hardware. We design these datastructures using our proposed

Functional Shadowing (FS) technique that uses side-effect free pure functions to implement

non-destructive updates. On such updates, we create a new and updated copy (shadow)

of the datastructure while preserving the original. We do not overwrite any PM data

43

insert insert push write swaps push0X

2X

4X

6X

8X

10X

12X

Ov
er

he
ad

s o
ve

r b
as

el
in

e

map set stack vector queue
vaca-
tion

mem-
cached

Flushing
Logging

Figure 4.1: PM-STM overheads in recoverable PM workloads implemented using PMDK
v1.5.

but instead perform out-of-place writes to the shadow datastructure that are not ordered

with each other or logged. Thus, we can eliminate all ordering points between these

non-destructive updates to minimize flushing overheads.

We present two programming interfaces for using MOD datastructures to build FASEs.

First, we provide a simple, single-versioned interface that hides the complexities of func-

tional shadowing and is sufficient for most programmers. This interface optimizes for the

common case when each FASE contains a single update operation (e.g., set, push, insert)

on one datastructure. Second, we offer a multi-versioned interface that makes it easy to

program complex FASEs with multiple updates to multiple datastructures. This interface

exposes multiple versions of datastructures to the programmers while still abstracting away

other implementation details. Thus, we allow programmers to use MOD datastructures

like conventional mutable datastructures while allowing expert programmers to peel back

some of the layers of the implementation in exchange for advanced functionality.

To make it straightforward for programmers to create MOD datastructures, we provide

a recipe to generate these datastructures from existing implementations of purely func-

tional datastructures [101] (confusingly called persistent datastructures for reasons not

related to durability or PM). Such functional datastructures inherently perform updates

44

non-destructively. Moreover, we leverage substantial research efforts towards performance

and space optimizations in these datastructures [37, 110, 126, 130]. Particularly, these

datastructures prioritize structural sharing to ensure that the updated shadow is mainly

composed of the unmodified data of the original datastructure plus modest updated state.

Consequently, the new version only incurs additional space overheads of less than 0.01%

over the original datastructure.

We develop a C++ library of MOD datastructures with map, set, vector, queue and

stack implementations. On systems with real PM—Intel Optane DCPMM, our MOD

datastructures improve the performance of recoverable PM workloads by 60% as compared

to Intel PMDK v1.5.

We make the following contributions in this chapter:

• We propose MOD datastructures to lower flushing overheads in PM applications.

• We present two interfaces for programming FASEs with MOD datastructures, both

requiring a single ordering point per FASE in the common case.

• We provide a recipe to create MOD datastructures from existing functional datastruc-

tures.

• We develop an analytical model for estimating the latency of concurrent cacheline

flushes based on observations from Optane DCPMM.

• We release a C++ library of MOD datastructures.

4.1 Background on Functional Programming

In this section, we provide basic knowledge of functional programming as required for

this chapter. In this work, we leverage two basic concepts in functional programming

languages: pure functions and purely functional datastructures. These ideas are briefly

described below and illustrated in Figure 4.2. We provided the background information

about PM in Chapter 2.

45

Pure Functions.

A pure function is one whose outputs are determined solely based on the input arguments

and are returned explicitly. Pure functions have no externally visible effects (i.e., side

effects) such as updates to any non-local variables or I/O activity. Hence, only data that is

newly allocated within the pure function can be updated. Figure 4.2 shows how a pure

and an impure function differ in performing a prepend operation to a list. The impure

function overwrites the head pointer in the original list L, which is a non-local variable

and thus results in a side effect. In contrast, the pure function allocates a new list shadowL

to mimic the effect of the prepend operation on the original list and explicitly returns the

new list. Note that the pure function does not copy the original list to create the new list.

Instead, it reuses the nodes of the original list without modifying them in any manner.

void ImpurePrepend (
 List* L, Data D) {
 Node *new_node = new Node();
 new_node->data = D;
 new_node->next = L->head;
 L->head = new_node;
 return;
}

List* PurePrepend (
 List* L, Data D) {
 Node *new_node = new Node();
 new_node->data = D;
 new_node->next = L->head;
 List* shadowL = new List();
 shadowL->head = new_node;
 return shadowL;
}

(b) (c) (d)

L

shadowL

1 2 3

D
new_node

struct Node {
 Data data;
 Node* next;
}

struct List {
 Node* head;
}

(a)

Figure 4.2: Implementing prepend operation for linked list (defined in (a)) as (b) impure
function where original list L is modified and (c) pure function where a new updated list
shadowL is created and returned; application uses the returned list as the latest updated
list. (d) shadowL reuses nodes of original list L to reduce space overheads.

Functional Datastructures.

Commonly used in functional languages, purely functional or persistent datastructures are

those that preserve previous versions of themselves when modified [37]. We refer to these

as purely functional datastructures in this chapter to avoid confusion with persistent (i.e.,

durable) datastructures for PM.

Purely functional datastructures are never modified in-place. Instead, every update of

a purely functional datastructure creates a logically new version while preserving the old

46

version. Thus, these datastructures are inherently multi-versioned.

To reduce space overheads and improve performance, most functional datastructures

(even arrays and vectors) are often implemented as trees [101, 110]. Tree-based implementa-

tions allow different versions of a datastructure to appear logically different while sharing

most of the internal nodes of the tree. For example, Figure 4.2 shows a simple example

where the original list L and the updated list shadowL share nodes labeled 1, 2 and 3. Such

optimizations are called structural sharing.

4.2 Ordering & Flushing Overheads on Optane DCPMMs

Cacheline Flushes to PM—essential for durability in PM applications—are expensive due

to the high write latency of non-volatile memory technologies. In this section, we first

present the behavior of cacheline flushes on the Intel Optane DCPMM. Next, we empirically

describe the benefits of reducing ordering points on flush latency and develop an analytical

model to reason about flush concurrency. Lastly, we discuss the high flushing overheads in

PM-STM implementations to motivate MOD datastructures.

Effects of Ordering Points

We can tolerate cacheline flush latencies by reducing ordering points and overlapping

multiple weakly ordered flushes. We evaluated the efficacy of this approach on Optane

DCPMMs via a simple microbenchmark. Our microbenchmark first allocates an array

backed by PM. It issues writes to 320 random cachelines (= 20KB < 32 KB L1D cache) within

the array to fault in physical pages and fetch these cachelines into the private L1D cache.

Next, it measures the time taken to issue clwb instructions to each of these cachelines.

Fence instructions are performed at regular intervals e.g., one sfence after every N clwb

instructions. The total time (for 320 clwb + variable sfence instructions) is divided by 320

to get the average latency of a single cacheline flush. Figure 4.3 reports the average latency

47

per PM flush, for different amounts of flush concurrency.

The blue line in Figure 4.3 shows that the average flush latency can be effectively re-

duced by overlapping flushes, up to a limit. Compared to a single un-overlapped flush

(clwb +sfence), performing 16 flushes concurrently reduces average flush latency by 75%.

However, performing 32 flushes concurrently only reduces average flush latency by 3%

compared to the case with 16 concurrent flushes. Beyond 32, there is no noticeable im-

provement in flush latency. Moreover, four flushes ordered by a single fence are 22% faster

than two flushes ordered by one fence each.

0 5 10 15 20 25 30
Flush Concurrency: Flushes Overlapped per Fence

100

200

300

Fl
us

h
La

te
nc

y
(in

 n
s)

observed amdahl, f=0.82

Figure 4.3: Average Latency of a PM cacheline flush on test machine with Optane DCPMM
and compared to our analytical model based on Amdahl’s law.

Using Amdahl’s Law to Model Flush Latencies

With Optane DCPMMs, we empirically find that flush latency can be closely modeled using

Amdahl’s law [3] and that flushes seem to be 82% parallel and 18% serial.

We model weakly ordered cacheline flushes with a parallel fraction of work (f) as well

as a serial fraction (1 − f). When multiple flushes are performed without ordering points,

their parallel components are overlapped thereby reducing overall latency. However, their

serial components must be performed sequentially i.e., one at a time. Accordingly, we

can use Amdahl’s law to calculate the reduction in flush latency by overlapping multiple

flushes.

Ln = L1 · [(1 − f) +
f

n
]

48

With this equation, we can use non-overlapped flush latency (L1) and the parallel fraction f

to estimate Ln, the average latency per flush given n concurrent flushes.

The red line (model prediction) in Figure 4.3 shows a good fit with empirical blue line,

with the fraction of parallel work estimated to be 0.82 using the Karp-Flatt metric [76].

This explains why increasing flush concurrency to 8 greatly improves performance, while

further increases see diminishing returns. This use of Amdahl’s law motivates why our

proposal seeks to reduce ordering points to enable more flushes in parallel.

We hypothesize that Amdahl’s law closely models flush concurrency due to parallelism

arising from multiple banks at the memory controller and multiple virtual channels in

the on-chip interconnect, and serialization from the FIFO queues in caches and memory

controller. We expect that our model extends to other architectures that introduce weakly

ordered flushes, albeit with different parallel fractions.

PM-STM Flush Overheads

We measured flush overheads in write-intensive recoverable PM workloads (Table 4.2)

using Intel PMDK v1.5, a state-of-the-art PM-STM implementation. As shown in Figure 4.1

in the introduction, these applications suffer from flushing overheads of 1-11× over an

implementation without crash-consistency (i.e., no logging or flushing). Note that an

overhead of 1× doubles the execution runtime compared to the baseline. In fact, flush-

ing overheads are the biggest performance bottlenecks in these applications as logging

overheads are comparatively much smaller.

These high flushing overheads occur for two reasons. First, PM-STM implementations

flush both log entries and data updates to persistent memory for durability. Second, these

implementations offer limited potential for overlapping these flush instructions. Undo-

logging techniques typically require 5-50 fences [94]. These fences mainly occur as log

updates are ordered before the corresponding data updates. In some implementations [69,

61], the number of fences per transaction scale with the number of cachelines written. For

49

our workloads, we observed 3-21 flushes per transaction and 5-11 fences per transaction

(Figure 4.11). Consequently, the median number of flushes overlapped per fence is 1-2,

resulting in high flushing overheads.

4.3 Minimally Ordered Durable Datastructures

Minimally ordered durable (MOD) datastructures allow failure-atomic and durable up-

dates to be performed with one ordering point in the common case. These datastructures

significantly reduce flushing overheads that are the main bottleneck in recoverable PM

applications. We have five goals for these datastructures:

1. Failure-atomic updates to support development of recoverable applications.

2. Minimal ordering constraints to tolerate flush latency and thus improve performance.

3. Simple programming interface that hides implementation details, while exposing addi-

tional functionalities for expert programmers.

4. Simple recipe for creation that can be extended to additional datastructures beyond the

ones discussed in this chapter.

5. Support for common datastructures for application programmers such as maps and

vectors from the C++ Standard Template Library [33].

6. No hardware modifications needed to enable high-performance applications on cur-

rently available systems.

We first introduce the Functional Shadowing technique used to design MOD datastruc-

tures. Then, we present a recipe for creating MOD datastructures out of existing purely

functional datastructures. Then, we describe the programming interface of MOD datas-

tructures and discuss their implementation.

50

Vector [7] shadowVector [8]

X

Shadow Paging

Functional Optimizations
(Structural Sharing)

push_back (X)

Vector [7]VectorPtr

Vector [7] shadowVector [8]

X

VectorPtr

VectorPtr

(a)

(b)

(c)

Figure 4.4: Functional Shadowing in action on (a) MOD vector. (b) Shadow is created on
Append (i.e., push_back) operation that reuses data from the original vector. (c) Application
starts using updated shadow, while old and unused data is cleaned up.

Functional Shadowing

Functional Shadowing leverages shadow paging techniques to minimize ordering con-

straints in updates to PM datastructures and uses optimizations from functional datas-

tructures to reduce the overheads of shadow paging. As per shadow paging techniques,

we implement non-destructive and out-of-place update operations for all MOD datastruc-

tures. Accordingly, updates of MOD datastructures logically return a new version of the

datastructure without any modifications to the original data. As shown in Figure 4.4, a

push_back operation in a vector of size 7 would result in a new version of size 8 while

the original vector of size 7 remains untouched. We refer to the updated version of the

datastructure as a shadow in accordance with conventional shadow paging techniques.

51

There are no ordering constraints in creating the updated shadow as it is not considered

a necessary part of application state yet. We do not log these writes as they do not overwrite

any data. In case of a crash at this point, recovery code will reclaim and free memory

corresponding to any partially or complete shadow in PM as discussed in the next section.

Due to the absence of ordering constraints, we can overlap flushes to all dirty cachelines

comprising the updated shadow to minimize flushing overheads. A single ordering point

is sufficient to ensure the completion of all the outstanding flushes and guarantee the

durability of the shadow. Subsequently, the application must atomically replace the original

datastructure with the updated shadow. For this purpose, we offer multiple efficient

Commit functions described in the next subsection. In contrast, PM-STM implementations

perform in-place modifications which overwrite existing data and need logging to revert

partial updates in case of crashes. In-place updates also introduce ordering constraints as

log writes must be ordered before the corresponding data update.

We reduce shadow paging overheads using optimizations commonly found in func-

tional datastructures. Conventional shadow paging techniques incur high overheads as the

original data must be copied completely to create the shadow. Instead, we use structural

sharing optimizations to maximize data reuse between the original datastructure and its

shadow copy. We illustrate this in Figure 4.4, where shadowVector reuses 6/8 internal

nodes from the original Vector and only adds 2 internal and 3 top-level nodes. In the

next subsection, we discuss a method to convert existing implementations of functional

datastructures to MOD datastructures.

Generating MOD Datastructures from Functional Datastructures

While functional datastructures do not support durability by default, they have some

desirable properties that make them an ideal starting point from which to generate MOD

datastructures. They support non-destructive update operations which are typically im-

plemented through pure functions. Thus, every update returns a new updated version

52

(i.e., shadow) of the functional datastructure without modifying the original. They export

simple interfaces such as map, vector, etc. that are implemented internally as highly opti-

mized trees such as Compressed Hash-Array Mapped Prefix-trees [127] (for map, set) or

Relaxed Radix Balanced Trees [130] (for vector). These implementations are designed to

amortize the overheads of data copying as needed to create new versions on updates.

Optimized functional implementations also have low space overheads via structural

sharing, i.e., maximizing data reuse between the original data and the shadow. Tree-based

implementations are particularly amenable to structural sharing. On an update, the new

version creates new nodes at the upper levels of the tree, but these nodes can point to

(and thus reuse) large sub-trees of unmodified nodes from the original datastructure. The

number of new nodes created grows extremely slowly with the size of the datastructures,

resulting in low overheads for large datastructures. As we show in our evaluation section,

the additional memory required on average for an updated shadow is less than 0.01% of

the memory of the original datastructure of size 1 million elements.

Moreover, the trees are broad but not deep to avoid the problem of ‘bubbling-up of

writes’ [27] that plagues conventional shadow paging techniques. This problem arises as

the update of an internal node in the tree requires an update of its parent and so on all the

way to the root. We find that existing implementations of such low-overhead functional

datastructures are commonly available in several languages, including C++ and Java.

We provide a simple recipe for creating MOD datastructures out of existing implemen-

tations of purely functional datastructures:

1. First, we use an off-the-shelf persistent memory allocator nvm_malloc [9] to allocate

datastructure state in PM.

2. Next, we ensure that internal state of the datastructure is allocated on the persistent

heap as opposed to the volatile stack.

3. Finally, we extend all update operations to flush all modified PM cachelines with

53

clwb instructions and no ordering points. These cachelines correspond to persistent

memory allocated within the update function. These flushes will be ordered by an

ordering point in a Commit step described later in this section.

We believe that the ability to create MOD datastructures from existing functional

datastructures is important for three reasons. First, we benefit from significant research

efforts towards lowering space overheads and improving performance of these datastruc-

tures [37, 101, 110, 126, 130]. Secondly, programmers can easily create MOD implementa-

tions of additional datastructures beyond those in this chapter by using our recipe to port

other functional datastructures. Finally, we forecast that this approach can help extend PM

software beyond C and C++ to Python, JavaScript and Rust, which have implementations

of functional datastructures.

Programming Interface for MOD Datastructures

To abstract away the details of Functional Shadowing from application programmers, we

provide two alternative interfaces for MOD datastructures:

• A simple, single-versioned interface that abstracts away the internal versioning and

is sufficient for most application programmers.

• A multi-versioned interface that exposes multiple versions of datastructures to enable

complex usecases, while still hiding the complexities of the efficient implementation.

Single-versioned Interface

The single-versioned interface to MOD datastructures (Figure 4.5a) allows programmers to

perform individual failure-atomic update operations to a single datastructure. With this

interface, MOD datastructures appear as mutable datastructures with logically in-place

updates. Programmers use pointers to datastructures (e.g., ds1 in Figure 4.5a), as is common

54

// BEGIN-FASE
Update(dsPtr, updateParams)
// END-FASE

(a) (b)

// BEGIN-FASE
dsPtr1shadow = dsPtr1->PureUpdate(updateParams)
dsPtr2shadow = dsPtr2->PureUpdate(updateParams)
 ...
Commit (dsPtr1, dsPtr1shadow,
 dsPtr2, dsPtr2shadow, ...)
// END-FASE
// dsPtr1, dsPtr2 now point to updated datastructures

Update

Commit 2

1

Single-Versioned
Interface

Multi-Versioned
Interface

Figure 4.5: Failure-Atomic Code Sections (FASEs) with MOD datastructures using (a)
single-versioned interface to update one datastructure and (b) multi-versioned interface to
atomically update multiple datastructures, dsPtr1 and dsPtr2. Datastructures in red are
temporary shadow datastructures.

in PM programming. Each update operation is implemented as a self-contained FASE with

one ordering point, as described later in this section. If the update completes successfully,

the datastructure pointer points to an updated and durable datastructure. In case of crash

before the update completes, the datastructure pointer points to the original durable and

uncorrupted datastructure. We expose common update operations for datastructures such

as push_back, update for vectors, set for sets/maps, push, pop for stacks and enqueue,

dequeue for queues, as in the C++ Standard Template Library [33].

We provide an example of a single-versioned MOD vector performing a failure-atomic

append operation in Figure 4.6. From the programmer’s point of view, when the FASE

executes, an X is appended to the recoverable vector pointed to by VectorPtr, increasing

its size from 7 to 8.

// VectorPtr points to Vector[7]
// BEGIN-FASE

push_back(VectorPtr, X)

// END-FASE
// VectorPtr points to Vector[8]

Figure 4.6: Failure-atomic append (i.e., push_back) on single-versioned MOD vector.

The single-versioned interface targets the common case when a FASE contains only one

55

update operation on one datastructure. This common case applies to all our workloads

except vacation and vector-swaps. For instance, memcached relies on a single recoverable

map to implement its cache and FASEs involve a single set operation.

Multi-versioned Interface

The multi-versioned interface to MOD datastructures (Figure 4.5b) is a general-purpose

transaction-like programming interface. It allows programmers to failure-atomically per-

form updates on multiple datastructures or perform multiple updates to the same datas-

tructure or any combination thereof. For instance, moving an element from one queue to

another requires a pop operation on the first queue and a push operation on the second

queue, both performed failure-atomically in one FASE. Complex operations such as swap-

ping two elements in a vector also require two update operations on the same vector to be

performed failure-atomically. In such cases, the multi-versioned interface allows program-

mers to perform individual non-destructive update operations on multiple datastructures

to get new versions, and then atomically replace all the updated datastructures with their

updated versions in a single Commit operation.

With this interface, programmers can build complex FASEs, each with multiple update

operations on multiple datastructures. Each FASE must consist of two parts: Update

and Commit. During Update, programmers perform updates on one or more MOD

datastructures. On an update operation, the original datastructure is preserved and a new

updated version is returned that is guaranteed to be durable only after Commit. Thus,

programmers are temporarily exposed to multiple versions of datastructures. Programmers

use the Commit function to atomically replace all the original datastructures with their

latest updated and durable versions. Our Commit implementation (described later in this

section) contains a single ordering point in the common case. We use this interface in two

workloads: vector-swaps and vacation.

Figure 4.7 demonstrates different usecases of multi-versioned MOD datastructures:

56

• Single Update of Single Datastructure: While this case is best handled by the single-

versioned interface, we repeat it here to show how this can be achieved with the

multi-versioned interface. In Figure 4.7a, appending an element to VectorPtr results

in an updated version (VectorPtrShadow). The Commit step atomically modifies

VectorPtr to point to VectorPtrShadow. As a result of this FASE, a new element is

failure-atomically appended to VectorPtr.

• Multiple Update of Single Datastructure: We show a FASE that swaps two elements

of a vector in Figure 4.7b. The Update step involves two vector lookups and two

vector updates. The first vector update results in a new version VectorPtrShadow.

The second vector update is performed on the new version to get another version

(VectorPtrShadowShadow) that reflects the effects of both updates. Finally, Commit

makes VectorPtr point to the latest version with the swapped values.

• Single Updates of Multiple Datastructures: Figure 4.7c shows how we swap el-

ements from two different vectors in one FASE. For each vector, we perform the

update operation to get a new version. In Commit, both vector pointers are atomically

updated to point to the respective new versions.

• Multiple Updates of Multiple Datastructures: The general case is achieved by a

combination of the previous two usecases.

Implementing Interfaces to MOD Datastructures

We now discuss the efficient implementation of the two interfaces to MOD datastructures

to enable FASEs with one ordering point in the common case.

Single-Versioned Interface

As shown in Figure 4.8, the single-versioned interface is a wrapper around the multi-

versioned interface to create the illusion of a mutable datastructure. The programmer

57

// BEGIN-FASE (Vector-Append)
VectorPtrShadow = VectorPtr->push_back(X)
CommitSingle (VectorPtr, VectorPtrShadow)
// END-FASE
// VectorPtr now points to updated vector

(b)

// BEGIN-FASE (Vector-Swap)
val1 = (*VectorPtr)[index1]
val2 = (*VectorPtr)[index2]
VectorPtrShadow = VectorPtr->update(index1, val2)
VectorPtrShadowShadow =
 VectorPtrShadow->update(index2, val1)
CommitSingle (VectorPtr, VectorPtrShadow,
 VectorPtrShadowShadow)
// END-FASE
// VectorPtr now points to doubly-updated vector

Update
Commit 2

1

2

1

(a)

(c)

// BEGIN-FASE (Multi-Vector-Swap)
val1 = (*VectorPtr1)[index1]
val2 = (*VectorPtr2)[index2]
VectorPtr1Shadow = VectorPtr1->update(index1, val2)
VectorPtr2Shadow = VectorPtr2->update(index2, val1)
CommitUnrelated (VectorPtr1, VectorPtr1Shadow,
 VectorPtr2, VectorPtr2Shadow)
// END-FASE
// VectorPtr1, VectorPtr2 now point to updated vectors

2

1

Figure 4.7: Using multi-versioned MOD datastructures for failure-atomically (a) appending
an element to a vector, (a) swapping two elements of a vector and (c) swapping two elements
of two different vectors.

accesses the MOD datastructure indirectly, via a pointer. On a failure-atomic update,

we use the Update step to internally create an updated shadow of the datastructure by

performing the non-destructive update. Then, using Commit, we ensure the durability of

the shadow and atomically update the datastructure pointer to point to the updated and

durable shadow. Thus, the implementation hides all details of functional shadowing from

the programmer.

Update(dsPtr, updateParams) {
 // BEGIN-FASE
 dsPtr = dsPtr->PureUpdate(updateParams)
 Commit (dsPtr, dsPtrshadow)
 // END-FASE
 // dsPtr now point to updated datastructure
}

Update
Commit 2

1

Figure 4.8: Implementation of single-versioned interface as a wrapper around the multi-
versioned interface.

58

Multi-Versioned Interface

Multi-versioned MOD datastructures allow programmers to build complex multi-update

FASEs, each with one ordering point in the common case. However, this interface exposes

the multiple versions of the datastructure to the programmer while still hiding the details

of structural sharing. As described earlier, FASEs for multi-versioned MOD datastructures

consist of Update and Commit.

In the Update step, the application programmer uses different update operations as

required by the logic of the application. Each MOD datastructure supports non-destructive

update operations. Within these update operations, all modified cachelines are flushed us-

ing (weakly ordered) clwb instructions and there are no ordering points or fences. However,

this step results in multiple versions of the updated MOD datastructures.

The Commit step ensures the durability of the updated versions and failure-atomically

updates all relevant datastructure pointers to point to the latest version of each datastructure.

We provide optimized implementations of Commit for two common cases as well as the

general implementation, as shown in Figure 4.9. We discuss the memory reclamation

needed to free up unused memory in Section 4.4.

The first common case (CommitSingle in Figure 4.9a) occurs when only one datastruc-

ture is updated one or multiple times in one FASE (e.g., Figure 4.7a,b). To Commit, we

update the original datastructure pointer to point to latest version after all updates, with a

single 8B (i.e., size of a pointer) atomic write. We need to reclaim the memory of the old

datastructure and intermediate shadow versions i.e., all but the latest shadow version.

The second common case (CommitSiblings in Figure 4.9b) occurs when the application

updates two or more MOD datastructures that are pointed to by a common persistent object

(parent) in one FASE. In this case, we create a new instance of the parent (parentShadow) that

points to the updated shadows of the MOD datastructures. Then, we use a single pointer

write to replace the old parent itself with its updated version. We used this approach in

porting vacation, wherein a manager object has three separate recoverable maps as its

59

member variables. A commonly occurring parent object in PM applications is the root

pointer, one for each persistent heap, that points to all recoverable datastructures in the

heap. Such root pointers allow PM applications to locate recoverable datastructures in

persistent heaps across process lifetimes.

In these two common cases, our approach requires only one ordering point per FASE.

The single ordering point is required in the commit operation to guarantee the durability

of the shadow before we replace the original data. The entire FASE is a single epoch per

the epoch persistency model [105]. Both of the common cases require an atomic write to a

single pointer, which can be performed via an 8-byte atomic write. In contrast, PM-STM

implementations require 5-50 ordering points per FASE [94].

For the general and uncommon case (CommitUnrelated in Figure 4.9c) where two un-

related datastructures get updated in the same FASE, we need to atomically update two

or more pointers. For this purpose, we use a very short transaction (STM) to atomically

update the multiple pointers, albeit with more ordering constraints. Even in this approach,

the majority of the flushes are performed concurrently and efficiently as part of the non-

destructive updates. Only the flushes to update the persistent pointers in the Commit

transaction cannot be overlapped due to PM-STM ordering constraints.

Thus, multi-versioned datastructures enable complex FASEs with efficient implementa-

tions for the two common cases.

Correctness

We provide a simple and intuitive argument for correct failure-atomicity of MOD datas-

tructures. The main correctness condition is that there must not be any pointer from

persistent data to any unflushed or partially flushed data. MOD datastructures support

non-destructive updates that involve writes only to newly allocated data and so there is no

possibility of any partial writes corrupting the datastructure. All writes performed to the

new version of the datastructure are flushed to PM for durability. During Commit, one

60

CommitSingle
 (ds,
 dsShadow, ..., dsShadowN)
FENCE
dsOld = ds
ds = dsShadowN
Reclaim (dsOld, dsShadow, ...)

CommitSiblings
 (parent,
 ds1, ds1Shadow,
 ds2, ds2Shadow, ...)
parentShadow = new Parent
parentShadow->ds1 = ds1shadow
parentShadow->ds2 = ds2shadow
...
FLUSH parentShadow
FENCE
parentOld = parent
parent = parentShadow
Reclaim (parentOld)

CommitUnrelated
 (ds1, dsShadow,
 ds2, ds2Shadow, ...)

ds1Old = ds1
ds2Old = ds2
...
FENCE
Begin-TX {
 ds1 = ds1Shadow
 ds2 = ds2Shadow
} End-TX
Reclaim (ds1Old, ds2Old, ..)

(a) (b) (c)

Figure 4.9: Commit implementation shown for multi-update FASEs operating on (a) single
datastructure, (b) multiple datastructures pointed to by common parent object, and (c)
(uncommon) multiple unrelated datastructures.

fence orders the pointer writes after all flushes are completed i.e., all updates are made

durable. Finally, the pointer writes in Commit are performed atomically. If there is a crash

within a FASE before the atomic pointer writes in Commit, the persistent pointers point

to the consistent and durable original version of the datastructure. If the atomic pointer

writes complete successfully, the persistent pointers points to the durable and consistent

new version of the datastructures. Thus, we support correct failure-atomic updates of

MOD datastructures.

4.4 Implementation Details

Having described the design of MOD datastructures, we now discuss how our implemen-

tation of MOD datastructures tackles common challenges with recoverable datastructures.

Memory Reclamation

Leaks of persistent memory cannot be fixed by restarting a program and thus, are more

harmful than leaks of volatile memory. Such PM leaks can occur on crashes during the

execution of a FASE. Specifically, allocations from an incomplete FASE leak PM data that

must be reclaimed by recovery code. Additionally, our MOD datastructures must also

61

reclaim data belonging to the old version of the datastructure on completion of a successful

FASE.

We use reference counting for memory reclamation. Our MOD datastructures are

implemented as trees. In these trees, each internal node maintains a count of other nodes

that point to it i.e., parent nodes. We increment reference counts of nodes that are reused

on an update operation and decrement counts for nodes whose parents are deleted on a

delete operation. Finally, we deallocate a node when its reference count hits 0.

Our key optimization here is to recognize that reference counts do not need to be stored

durably in PM. On a crash, all reference counts in the latest version can be scanned and

set to 1 as the recovered application sees only one consistent and durable version of each

datastructure.

We rely on garbage collection during recovery to clean up allocated memory from an

incomplete FASE (on a crash). As all of our datastructures are implemented as trees, we can

perform a reachability analysis starting from the root node of each MOD datastructure to

mark all memory currently referenced by the application. Any unmarked data remaining

in the persistent heap is a PM leak and can be reclaimed at this point. A conventional

solution for catching memory leaks is to log memory allocator activity. However, this

approach reintroduces ordering constraints and degrades the performance of all FASEs in

order to prevent memory leaks in case of a rare crash.

Automated Testing

While it is tricky to test the correctness of recoverable datastructures, the relaxed ordering

constraints of shadow updates allow us to build a simple and automated testing framework

for our MOD datastructures. We generate a trace of all PM allocations, writes, flushes,

commits, and fences during program execution. Subsequently, our testing script scans the

trace to ensure that all PM writes (except those in commit) are only to newly allocated PM

and that all PM writes are followed by a corresponding flush before the next fence. By

62

verifying these two invariants, we can test the correctness of recoverable applications as

per our correctness argument in Section 4.3.

Proposed Optimizations

There are two general optimizations that can lead to further improvements in MOD datas-

tructures that we have not implemented.

Offline Memory Reclamation. If CPU resources are available, we can move memory

reclamation off the critical path and onto a separate dedicated thread. During Commit, the

application adds a reference to the old datastructure to a per-thread reclamation queue

instead of actively reclaiming the memory. This lowers latency by eliminating the cost of

decrementing reference counts and freeing memory from the main thread, but at the cost

of throughput due to coordination overhead. This optimization is similar to offline log

truncation done in some PM-STM implementations [55, 139].

In-place Shadow Updates. We can improve performance by performing some updates

in-place without increasing ordering constraints. When a MOD datastructure is modified

more than once in a FASE, we can perform in-place updates for all modifications after the

first one. The first update creates a shadow copy that is not linked into the application

state, and thus further modifications can be done in-place without any ordering or logging.

For example, in vector-swaps (Figure 4.7b), we can perform the second update in-place

without incurring any shadow copying overheads.

4.5 Extensions for Concurrency

We currently focus on efficient persistence of MOD datastructures and not concurrency.

Nonetheless, we have some ideas for enabling concurrent accesses to MOD datastructures.

A simple solution is to make use of one reader-writer lock per datastructure to allow

concurrent read accesses and exclusive write access. As we use locks to ensure isolation

63

but not atomicity, we do not need to log the acquire and release operations of these locks

as performed in Atlas [20]. Instead, it is sufficient to restore the locks to an unlocked and

initialized state on recovery.

The out-of-place updates performed by MOD datastructures make them conducive for

read-copy-update (RCU) based concurrency [48]. The RCU mechanism is best suited for

read-mostly datastructures wherein writers perform out-of-place updates and readers can

read stale versions of the datastructure. Under such conditions, RCU allows concurrent

execution of readers and writers with minimal overheads for readers. However, one

challenge is to identify when no readers are accessing older versions of datastructures so

that the old versions can be safely reclaimed.

Finally, it might be interesting to see if MOD datastructures can be made into lock-free

datastructures [41, 53, 90], which they already have similarities to. For instance, both MOD

and lock-free datastructures perform out-of-place updates which are committed using a

single, atomic pointer update. However, we leave such extensions for future work.

4.6 Evaluation

The goal of Functional Shadowing is to improve performance by minimizing ordering

constraints. As such, we answer three questions in our evaluation:

1. Performance: Does FS improve the performance of our recoverable workloads com-

pared to PM-STM?

2. Ordering Constraints: Do workloads with FS show fewer ordering constraints than

with PM-STM?

3. Additional Overheads: What are the additional overheads introduced by our FS

approach?

64

Methodology

Test System Configuration. We ran our experiments on a machine with actual Persistent

Memory—Intel Optane DCPMM [67]—and upcoming second-generation Xeon Scalable

processors (codenamed Cascade Lake). We configured our test machine such that Optane

DCPMM is in 100% App Direct mode [56] and uses the default Directory protocol. In this

mode, software has direct byte-addressable access to the Optane DCPMM. Table 4.1 reports

relevant details of our test machine. We measured read latencies using Intel Memory

Latency Checker v3.6 [137].

CPU

Type Intel Cascade Lake
Cores 96 cores across 2 sockets
Frequency 1 GHz (Turbo Boost to 3.7 GHz)

Caches L1: 32KB Icache, 32KB Dcache
L2: 1MB, L3: 33 MB (shared)

Memory System

PM Capacity 2.9 TB (256 GB/DIMM)
PM Read Latency 302 ns (Random 8-byte read)
DRAM Capacity 376 GB
DRAM Read Latency 80 ns (Random 8-byte read)

Table 4.1: Test Machine Configuration.

Hardware Primitives. The Cascade Lake processors on our test machine support the new

clwb instruction for flushing cachelines. The clwb instruction flushes a dirty cacheline by

writing back its data but may not evict it. Our workloads use clwb instructions for flushing

cachelines and the sfence instructions to order flushes.

OS interface to PM. Our test machine runs Linux v4.15.6. The DCPMMs are exposed to

user-space applications via the DAX-filesystem interface [142]. Accordingly, we created an

ext4-dax filesystem on each PM DIMM. Our PM allocators create files in these filesystems

to back persistent heaps. We map these PM-resident files into application memory with

flags MAP_SHARED_VALIDATE and MAP_SYNC [29] to allow direct user-space access to PM.

65

insert find insert find push pop write read swaps push pop pop*0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ex

ec
ut

io
n

Ti
m

e
No

rm
al

ize
d

to
 P

M
DK

v1
.4

1.61

map set stack vector queue vacation
memcached

PMDK-other PMDK-Flushing PMDK-Logging MOD-Flushing MOD-other

Figure 4.10: Execution Time of PM workloads, normalized to PMDK v1.4 implementation
of each workload. Queue-pop* is queue-pop with the first pop operation being untimed.

PM-STM Implementation. We use the PM-STM implementation (libpmemobj) from Intel’s

PMDK library [61] in our evaluations. We choose PMDK as it is publicly available, regularly

updated, Intel-supported and hopefully optimized for Intel’s PM hardware. Moreover,

PMDK (v1.4 or earlier) has been used for comparison by most recent PM studies [30, 84, 85,

122, 123]. We evaluate both PMDK v1.5 (released October 2018), which uses hybrid undo-

redo logging techniques as well as PMDK v1.4, which primarily relies on undo-logging.

Workloads. Our workloads include several microbenchmarks as well as two recover-

able applications. As described in Table 4.2, our microbenchmarks involve operations on

commonly used datastructures:(hash)map, set, queue, list and vector. The vector-swaps

workload emulates the main computation in the canneal benchmark from the PARSEC

suite [14]. The baseline map datastructure can be implemented by either hashmap or ctree

from the WHISPER suite [94]. Here, we compare against hashmap which outperformed

the ctree implementation on Optane DCPMM. Moreover, we also measured two recover-

able applications from the WHISPER suite: memcached and vacation. We modified these

applications to use the PMDK and MOD map implementations. The only other PM-STM

application in WHISPER is redis, but it also uses a map datastructure so we found it

66

Benchmark Description Configuration
map-insert* Insert random keys with constant value in map Key Size: 8 bytes, Value Size: 32 bytes
map-find Lookup random keys in prepopulated map with 1M entries Key Size: 8 bytes, Value Size: 32 bytes
set-insert* Insert random keys in set Key Size: 8 bytes, Value Size: 32 bytes
set-find Lookup random keys in prepopulated set with 1M entries Key Size: 8 bytes, Value Size: 32 bytes
stack-push* Insert elements at the front of a stack Element size: 8 bytes
stack-pop Remove elements from front of stack with 1M elements Element size: 8 bytes
vector-write* Update elements at random indices in vector Vector Size: 1M entries, Element Size: 8 bytes
vector-read Lookup elements at random indices in vector Vector Size: 1M entries, Element Size: 8 bytes
vector-swaps* Swap two elements at random indices in recoverable vector Vector Size: 1M entries, Element Size: 8 bytes
queue-push* Insert elements at the back of a queue Element size: 8 bytes
queue-pop Remove elements from front of queue with 1M elements Element size: 8 bytes

vacation* Travel reservation system with four recoverable maps Prepopulated entries:1M
55% user reservations, Query Range:80%

memcached* In-memory key value store using one recoverable map 95% sets, 5% gets,
key size:16 bytes, value size:512 bytes

Table 4.2: Benchmarks developed and used for this study. Each workload performs 1 million
iterations of the operations described. We consider workloads marked with asterisk* to be
write-intensive.

redundant for our purposes. The other WHISPER benchmarks are not applicable for our

evaluation as they are either filesystem-based or do not use PM-STM. We ran all workloads

to completion on our test machine with Optane DCPMMs.

Performance

Figure 4.10 shows the execution time (so smaller is better) of PM workloads with PMDK

v1.5 transactions and MOD datastructures, normalized to the runtime of the same workload

with PMDK v1.4 transactions (used in prior works). We make the following observations:

1. The new version (1.5) of PMDK library performs 30% better on average (geometric

mean) than version 1.4, due to performance optimizations targeting transaction

overheads [60].

2. MOD datastructures offer a speedup of 73% on average over PMDK v1.4 and 60%

over PMDK v1.5. For write-only workloads, the performance improvement can be

mainly attributed to having only one ordering point per operation. Consequently,

average flushing overheads in our write-intensive workloads decrease from 65% of

the overall runtime with PMDK v1.5 to 45% with MOD. For read-only workloads,

67

the speedup mainly comes from optimizations present in the original functional

datastructures.

3. MOD workloads spent 43% of the execution time on average on other activity as

opposed to 20% for PMDK v1.5. The differences arise due to additional overheads in

the FS approach, such as greater cache pressure and memory allocation. We analyze

these factors later in this section.

4. For 3 workloads, MOD datastructures perform worse than both PMDK versions. For

vector-write and vector-swaps, MOD datastructures require greater flushes (12.5

and 14 vs 4 and 7.5 respectively) than PMDK v1.5. For queue-pop, performing the

first pop operation involves an expensive recursive operation to reverse a large list.

queue-pop* is the same workload with the first pop operation performed outside the

timed loop and thus shows much lower overheads.

0 2 4 6 8 10 12
Fences per Operation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fl
us

he
s p

er
 O

pe
ra

tio
n map-insert

map-insert

set-insert

set-insert

queue-push

queue-push

queue-pop

stack-push

stack-push

stack-pop

stack-pop

vector-update

vector-update

vector-swaps

vector-swaps

MOD PMDK

Figure 4.11: Flushing and ordering behavior of PM workloads. queue-pop (not shown) has
1 fence and 104 flushes per operation due to pathological case described earlier.

68

insert find insert find push pop write read swaps push pop0.00%

0.50%

1.00%

1.50%

2.00%

2.50%
L1

D
Ca

ch
e

M
iss

 R
at

io
s

5.
21

%
3.

66
%

map set stack vector queue vacation
memcached

PMDK MOD

Figure 4.12: L1D Cache miss ratios for our workloads.

Flushing Concurrency

Figure 4.11 illustrates the flushing and ordering behavior of PM workloads with PMDK

v1.5 and MOD datastructures. For improving performance, fewer fences per datastructure

operation (i.e., push, pop, set) are most important, followed by fewer flushes per operation.

Workloads using PMDK datastructures typically exhibit 5-11 fences per operation. Conse-

quently, there is less opportunity to overlap long-latency flushes to PM. In contrast, MOD

datastructures always have only one ordering point, allowing all long-latency flushes to

be overlapped. Furthermore, PMDK datastructures require two flushes per PM update,

one each for the data and log writes. Meanwhile, each PM update for MOD datastructures

requires one flush for the data and in some cases, flushes of updated nodes pointing to the

data. On average, MOD datastructures exhibit fewer flushes per operation (except in case

of vector and queue-pop).

Additional Overheads

Functional Shadowing primarily incurs two overheads: increased cache pressure and space

overheads. First, functional datastructures (including vectors and arrays) are implemented

69

as pointer-based datastructures with little spatial locality. Secondly, extra memory is

allocated on every update for the shadow, resulting in additional space overheads.

Cache Pressure.

As PM is expected to have longer read and write latencies than DRAM, miss latencies

for cachelines resident in PM will also be correspondingly higher. Hence, higher cache

miss ratios result in greater performance degradation than in conventional DRAM-only

systems. Unfortunately, it was not possible to separate cache misses to PM and DRAM in

our experiments on real hardware, but we expect most of the cache accesses to be for PM

cachelines in our workloads.

The pointer-based functional implementations generate more cache misses particularly

in the small L1D cache, as seen in Figure 4.12. This is evident in case of map, set and

vector, which show almost 4× the cache misses with MOD datastructures than with PMDK.

The PMDK implementations of map, set and vector are contiguously laid out in memory

and thus have greater spatial locality and fewer pointer-chasing patterns. However, the

pointer-based implementations of MOD datastructures are necessary to reduce the shadow

copying overheads.

MOD implementations of stack and queue show low cache miss ratios, comparable

to the PMDK implementations. Comparable miss rates are to be expected as both MOD

and PMDK datastructures are pointer-based implementations. Moreover, push and pop

operations in these datastructures only operate on the head or the tail, resulting in high

temporal locality of accesses.

Space overheads.

Structural sharing optimizations in our datastructure implementations minimize the space

overheads of Functional Shadowing. Naive shadowing techniques that create a complete

copy of the original datastructure require 1× additional space on every update. In Table 4.3,

70

map set stack queue vector
MOD 120,409 93,658 149,750 79,947 32,654

PMDK ∞ ∞ 199,387 100,116 ∞
Table 4.3: Number of update operations needed to double memory usage of datastructures
with 1M entries with memory reclamation disabled. For PMDK map, set and vector, update
operations happen in place without allocating memory.

we report the worst-case space overheads for our datastructures by measuring the number

of updates required to double the memory usage of a datastructure of size 1M entries, with

memory reclamation disabled.

On average, it takes about 95K updates for MOD datastructures with 1M to double in

size, even without any memory reclamation. More importantly, each updated version only

requires 0.00002-0.00004× extra memory beyond the original version. In reality, we reclaim

the old version of the data once the new version is guaranteed to be durable. Hence, the

memory requirements are equal to the original datastructure. However, our worst-case

measurement is more interesting as it reveals the additional pressure on the memory

allocator to allocate memory for the shadow.

4.7 Comparing Related Work with MOD

We categorize prior work on reducing PM flushing overheads into general optimizations

for PM-STM implementations and specific optimizations for durable datastructures.

PM-STM Optimizations.

There have been software and hardware proposals to improve the performance of PM-STM

implementations.

Software approaches include Mnemosyne [139], NV-Heaps [26], SoftWrap [43], Intel

PMDK [61], JUSTDO [69], iDO [85], Romulus [30], DudeTM [84]. Mnemosyne, SoftWrap,

Romulus and DudeTM rely on redo logging, NV-Heaps employs undo logging techniques

71

and PMDK recently switched from undo logging (in v1.4) to hybrid undo-redo log (in

v1.5) [62]. Each of these approaches requires 4+ ordering points per FASE, although

Mnemosyne has a torn-bit raw word log optimization to reduce ordering points to one per

transaction. Most undo-logging implementations require ordering points proportional to

the number of contiguous data ranges modified in each transaction and can have as many as

50 ordering points in a transaction [94]. In contrast, redo-logging implementations require

relatively constant number of ordering points regardless of the size of the transaction and

are better for large transactions. However, redo logging requires load interposition to

redirect loads to updated PM addresses, resulting in slow reads and increased complexity.

MOD datastructures require no load interposition and require only one ordering point

per FASE.

Romulus and DudeTM both utilize innovative approaches based on redo-logging

and shadow paging to reduce ordering constraints. Romulus uses a volatile redo-log

with shadow data stored in PM while DudeTM uses a persistent redo-log with shadow

data stored in DRAM. Both of these approaches double the memory consumption of the

application as two copies of the data are maintained. This is a greater challenge with

DudeTM as the shadow occupies DRAM capacity, which is expected to be much smaller

than available PM. Our MOD datastructures only have two versions during an update

operation. Moreover, there is significant space overlap between the two versions. Both

DudeTM and Romulus incur logging overheads and require store interposition, unlike

MOD datastructures.

The optimal ordering constraints for PM-STM implementations under idealized scenar-

ios have been analyzed [79]. The results show that PM-STM performance can be improved

using new hardware primitives that support Epoch or Strand Persistency [79], neither of

which are currently supported by any architectures. Moreover, no PM-STM implementa-

tions or PM software have been designed for strand persistency yet. MOD datastructures

offers an alternative approach to PM-STM to reduce ordering constraints on currently

72

available hardware.

Finally, better hardware primitives for ordering and durability have also been pro-

posed [94, 123]. For instance, DPO [80] and HOPS [94] propose lightweight ordering fences

that do not stall the CPU pipeline. Efficient Persist Barriers [72] move cacheline flushes

out of the critical path of execution by minimizing epoch conflicts. Speculative Persist

Barriers [123] allow the core to speculatively execute instructions immediately following an

ordering point. Forced Write-Back [100] proposes cache modifications to perform efficient

flushes with low software overheads. All these proposals reduce the performance impact

of each ordering point in PM applications, whereas we reduce the number of ordering

points in these applications. Moreover, these proposals require invasive hardware modifi-

cations to the CPU core and/or the cache hierarchy while MOD datastructures improve

performance on unmodified hardware.

Recoverable Datastructures.

While Functional Shadowing provides a way to directly convert existing functional datas-

tructures into recoverable ones, the following papers demonstrate the value of handcrafting

recoverable datastructures. Dali [95] is a recoverable prepend-only hashmap that is updated

non-destructively while preserving the old version. Updates in both Functional Shadow-

ing and Dali are logically performed as a single epoch to minimize ordering constraints.

However, our datastructures are optimized to reuse data between versions, while the Dali

hashmap uses a list of historical records for each key. The CDDS B-tree [136] is a recoverable

datastructure that also relies on versioning for crash-consistency. Version numbers are

stored in the nodes of the B-tree to allow nondestructive updates but additional work is

done on writes to order nodes by version number for faster lookup. However, it is not

straightforward to extend such fine-grained versioning to other datastructures beyond

B-trees. Instead, we rely on versioning at the datastructure-level.

There have also been several attempts at optimizing recoverable B+-trees, which are

73

commonly used in key-value stores and filesystems. NV-Tree [147] achieves significant per-

formance improvement by storing internal tree nodes in volatile DRAM and reconstructing

them on a crash. wB+-Trees uses atomic writes and bitmap-based layout to reduce the

number of PM writes and flushes for higher performance. These optimizations cannot be

directly extended to commonly used datastructures such as vectors and queues. Our MOD

datastructures are all implemented as trees, and could allow these optimizations to apply

generally to more datastructures with further research.

Lock-Free Datastructures.

MOD datastructures share some similarities with lock-free datastructures [41, 53, 90]. Both

types of datastructures perform out-of-place updates which are committed by atomically

updating a pointer. Accordingly, we expect that ideas from lock-free datastructures could

enable concurrent accesses to MOD datastructures.

4.8 Conclusion

Persistent memory devices are close to becoming commercially available. Ensuring consis-

tency and durability across failures introduces new requirements on programmers and new

demands on hardware to efficiently move data from volatile caches into persistent memory.

Minimally ordered durable datastructures provide an efficient mechanism that copes with

the performance characteristics of Intel’s Optane DCPMM for much higher performance.

Rather than focusing on minimizing the amount of data written, MOD datastructures

minimize the ordering points that impose long program delays. Furthermore, they can

be created via simple extensions to a large library of existing highly optimized functional

datastructures providing flexibility to programmers.

74

5

Devirtualized Memory for Heterogeneous Systems

If you ignore the rules people will,

half the time, quietly rewrite them

so that they don’t apply to you.

Terry Pratchett

In addition to data persistence, emerging PM devices also provide vast memory capacity

accessible at low-latency. This makes PM devices very attractive for modern data-centric

workloads like machine learning. When training deep neural networks, the memory

capacity required storing feature maps (i.e., intermediate results) and gradients scales

linearly with the depth of the network [22]. For instance, a Recurrent Neural Network layer

with 1760 hidden units and a mini-batch size of 64 requires 1.3 GB of memory capacity per

layer [35]. Thus, TB-scale main memories composed of PM devices facilitate our ability to

explore deeper neural networks.

Unfortunately, virtual memory—initially designed for megabyte-sized memories—

incurs significant overheads at memory capacities in the order of hundreds of gigabytes

and beyond. For CPUs, address translation overheads have worsened with increasing

memory capacities, reaching up to 50% of overall execution time for some big-memory

workloads [6, 75]. These overheads occur despite large, complicated and power-hungry

address translation hardware with massive two-level translation lookaside buffers (TLBs).

75

Figure 5.1: Heterogeneous systems with (a) conventional VM with translation on critical
path and (b) DVM with Devirtualized Access Validation alongside direct access on reads.

As main memory capacity rises to terabytes, VM overheads will further worsen, especially

as TLB sizes have stagnated [75].

Even today, VM overheads are more acute in compute units like accelerators that cannot

justify allocating substantial area and power resources to address translation hardware.

The end of Dennard Scaling and slowing of Moore’s law has intensified research and

academic focus on heterogeneous systems having special-purpose accelerators alongside

conventional CPUs. In such systems, computations are offloaded from general-purpose

cores to these accelerators. Specialized accelerators are an attractive alternative to general-

purpose CPUs as they offer massive performance and/or power improvements in domains

such as graph processing [1, 49], data analytics [145, 146], and neural computing [23,

50]. Unfortunately, expensive address translation on every memory access degrades the

performance of accelerators. Moreover, supporting VM on accelerators requires memory

management hardware like TLBs and page-table walkers, which erodes the benefits in

power efficiency. Thus, supporting conventional VM on accelerators is expensive.

Ideally, accelerators want direct access to host physical memory to avoid address trans-

lation overheads, eliminate expensive data copying and facilitate fine-grained data sharing.

This approach is simple to implement as it does not need large, power-hungry structures

such as translation lookaside buffers (TLBs). Moreover, the low power and area consump-

76

tion are extremely desirable for small accelerators.

However, allowing direct access to physical memory (PhysM) is not generally acceptable.

Applications rely on the memory protection and isolation of virtual memory (VM) to

prevent malicious or erroneous accesses to their data [102]. Similar protection guarantees

are needed when accelerators are multiplexed among multiple processes. Additionally,

a virtual address space shared with the CPUs is needed to support “pointer-is-a-pointer”

semantics [117]. This allows pointers to be dereferenced on both the CPU and the accelerator

which increases the programmability of heterogeneous systems.

To preserve the useful features of VM with minimal overheads, we propose a radical idea

to de-virtualize virtual memory by eliminating address translation on most memory accesses

(Figure 5.1). We achieve this by allocating most memory such that its virtual address (VA)

is the same as its physical address (PA). We refer to such allocations as Identity Mapping

(VA==PA). As the PA for most accesses is identical to the VA, DVM replaces slow page-level

address translation with faster region-level Devirtualized Access Validation (DAV). For

DAV, the IO memory management unit (IOMMU) verifies that the process holds valid

permissions for the access and that the access is to an identity-mapped page. Conventional

address translation is still needed for accesses to non identity-mapped pages. Thus, DVM

provides a virtual address space, useful for programmers, while avoiding expensive address

translation in the common case.

DAV can be optimized by exploiting the underlying contiguity of permissions. Permis-

sions are typically granted and enforced at coarser granularities than a 4KB page and are

uniform across regions of virtually contiguous pages, unlike translations. While DAV is

still performed via hardware page walks, we introduce Permission Entries (PEs), which

are a new page table entry format for storing coarse-grained permissions. PEs reduce DAV

overheads in two ways. First, depending on the available contiguity, page walks can be

shorter. Second, PEs significantly reduce the size of the overall page table thus improving

the performance of page walk caches. DVM for accelerators is completely transparent to

77

applications, and requires small OS changes to identity map memory allocations on the

heap and construct PEs.

Furthermore, devirtualized memory can optionally be used to reduce VM overheads

for CPUs by identity mapping most segments in a process’s address space. This requires

additional OS and hardware changes.

This chapter describes a memory management approach for heterogeneous systems

and makes these contributions:

• We propose DVM to minimize VM overheads, and implement OS support in Linux

4.10.

• We develop a compact page table representation by exploiting the contiguity of

permissions through a new page table entry format called the Permission Entry.

• We design the Access Validation Cache (AVC) to replace both TLBs and Page Walk

Caches (PWC). For a graph processing accelerator, DVM with an AVC is 2X faster

while consuming 3.9X less dynamic energy for memory management than a highly

optimized VM implementation with 2M pages.

• We extend DVM to support CPUs (cDVM), thereby enabling unified memory man-

agement throughout the heterogeneous system. cDVM lowers the overheads of VM

in big-memory workloads to 5% for CPUs.

However, DVM does have some limitations. Identity Mapping allocates memory eagerly

and contiguously (Section 5.3) which aggravates the problem of memory fragmentation,

although we do not study this effect in this chapter. Additionally, while copy-on-write

(COW) and fork are supported by DVM, on the first write to a page, a copy is created which

cannot be identity mapped, eschewing the benefits of DVM for that mapping. Thus, DVM

is not as flexible as VM but avoids most of the VM overheads.

78

5.1 Chapter Background

Our work focuses on accelerators running big-memory workloads with irregular access

patterns such as graph-processing, machine learning and data analytics. As motivat-

ing examples, we use graph-processing applications like Breadth-First Search, PageRank,

Single-Source Shortest Path and Collaborative Filtering as described in Section 5.5. First,

we discuss why existing approaches for memory management are not a good fit for these

workloads.

Accelerator programming models employ one of two approaches for memory manage-

ment (in addition to unsafe direct access to PhysM). Some accelerators use separate address

spaces [73, 99]. This necessitates explicit copies when sharing data between the accelerator

and the host processor. Such approaches are similar to discrete GPGPU programming

models. As such, they are plagued by the same problems: (1) the high overheads of data

copying require larger offloads to be economical; and (2) this approach makes it difficult to

support pointer-is-a-pointer semantics, which reduces programmability and complicates

the use of pointer-based data structures such as graphs.

To facilitate data sharing, accelerators (mainly GPUs) have started supporting unified

virtual memory, in which accelerators can access PhysM shared with the CPU using virtual

addresses. This approach typically relies on an IOMMU to service address translation

requests from accelerators [2, 64], as illustrated in Figure 5.1. We focus on these systems, as

address translation overheads severely degrade the performance of these accelerators [28].

For our graph workloads, we observe high TLB miss rates of 21% on average with

a 128-entry TLB (Figure 5.2). There is little spatial locality and hence using larger 2MB

pages improves the TLB miss rates only by 1% on average. TLB miss rates of about 30%

have also been observed for GPU applications [107, 109]. While optimizations specific to

GPU microarchitecture for TLB-awareness (e.g., cache-conscious warp scheduling) have

been proposed to mitigate these overheads, these optimizations are not general enough to

support efficient memory management in heterogeneous systems with multiple types of

79

FR Wiki LJ
S24 FR Wiki LJ

S24 FR Wiki LJ
S24 NF

Bip1
Bip2

0%

5%

10%

15%

20%

25%

30%

35%

40%

TL
B

m
is

s
ra

te
s BFS PageRank SSSP

0.
26

8

CF

4K pages 2M pages

Figure 5.2: TLB miss rates for Graph Workloads with 128-entry TLB

accelerators.

Some accelerators (e.g., Tesseract [1]) support simple address translation using a base-

plus-offset scheme such as Direct Segments [6]. With this scheme, only memory within a

single contiguous PhysM region can be shared, limiting its flexibility. Complicated address

translation schemes such as range translations [75] are more flexible as they support

multiple address ranges. However, they require large and power-hungry Range TLBs,

which may be prohibitive given the area and power budgets of accelerators.

As a result, we see that there is a clear need for a simple, efficient, general and performant

memory management approach for accelerators.

5.2 Devirtualizing Memory

In this section, we present the high-level design of our Devirtualized Memory (DVM)

approach. Before discussing DVM, we enumerate the goals for a memory management

approach suitable for accelerators (as well as CPUs).

List of Goals

Programmability. Simple programming models are important for increased adoption of

accelerators. Data sharing between CPUs and accelerators must be supported, as accelera-

80

Figure 5.3: Address Space with Identity Mapped and Demand Paged Allocations.

tors are typically used for executing parts of an application. Towards this end, solutions

should preserve pointer-is-a-pointer semantics. This improves the programmability of

accelerators by allowing the use of pointer-based data structures without data copying or

marshalling [117].

Power/Performance. An ideal memory management scheme should have near zero over-

heads even for irregular access patterns in big-memory systems. Additionally, MMU

hardware must consume little area and power. Accelerators are particularly attractive

when they offer large speedups under small resource budgets.

Flexibility. Memory management schemes must be flexible enough to support dynamic

memory allocations of varying sizes and with different permissions. This precludes ap-

proaches whose benefits are limited to a single range of contiguous virtual memory.

Safety. No accelerator should be able to reference a physical address without the right

authorization for that address. This is necessary for guaranteeing the memory protection

offered by virtual memory. This protection attains greater importance in heterogeneous

systems to safeguard against buggy or malicious third-party accelerators [103].

Devirtualized Memory

To minimize VM overheads, DVM introduces Identity Mapping and leverages permission

validation [78, 143] in the form of Devirtualized Access Validation. Identity mapping allocates

memory such that all VAs in the allocated region are identical to the backing PAs. DVM

uses identity mapping for all heap allocations. Identity mapping can fail if no suitable

81

Time

Load /
Store

DAV: DAV:

Load /
Store

Execute

Execute

PA == VA
(Common)

PA != VA Insufficient
Permissions

Exception
DAV:

Translate
VA

Figure 5.4: Memory Accesses in DVM

address range is available in both the virtual and physical address spaces. In this case,

DVM falls back to demand paging. Figure 5.3 illustrates an address space with identity

mapping.

As PA==VA for most data on the heap, DVM can avoid address translation on most

memory accesses. Instead, it is sufficient to verify that the accessed VA is identity mapped

and that the application holds sufficient permissions for the access. We refer to these checks

as Devirtualized Access Validation. In rare cases when PA!=VA, DAV fails and DVM resorts

to address translation as in conventional VM. Memory accesses in DVM are illustrated in

Figure 5.4.

DVM is designed to satisfy the goals listed earlier:

Programmability. DVM enables shared address space in heterogeneous systems at minimal

cost, thereby improving the programmability of such systems.

Power/Performance. DVM optimizes for performance and power-efficiency by performing

DAV much faster than full address translation. DAV latency is minimized by exploiting

the contiguity of permissions for compact storage and efficient caching performance (Sec-

tion 5.3). Even in the rare case of an access to a non-identity mapped page, performance

is no worse than conventional VM as DAV reduces the address translation latency, as

explained in Section 5.3.

82

Flexibility. DVM facilitates page-level sharing between the accelerator and the host CPU

since regions as small as a single page can be identity mapped independently, as shown

in Figure 5.3. However, regions of size 128KB or greater are needed for improving perfor-

mance by shortening the page table walk required for DAV (described in Section 5.3). This

allows DVM to benefit a variety of applications, including those that do not have a single

contiguous heap. Furthermore, DVM is transparent to most applications.

Safety. DVM completely preserves conventional virtual memory protection as all accesses

are still checked for valid permissions. If appropriate permissions are not present for an

access, an exception is raised on the host CPU.

5.3 Implementing DVM for Accelerators

Having established the high-level model of DVM, we now dive into the implementation

of identity mapping and devirtualized access validation. We add support for DVM in

accelerators with modest changes to the OS and IOMMU and without any CPU hardware

modifications.

First, we describe two alternative mechanisms for fast DAV. Next, we discuss OS mod-

ifications to support identity mapping. Here, we use the term memory region to mean a

collection of virtually contiguous pages with the same permissions. Also, we use page

table entries (PTE) to mean entries at any level of the page table.

Devirtualized Access Validation

We implement DAV efficiently with one of two mechanisms:

• Conventional page table walk accelerated by the permission bitmap and TLB.

• Compact page table walk accelerated by the Access Validation Cache.

83

Note that the IOMMU uses a separate copy of page tables to avoid affecting CPU hardware.

We use the following 2-bit encoding for permissions—00:No Permission, 01:Read-Only,

10:Read-Write and 11:Read-Execute.

Permission Bitmap

The Permission Bitmap (BM) stores page permissions for identity-mapped pages. For

such pages, virtual-to-physical address mappings are not needed. Instead, we apply the

invariant that any page with valid permissions (!=00) in the BM is identity mapped. For

each memory access from an accelerator, the IOMMU consults the BM to check permissions.

For pages with 00 permissions, the IOMMU relies on regular address translation with a

full page table walk. If the page is identity mapped, the IOMMU updates the BM with its

permissions.

The Bitmap is a flat bitmap stored in physical memory, maintaining 2-bit permissions

for each physical page. As with page tables, there is a separate bitmap for each process. It

is physically indexed, and lookups assume PA==VA. For a page size of 4KB, this incurs

storage overheads of approximately 0.006% of the physical memory capacity for each active

accelerator. Finding a page’s permissions simply involves calculating the offset into the

bitmap and adding it to the bitmap’s base address. We cache BM entries along with L2-L4

PTEs in a simple data cache to expedite access validation.

The hardware design of the Bitmap is like the Protection Table used in Border Control

(BC) [102], although the storage and lookup policies differ. The Protection Table in BC

stores permissions for all physical pages and is looked up after address translation. BM

in DVM stores permissions for only identity-mapped pages, and is looked up to confirm

identity mapping and avoid full address translation.

The simple BM has the benefit of leaving host page tables unchanged. However, it stores

permissions individually for every physical page, which is inefficient for big-memory sys-

tems, especially with sparse memory usage. We address this drawback with our alternative

84

Figure 5.5: 4-level Address Translation in x86-64

mechanism described next.

Compact Page Tables

We leverage available contiguity in permissions to store them at a coarse granularity

resulting in a compact page table structure. Figure 5.5 shows an x86-64 page table. An

L2 Page Directory entry (L2PDE) 1©maps a contiguous 2MB VA range 3©. Physical Page

Numbers are stored for each 4K page in this range, needing 512 L1 page table entries (PTEs)

2© and 4KB of memory. However, if pages are identity mapped, PAs are already known

and only permissions need to be stored. If permissions are the same for the entire 2MB

region (or an aligned sub-region), these could be stored at the L2 level. For larger regions,

permissions can be stored at the L3 and L4 levels. For new 5-level page tables, permissions

can also be stored at the L5 levels.

We introduce a new type of leaf PTE called the Permissions Entry (PE), shown in

Figure 5.6. PEs are direct replacements for regular PTEs at any level, with the same size (8

bytes) and mapping the same VA range as the replaced PTE. PEs contain sixteen permission

fields, currently 2-bit each. A permission entry bit is added to all PTEs, and is 1 for PEs

85

and 0 for other regular PTEs.

Each PE records separate permissions for sixteen aligned regions comprising the VA

range mapped by the PE. Each constituent region is 1/16th the size of the range mapped by

the PE and is aligned on an appropriate power-of-two granularity. For instance, an L2PE

maps a 2MB VA range of sixteen 128KB (=2MB/16) regions aligned on 128KB address

boundaries. An L3PE maps a 1GB VA range of sixteen 64MB regions aligned on 64MB

address boundaries. Other intermediate sizes can be handled simply by replicating per-

missions. Thus, a 1MB region is mapped by storing permissions across 8 permission fields

in an L2PE. Region 3© in Figure 5.5 can be mapped by an L2PE with uniform permissions

stored in all 16 fields.

PEs implicitly guarantee that any allocated memory in the mapped VA range is identity-

mapped. Unallocated memory i.e., gaps in the mapped VA range can also be handled

gracefully, if aligned suitably, by treating them as regions with no permissions (00). This

frees the underlying PAs to be re-used for non-identity mapping in the same or other

applications or for identity mappings in other applications. If region 3 is replaced by two

adjacent 128 KB regions at the start of the mapped VA range with the rest unmapped,

we could still use an L2PE to map this range, with relevant permissions for the first two

regions, and 00 permissions for the rest of the memory in this range.

On an accelerator memory request, the IOMMU performs DAV by walking the page

table. A page walk ends on encountering a PE, as PEs store information about identity

mapping and permissions. If insufficient permissions are found, the IOMMU may raise an

exception on the host CPU.

If a page walk encounters a leaf PTE, the accessed VA may not be identity mapped.

In this case, the leaf PTE is used to perform address translation i.e., use the page frame

number recorded in the PTE to generate the actual PA. This avoids a separate walk of the

page table to translate the address. More importantly, this ensures that even in the fallback

case (PA!=VA), the overhead (i.e., full page walk) is no worse than conventional VM.

86

Input
Graph

Page Tables
(in KB)

% occupied
by L1PTEs

Page Tables
with PEs
(in KB)

FR 616 0.948 48
Wiki 2520 0.987 48

LJ 4280 0.992 48
S24 13340 0.996 60
NF 4736 0.992 52

BIP1 2648 0.989 48
BIP2 11164 0.996 68

Table 5.1: Page Table Sizes for PageRank (first four rows) and Collaborative Filtering (last
three rows) for different input graphs. PEs reduce the page table size by eliminating most
L1PTEs.

Figure 5.6: Structure of a Permission Entry. PE: Permission Entry, P15-P0: Permissions.

Incorporating PEs significantly reduces the size of page tables (Table 5.1) as each higher-

level (L2-L4) PE directly replaces an entire sub-tree of the page table. For instance, replacing

an L3PTE with a PE eliminates 512 L2PDEs and up to 512× 512 L1PTEs, saving as much as

2.05 MB. Most of the benefits come from eliminating L1PTEs as these leaf PTEs comprise

about 98% of the size of the page tables. Thus, PEs make page tables more compact.

Access Validation Cache

The major value of smaller page tables is improved efficacy of caching PTEs. In addition to

TLBs which cache PTEs, modern IOMMUs also include page walk caches (PWC) to store

L2-L4 PTEs [5]. During a page walk, the page table walker first looks up internal PTEs in

the PWC before accessing main memory. In existing systems, L1PTEs are not cached to

avoid polluting the PWC [11]. Hence, page table walks on TLB misses incur at least one

memory access, for obtaining the L1PTE.

We propose the Access Validation Cache (AVC), which caches all intermediate and leaf

entries of the page table, to replace both TLBs and PWCs for accelerators. The AVC is a

87

standard 4-way set-associative cache with 64B blocks. The AVC caches 128 distinct PTEs,

resulting in a total capacity of 1 KB. It is physically-indexed and physically tagged cache,

as page table walks use physical addresses. For PEs, this provides 128 sets of permissions.

On every memory reference by an accelerator, the IOMMU walks the page table using

the AVC. In the best case, page walks require 2-4 AVC accesses and no main memory access.

Caching L1PTEs allows AVC to exploit their temporal locality, as done traditionally by

TLBs. But, L1PTEs do not pollute the AVC as the introduction of PEs greatly reduces the

number of L1PTEs. Thus, the AVC can perform the role of both a TLB and a traditional

PWC.

Due to the smaller page tables, even a small 128-entry (1KB) AVC has very high hit

rates, resulting in fast access validation. As the hardware design is similar to conventional

PWCs, the AVC is just as energy-efficient. Moreover, the AVC is more energy-efficient than

a comparably sized, fully associative (FA) TLB due to a less associative lookup.

Optional Meltdown-susceptible Preload on Loads

The original paper [51] implemented an optional preload optimization which we describe

below. However, we have eliminated this optimization from our default implementation

in this chapter to reduce vulnerability to side-channel attacks such as Meltdown [83] and

Spectre [77].

The eliminated pre-load optimization is as follows. If an accelerator supports the ability

to squash and retry an inflight load, DVM can allow a preload to occur in parallel with DAV.

As a result, the validation latency for loads can be overlapped with the memory access

latency. If the access is validated successfully, the preload is treated as the actual memory

access. Otherwise, it is discarded, and the access is retried to the correct, translated PA. For

stores, this optimization is not possible because the physical address must be validated

before the store updates memory.

88

Memory-Allocation (Size S)
PA← contiguous-PhysM-allocation(S)
if PA 6= NULL then

VA← VM-allocation(S)
Move region to new VA2 equal to PA
if Move succeeds then

return VA2 // Identity-Mapped
end
else

Free-PhysM(PA,S)
return VA // Fallback to Demand-Paging

end
end
else

VA← VM-allocation(S)
return VA // Fallback to Demand-Paging

end

Figure 5.7: Pseudocode for Identity Mapping

Identity Mapping

As accelerators typically only access shared data on the heap, we implement identity

mapping only for heap allocations, requiring minor OS changes. The application’s heap is

actually composed of the heap segment (for smaller allocations) as well as memory-mapped

segments (for larger allocations).

To ensure VA==PA for most addresses in memory, firstly, physical frames (and thus

PAs) need to be reserved at the time of memory allocation. For this, we use eager paging [75].

Next, the allocation is mapped into the virtual address space at VAs equal to the backing

PAs. This may result in heap allocations being mapped anywhere in the process address

space as opposed to a hardcoded location. To handle this, we add support for a flexible

address space. Below, we describe our implementation in Linux 4.10. Figure 5.7 shows the

pseudocode for identity mapping.

89

Eager Contiguous Allocations

Identity Mapping in DVM is enabled by eager contiguous allocations of memory. On

memory allocations, the OS allocates physical memory then sets the VA equal to the

PA. This is unlike demand paging used by most OSes, which allocates physical frames

lazily at the time of first access to a virtual page. For allocations larger than a single

page, contiguous allocation of physical memory is needed to guarantee VA==PA for all the

constituent pages. We use the eager paging modifications to Linux’s default buddy allocator

developed by others [75] to allocate contiguous powers-of-two pages. Once contiguous

pages are obtained, extra pages obtained due to rounding up are freed to the allocator

immediately. Eager allocation may increase physical memory use if programs allocate

much more memory than they actually use.

Flexible Address Space

Operating systems historically dictated the layout of usermode address spaces, specifying

where code, data, heap, and stack reside. For identity mapping, our modified OS assigns

VAs equal to the backing PAs. Unfortunately, there is little control over the allocated PAs

without major changes to the default buddy allocator in Linux. As a result, we could have

a non-standard address space layout, for instance with the heap below the code segment

in the address space. To allow such cases, the OS needs to support a flexible address space

with no hard constraints on the location of the heap and memory-mapped segments.

Heap. We modify the default behavior of glibc malloc to always use the mmap system call

instead of brk. This is because identity mapped regions cannot be grown easily, and brk

requires dynamically growing a region. We initially allocate a memory pool to handle

small allocations. Another pool is allocated when the first is full. Thus, we turn the heap

into noncontiguous memory-mapped segments, which we discuss next.

Memory-mapped segments. We modify the kernel to accommodate memory-mapped

segments anywhere in the address space. Address Space Layout Randomization (ASLR)

90

already allows randomizing the base positions of the stack, heap as well as memory-

mapped regions (libraries) [135]. Our implementation further extends this to allow any

possible positions of the heap and memory-mapped segments.

Low-memory situations. While most high-performance systems are configured with

enough memory capacity, contiguous allocations can result in fragmentation over time

and preclude further contiguous allocations.

In low memory situations, DVM reverts to standard paging. Furthermore, to reclaim

memory, the OS could convert permission entries to standard PTEs and swap out memory

(not implemented). We expect such situations to be rare in big-memory systems, which are

our main target. Also, once there is sufficient free memory, the OS can reorganize memory

to reestablish identity mappings.

5.4 Discussion

Here we address potential concerns regarding DVM.

Security Implications. Side-channel attacks have become important architectural consid-

erations recently, especially in light of Meltdown [83] and Spectre variants [54, 77]. These

attacks use speculative instruction execution to cross software protection boundaries that

are known (Meltdown/Foreshadow [16]) or unknown (most Spectre variants) to hardware.

Of these attacks, Spectre variants are orthogonal to virtual memory—conventional address

translation or DVM—because all virtual addresses they generate in their instruction-level

speculation have appropriate virtual address permissions. We believe that DVM can elimi-

nate Meltdown/Foreshadow by always verifying memory protection before a data fetch,

thus eliminating speculative preload at the cost of some performance loss. Without preload,

we see no evidence that DVM would be vulnerable to Meltdown or Foreshadow as DVM

would no longer do any speculation. Moreover, we know of no non-speculative timing

side-channel that DVM introduces, but the possibility has not been formally ruled out. We

91

leave a formal proof of the security properties of DVM for future work.

Prior to Meltdown and Spectre, there have been other side-channel attacks specifically

targeting the memory management unit (MMU) [44, 47, 121]. Such attacks seek to de-

randomize virtual addresses corresponding to the code and data segments of a victim

process. A proposed defense against such attacks is to increase the entropy of address-

space layout randomization (ASLR). For instance, Linux provides 28 bits of ASLR entropy

while Windows 10 offers 24 bits for the heap [141]. DVM randomizes physical addresses,

which may have fewer bits than virtual addresses, but still provides 20 bits for 2MB-aligned

allocation in 2TBs of physical address space. However, even the stronger Linux randomiza-

tion has been derandomized by existing attacks [44, 47, 121]. Moreover, earlier works [47]

have concluded that address randomization is not an effective defense mechanism against

side-channel attacks.

Effect on Memory Isolation. While DVM sets PA==VA in the common case, this does

not weaken isolation. Just because applications can address all of PhysM does not give

them permissions to access it [21]. This is commonly exploited by OSes. For instance, in

Linux, all physical memory is mapped into the kernel address space, which is part of every

process. Although this memory is addressable by an application, any user-level access to

this region will be blocked by hardware due to lack of permissions in the page table.

Copy-on-Write (CoW). CoW is an optimization for minimizing the overheads of copying

data, by deferring the copy operation till the first write. Before the first write, both the

source and destination get read-only permissions to the original data. It is most commonly

used by the fork system call to create new processes.

CoW can be performed with DVM without any correctness issues. Before any writes

occur, there is harmless read-only aliasing. The first write in either process allocates a new

page for a private copy, which cannot be identity-mapped, as its VA range is already visible

to the application, and the corresponding PA range is allocated for the original data. Thus,

the OS reverts to standard paging for the address. Thus, we recommend against using

92

CoW for data structures allocated using identity mapping.

Unix-style Fork. The fork operation in Unix creates a child process, and copies a parent’s

private address space into the child process. Commonly, CoW is used to defer the actual

copy operation. As explained in the previous section, CoW works correctly, but can break

identity mapping.

Hence, we recommend calling fork before allocating structures shared with accelerators.

If processes must be created later, then the posix_spawn call (combined fork and exec)

should be used when possible to create new processes without copying. Alternatively,

vfork, which shares the address space without copying, can be used, although it is typically

considered less safe than fork. Others have also recommended deprecating fork due to

several issues, including lack of compatibility with new mechanisms [7].

Virtual Machines. DVM can be extended for virtualized environments as well. The

overheads of conventional virtual memory are exacerbated in such environments [10] as

memory accesses need two levels of address translation (1) guest virtual address (gVA) to

guest physical address (gPA) and (2) guest physical address to system physical address

(sPA).

To reduce these costs, DVM can be extended in three ways. With guest OS support for

multiple non-contiguous physical memory regions, DVM can be used to map the gPA to

the sPA directly in the hypervisor, or in the guest OS to map gVA to gPA. These approaches

convert the two-dimensional page walk to a one-dimensional walk. Thus, DVM brings

down the translation costs to unvirtualized levels. Finally, there is scope for broader impact

by using DVM for directly mapping gVA to sPA, eliminating the need for address translation

on most accesses.

Comparison with Huge Pages. Here we offer a qualitative comparison, backed up by a

quantitative comparison in Section 5.5. DVM breaks the serialization of translation and

data fetch, unlike huge pages. Also, DVM exploits finer granularities of contiguity by

having 16 permission fields in each PE. Specifically, 128KB (=2MB /16) of contiguity is

93

sufficient for leveraging 2MB L2PEs, and 64MB (=1GB/16) contiguity is sufficient for 1GB

L3PEs.

Moreover, supporting multiple page sizes is difficult [31, 131], particularly with set

associative TLBs which are commonly used due to their power-efficiency. On the other

hand, PEs at higher levels of the page table allow DVM to gracefully scale with increasing

memory sizes.

Finally, huge page TLB performance still depends on the locality of memory references.

TLB performance can be an issue for big-memory workloads with irregular or streaming

accesses [104, 113], as shown in Figure 5.2. In comparison, DVM exploits the locality in

permissions which is found in most applications due to how memory is typically allocated.

5.5 Evaluation

Methodology

We quantitatively evaluate DVM using a heterogeneous system containing an out-of-

order core and the Graphicionado graph-processing accelerator [49]. Graphicionado is

optimized for the low computation-to-communication ratio of graph applications. In

contrast to software frameworks, where 94% of the executed instructions are for data

movement, Graphicionado uses an application-specific pipeline and memory system design

to avoid such inefficiencies. Its execution pipeline and datapaths are geared towards

graph primitives—edges and vertices. Also, by allowing concurrent execution of multiple

execution pipelines, the accelerator can exploit the available parallelism and memory

bandwidth.

To match the flexibility of software frameworks, Graphicionado uses reconfigurable

blocks to support the vertex programming abstraction. Thus, a graph algorithm is expressed

as operations on a single vertex and its edges. Most graph algorithms can be specified and

executed on Graphicionado with three custom functions, namely processEdge, reduce

94

and apply. The graph is stored as a list of edges, each in the form of a 3-tuple (srcid, dstid,

weight). A list of vertices is maintained where each vertex is associated with a vertex

property (i.e., distance from root in BFS or rank in PageRank). The vertex properties are

updated during execution. Graphicionado also maintains ancillary arrays for efficient

indexing into the vertex and the edge lists.

We simulate a heterogeneous system with one CPU and the Graphicionado accelerator

with the open-source, cycle-level gem5 simulator [15]. We implement Graphicionado with

8 processing engines and no scratchpad memory as an IO device with its own timing model

in gem5. The computation performed in each stage of a processing engine is executed in

one cycle, and memory accesses are made to the shared memory. We use gem5’s full-system

mode to run workloads on our modified Linux operating system. The configuration details

of the simulation are shown in Table 5.2. For energy results, we use access energy numbers

from Cacti 6.5 [92] and access counts from our gem5 simulation.

CPU

Cores 1
Caches 64KB L1, 2MB L2
Frequency 3 GHz

Accelerator

Processing Engines 8
TLB Size 128-entry FA
TLB Latency 1 cycle
PWC/AVC Size 128-entry, 4-way SA
PWC/AVC Latency 1 cycle
Frequency 1 GHz

Memory System

Memory Size 32 GB
Memory B/W 4 channels of DDR4 (51.2 GB/s)

Table 5.2: Simulation Configuration Details

Workloads

We run four common graph algorithms on the accelerator—PageRank, Breadth-First Search,

Single-Source Shortest Path and Collaborative Filtering. We run each of these workloads

95

FR Wiki LJ S24 FR Wiki LJ S24 FR Wiki LJ S24 NF Bip1 Bip2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

BFS PageRank SSSP CF Average

4K,TLB+PWC 2M,TLB+PWC 1G,TLB+PWC DVM-BM DVM-PE DVM-PE+

Figure 5.8: Execution time for accelerator workloads, normalized to runtime of ideal
implementation.

with multiple real-world as well as synthetic graphs. The details of the input graphs can

be found in Table 5.3. The synthetic graphs are generated using the graph500 RMAT data

generator [19, 93]. To generate synthetic bipartite graphs, we convert the synthetic RMAT

graphs following the methodology described by Satish et al [119].

Graph # Vertices # Edges Heap Size

Flickr (FR) [34] 0.82M 9.84M 288 MB
Wikipedia (Wiki) [34] 3.56M 84.75M 1.26 GB
LiveJournal (LJ) [34] 4.84M 68.99M 2.15 GB

RMAT Scale 24 (RMAT) 6.79 GB

Netflix (NF) [8] 480K users,
18K movies 99.07M 2.39 GB

Synthetic Bipartite 1 (SB1) 969K users,
100K movies 53.82M 1.33 GB

Synthetic Bipartite 2 (SB2) 2.90M users,
100K movies 232.7M 5.66 GB

Table 5.3: Graph Datasets Used for Evaluation

Results

We evaluate seven separate implementations. We evaluate conventional VM implementa-

tions using an IOMMU with 128-entry fully associative (FA) TLB and 1KB PWC. We show

96

the performance with three page sizes—4KB, 2MB and 1GB. Next, we evaluate three DVM

implementations with different DAV hardware. First, we store permissions for all VAs in a

flat 2MB bitmap in memory for 1-step DAV, with a separate 128-entry cache for caching

bitmap entries (DVM-BM). 2-bit permissions are stored for all identity-mapped pages in

the application’s heap for fast access validation. If no permissions (i.e., 00) are found, full

address translation is performed, expedited by a 128-entry FA TLB. Second, we implement

DAV using page tables modified to use PEs and a 128-entry (1KB) AVC (DVM-PE). Third,

we extend DVM-PE by allowing preload on reads (DVM-PE+) to both learn the impact of

Meltdown and give performance for any system unconcerned about Meltdown. Finally,

we evaluate an ideal implementation in which the accelerator directly accesses physical

memory without any translation or protection checks.

Performance

Figure 5.8 shows the execution time of our graph workloads for different input graphs for

the above systems, normalized to the ideal implementation.

DVM-PE outperforms most other VM implementations with only 3.5% overheads.

Meltdown-susceptible Preload support in DVM-PE+ further reduces DVM overheads to

only 1.7%. The performance improvements come from being able to complete most page

walks entirely from the AVC without any memory references. Conventional PWCs typically

avoid caching L1PTEs to prevent cache pollution, so page walks for 4K pages require at

least one memory reference.

DVM-BM incurs 23% DVM overheads, much lower than most other VM implementa-

tions but greater than the other DVM variants. Unfortunately, the hit rate of the BM cache

is not as high as the AVC, due to the much larger size of standard page tables and use of

4KB pages instead of 128KB or larger regions.

4K,TLB+PWC and 2M,TLB+PWC have high VM overheads, on average 119% and 114%

respectively. As seen in Figure 5.2, the irregular access patterns of our workloads result in

97

FR Wiki LJ S24 FR Wiki LJ S24 FR Wiki LJ S24 NF Bip1 Bip2
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

D
yn

am
ic

E
ne

rg
y

1.
3X

BFS

1.
5X

1.
2X

PageRank

1.
5X

1.
2X

SSSP

1.
6X

CF Average

2M,TLB+PWC 1G,TLB+PWC DVM-BM DVM-PE DVM-PE+

Figure 5.9: Dynamic energy spent in address translation/access validation, normalized to
the 4KB, TLB+PWC implementation.

high TLB miss rates. Using 2MB pages does not help much, as the TLB reach is still limited

to 256 MB (128*2MB), which is smaller than the working sets of most of our workloads.

NF has high TLB hit rates due to higher temporal locality of accesses. Being a bipartite

graph, all its edges are directed from 480K users to only 18K movies. The small number

of destination nodes results in high temporal locality. As a result, moving to 2MB pages

exploits this locality showing near-ideal performance.

1G,TLB+PWC also performs well—virtually no VM overhead—for the workloads and

system that we evaluate, but with three issues. First, <10 1GB pages are sufficient to map

these workloads, but not necessarily for future workloads. Second, there are known OS

challenges for managing 1GB pages. For instance, huge page allocation is not performed

dynamically in Linux. Instead, huge pages need to be explicitly pre-allocated through

procfs and requested via libhugetlbfs. Third, the 128-entry fully associative TLB we assume

is power-hungry and often avoided in industrial designs (e.g., Intel currently uses four-way

set associative).

98

Energy

Energy is a first-order concern in modern systems, particularly for small accelerators. Here,

we consider the impact of DVM on reducing the dynamic energy spent in MMU functions,

like address translation for conventional VM and access validation for DVM. We calculate

this dynamic energy by adding the energy of all TLB accesses, PWC accesses, and memory

accesses by the page table walker [74]. We show the dynamic energy consumption of VM

implementations, normalized to 4K,TLB+PWC in Figure 5.9.

DVM-PE offers 76% reduction in dynamic translation energy over the baseline. This

mainly comes from removing the FA TLB. Also, page walks can be entirely serviced with

AVC cache accesses without any main memory accesses, significantly decreasing the energy

consumption. Memory accesses for discarded preloads for non-identity mapped pages

increase dynamic energy slightly in DVM-PE+.

DVM-BM shows a 15% energy reduction on average over the baseline. However, the

energy consumption is higher than other DVM variants due to memory references on

bitmap cache misses.

1G,TLB+PWC shows low energy consumption due to lack of TLB misses.

Identity Mapping

To evaluate the risk of fragmentation with eager paging and identity mapping, we use the

shbench benchmark from MicroQuill, Inc [58]. We configure this benchmark to continu-

ously allocate memory of variable sizes until identity mapping fails to hold for an allocation

(VA!=PA). Experiment 1 allocated small chunks of memory, sized between 100 and 10,000

bytes. Experiment 2 allocated larger chunks, sized between 100,000 and 10,000,000 bytes.

Finally, we ran four concurrent instances of shbench, all allocating large chunks as in ex-

periment 2. For each of these, we report the percentage of memory that could be allocated

before identify mapping failed for systems with 16 GB, 32 GB and 64 GB of total memory

capacity. We observe that 95 to 97% of memory can be allocated with identity mapping,

99

% Memory Allocated (PA==VA)
System Memory Expt 1 Expt 2 Expt 3

16 GB 96% 95% 96%
32 GB 97% 97% 96%
64 GB 97% 97% 97%

Table 5.4: Percentage of total system memory successfully allocated with identity mapping.

even in memory-constrained systems with 16 GBs of memory. Our complete results are

shown in Table 5.4.

5.6 Towards DVM across Heterogeneous Systems

DVM can provide similar benefits for CPUs (cDVM). With the end of Dennard Scaling and

the slowing of Moore’s Law, one avenue for future performance growth is to reduce waste

everywhere. Towards this end, we discuss the use of DVM for CPU cores to reduce waste

due to VM. This opportunity comes with MMU hardware and OS changes that are real,

but more modest than we initially expected.

Hardware Changes

To avoid intrusive changes to the CPU pipeline, we retain conventional TLBs and perform

DAV on TLB misses. Thus, cDVM expedites the slow page table walk on a TLB miss using

the AVC and compact page tables (as described in Section 5.3).

OS Support for cDVM

The simplest way to extend to CPUs is to enable the OS VM and CPU page table walkers

to handle the new compact page tables with PEs. Next, we can optionally extend to

code and/or stack, but typically the heap is much larger than other segments. We have

100

Affected Feature LOC changed

Code Segment 39
Heap Segment 1*
Memory-mapped Segments 56
Stack Segment 63
Page Tables 78
Miscellaneous 15

Table 5.5: Lines of code changed in Linux v4.10 split up by functionality. *Changes for
memory-mapped segments affect heap segment, so we only count them once.

implemented a prototype providing this flexibility in Linux v4.10. The lines of code changed

is shown in Table 5.5.

Stack. The base addresses for stacks are already randomized by ASLR. The stack of the

main thread is allocated by the kernel, and is used to setup initial arguments to launch the

application. To minimize OS changes, we do not identity map this stack initially. Once the

arguments are setup, but before control passes to the application, we move the stack to the

VA matching its PA.

Dynamically growing a region is difficult with identity mapping, as adjacent physical

pages may not be available. Instead, we eagerly allocate an 8MB stack for all threads. This

wastes some memory, but this can be adjusted. Stacks can be grown above this size using

gcc’s Split Stacks [132].

The stacks of other threads beside the main thread in a multi-threaded process are

allocated as memory-mapped segments and can be handled as discussed previously.

Code and globals. In unmodified Linux, the text segment (i.e., code) is located at a fixed

offset near the bottom of the process address space, followed immediately by the data

(initialized global variables) and the bss (uninitialized global variables) segments. To protect

against return-oriented programming (ROP) attacks [116], OSes have begun to support

position independent executables (PIE) which allow binaries to be loaded at random offsets

from the base of the address space [114]. PIE incurs a small cost on function calls due to an

added level of indirection.

101

PIE randomizes the base position of the text segment and keeps data and bss segments

adjacent. We consider these segments as one logical entity in our prototype and allocate

an identity-mapped segment equal to the combined size of these three segments. The

permissions for the code region are then set to be Read-Execute, while the other two

segments are to Read-Write.

Performance Evaluation

We evaluate the performance benefits of cDVM using memory intensive CPU-only ap-

plications like mcf from SPEC CPU 2006 [52], BT, CG from NAS Parallel Benchmarks [4],

canneal from PARSEC [14] and xsbench [133].

Using hardware performance counters, we measure L2 TLB misses, page walk cycles

and total execution cycles of these applications on an Intel Xeon E5-2430 machine with

96 GB memory, 64-entry L1 DTLB and 512-entry DTLB. Then, we use BadgerTrap [42]

to instrument TLB misses and estimate the hit rate of the AVC. Finally, we use a simple

analytical model to conservatively estimate the VM overheads under cDVM, like past

work [6, 11, 12, 32, 75, 106]. For the ideal case, we estimate running time by subtracting

page walk cycles for 2MB pages from total execution cycles.

We compare cDVM with conventional VM using 4KB pages and 2MB pages with

Transparent Huge Paging (THP). From our results in Figure 5.10, we see that conventional

VM adds about 29% overheads on average with 4KB pages and 13% with THP, even with

a two-level TLB hierarchy. THP improves performance by expanding TLB reach and

shortening page walks. Due to the limits of our evaluation methodology, we can only

estimate performance benefits of the AVC. We find that cDVM reduces VM overheads from

13% with 2MB pages to within 5% of the ideal implementation without address translation.

The performance benefits come from shorter page walks with fewer memory accesses.

Thus, we believe that cDVM merits more investigation to optimize systems with high VM

overheads.

102

mcf bt cg canneal xsbench Average
0%

10%

20%

30%

40%

50%

V
M

ov
er

he
ad

s

84%

4K THP cDVM

Figure 5.10: Runtime of CPU-only workloads, normalized to the ideal case.

5.7 Related Work in VM for Accelerators and Vast

Memory

Overheads of VM. The increasing VM overheads have been studied for CPU workloads

(e.g., Direct Segments [6]), and recently for accelerators (e.g., Cong et al. [28], Picorel et

al. [108]).

VM for Accelerators. Border Control (BC) [102] recognized the need for enforcing memory

security in heterogeneous systems. BC provides mechanisms to checking permissions on

physical addresses of requests leaving the accelerator. BC does not affect address translation

overheads within the accelerator, which can be reduced significantly through DVM.

Most prior proposals have lowered virtual memory overheads for accelerators using

changes in TLB location or hierarchy [28, 138]. For instance, two-level TLB structures in

the IOMMU with page walks on the host CPU have been shown to reduce VM overheads

to within 6.4% of ideal [28]. This design is similar to our 2M,TLB+PWC implementation

which uses large pages to improve TLB reach instead of a level 2 TLB as in the original

proposal, and uses the IOMMU PWC. We see that TLBs are not very effective for workloads

with irregular access patterns. Moreover, using TLBs greatly increases the energy use of

103

accelerators.

Particularly for GPGPUs, microarchitecture-specific optimizations such as coalescers

have been effective in reducing the address translation overheads [107, 109]. However,

these techniques cannot be easily extended for other accelerators. Finally, constraining

the virtual-to-physical mapping has been shown to lower address translation overheads,

specifically for memory-side processing units [108]. As in DVM, such mappings help break

the translate-then-fetch serialization on most memory accesses.

Address Translation for CPUs. Several address translation mechanisms have been pro-

posed for CPUs, which could be extended to accelerators. Coalesced Large-Reach TLBs

(CoLT) [106] use eager paging to increase contiguity of memory allocations, and coalesces

translation of adjacent pages into each TLB entries. However, address translation remains

on the critical path of memory accesses. CoLT can be optimized further with identity map-

ping and DVM. Cooperative TLB prefetching [13] has been proposed to exploit correlations

in translations across multicores. The AVC exploits any correlations among the processing

lanes of the accelerator.

Coalescing can also be performed for PTEs to increase PWC reach [11]. This can be

applied directly to our proposed AVC design. However, due to our compact page table

structure, benefits will only be seen for workloads with much higher memory footprints.

Furthermore, page table walks can be expedited by skipping one or more levels of the page

table [5]. Translation skipping does not increase the reach of the page table, and is less

effective with DVM, as page table walks are not on the critical path for most accesses.

Direct Segments (DS) [6] are efficient but inflexible. Using DS requires a monolithic,

eagerly-mapped heap with uniform permissions, whose size is known at startup. On

the other hand, DVM individually identity-maps heap allocations as they occur, helping

mitigate fragmentation. RMM [75] are more flexible than DS, supporting heaps composed

of multiple memory ranges. However, it requires power-hungry hardware (range-TLBs,

range-table walkers in addition to TLBs and page-table walkers) thus being infeasible for

104

accelerators, but could also be optimized with DVM.

5.8 Conclusion

Shared memory is important for increasing the programmability of accelerators. We

propose Devirtualized Memory (DVM) to minimize the performance and energy overheads

of VM for accelerators. DVM enables almost direct access to PhysM while enforcing

memory protection. DVM requires modest OS and IOMMU changes, and is transparent to

applications. We also discuss ways to extend DVM throughout a heterogeneous system, to

support both CPUs and accelerators with a single approach.

105

6

Conclusions and Future Work

It’s still magic even if you know how

it’s done.

Terry Pratchett

Persistent Memory devices are finally here, and they are highly attractive as they offer

low-latency access to a vast capacity of persistent data. In this thesis, we explore the

performance and programmability issues introduced by these devices on account of being

persistent and vast. To improve performance, we isolate the bottleneck in each case and

propose solutions to mitigate or eliminate it. For making such systems easier to program,

we provide useful features such as memory protection and virtual address spaces and

introduce better hardware primitives to lessen the programmers’ burden.

In recoverable applications that leverage the persistence of PM, we find that frequently

occurring and expensive ordering operations degrade application performance. To mini-

mize the overheads of ordering operations, we propose a lightweight ordering primitive

(ofence) along with a separate durability primitive (dfence) in Chapter 3. Furthermore,

we use insights from a study of PM applications to design efficient hardware to implement

these new primitives. Beyond improving performance, our Hands-Off Persistence System

(HOPS) also simplifies the programming of PM applications. Our new primitives allow

programmers to reason about ordering and durability at a high-level and not at the granu-

larity of individual cachelines. Moreover, the HOPS hardware automatically moves data

106

from the volatile caches to the persistent domain.

In Chapter 4, we propose Minimally Ordered Durable (MOD) datastructures that reduce

the number of expensive ordering operations in PM applications running on current, un-

modified x86-64 hardware. We present a simple recipe to create these MOD datastructures

from existing purely functional datastructures. This allows PM application developers to

leverage existing research efforts from functional programming domain instead of hand-

crafting new recoverable PM datastructures. We implement datastructures commonly

used by application programmers such as vector, map, set, stack and queue. Finally, we

evaluate these datastructures on real PM—Intel Optane DCPMM—against a state-of-the-art

PM-STM implementation and achieve average performance improvements of 60%.

Lastly, we address the rising overheads of virtual memory (VM) in systems with vast

memories in Chapter 5. As memory management hardware like TLBs cannot scale propor-

tionally with increasing memory capacities, VM overheads have steadily increased to as

much as 50% of application runtime. We study these overheads in accelerators, which are

especially vulnerable as they cannot justify allocating resources towards large and power-

hungry TLBs. Even so, virtual memory is important for improving the programmability of

accelerators and offering memory protection. We propose De-Virtualized Memory (DVM)

to lower VM overheads by eliminating expensive address translation on most accesses. By

allocating memory such that a page’s virtual address matches its physical address, DVM

offers almost direct access to PM while providing applications with a virtual address space

and memory protection.

Future Work

In this section, we provide some useful directions for future work based on the three

contributions of this thesis.

107

Hands-Off Persistent System

In Chapter 3, we introduced new hardware primitives and the HOPS design. Real PM

was not available at the time of this study and so we used simulation to evaluate our

idea. One useful starting point for future work would be to repeat the software analysis

using newer PM applications on Intel Optane DCPMMs (publicly available from late 2019).

Moreover, our simulation infrastructure should also be improved to more-closely model

DCPMMs in two ways. First, the simulated PM devices should match DCPMMs in terms

of bandwidth and latency. Second, the latency of x86-64 primitives in the simulator should

be made comparable to those on real hardware. Of course, further changes may be needed

as DCPMMs or other PM technologies move from first to subsequent generations.

The performance of HOPS in a system with multiple memory controllers for PM should

be evaluated. PM systems are expected to have multiple memory controllers. Simulating

such systems might reveal some issues in the HOPS design, providing a starting point for

further optimizations.

Finally, while we focused on applications using PM-STM techniques, HOPS can also

support other programming models such as lock-based approaches. While the HOPS

primitives should be directly applicable to other models, the hardware design may have to

be extended or modified, for example, to track lock-acquire and release operations.

Minimally-Ordered Durable Datastructures

Regarding Chapter 4, one limitation of MOD datastructures is that incomplete FASEs may

leak some memory in case of crash. We hypothesize that the memory leak can be fixed by

extending functional techniques to the memory allocator as well. If the memory allocation

itself used functional shadowing, it should be possible to identify and reclaim the leaked

memory.

It would be instructive to look at the performance of more complicated MOD datas-

tructures such as priority queues. Unfortunately, the absence of realistic PM applications

108

that rely on these datastructures is an impediment to near-term research. Even in our

evaluation, we only found applications that used maps and had to use microbenchmarks

to evaluate the others.

Programming models for multi-threaded PM applications have not been looked at

deeply by us or others in this area. While conventional STM implementations have offered

isolation, many PM-STM implementations such as Intel’s PMDK [61], JustDo [69], iDO [85]

and Romulus [30] do not currently offer isolation and advocate the use of locks. Thus, a

challenging next step for MOD datastructures is the development of an effective strategy

for supporting concurrent accesses to these datastructures. The Romulus design has shown

optimizations such as flat combining [36] and left-right synchronization [112] perform

better than simple mutexes in presence of shadow copying techniques for PM applications,

and could be a useful starting point.

Finally, we believe that MOD datastructures represent a way to extend PM programming

to languages beyond C and C++. Existing functional implementations of datastructures

in python and rust could be used to rapidly develop recoverable datastructures in these

languages. Such efforts might be useful to jump-start the development of a software

ecosystem for PM applications.

Devirtualized Memory

In Chapter 5, we concentrated our efforts on DVM on accelerators and presented an evalu-

ation on a graph-processing accelerator. The DVM design does not exploit any particular

trait of the target accelerator and thus can be directly implemented on other accelerators

such as machine learning accelerators. Other accelerators may have lesser VM overheads

than graph-processing accelerators and require different trade-offs in the DVM design.

At the other end of the spectrum, some latency-sensitive accelerators may require beefier

DVM hardware to keep DVM overheads low.

We also presented a basic extension of DVM for CPUs along with a preliminary exten-

109

sion. Having PA==VA may enable other optimizations in the hardware, especially in case

of virtual caches. A comprehensive study of DVM-supported hardware optimizations for

CPUs would be useful.

Finally, security has recently become a first-class architectural consideration with the

emergence of the side-channel attacks such as Meltdown [83], Foreshadow [16] and Spectre

variants [77, 54]. Of these, Spectre variants are orthogonal to DVM as the virtual addresses

generated during instruction-level speculation have appropriate virtual address permis-

sions. As such, it would be worthwhile to formally prove the security properties of DVM

to answer two major questions- whether DVM is vulnerable to Meltdown or Foreshadow

and if DVM provides the opportunity for new side-channel attacks.

As persistent and vast memory devices become more widely available and interest-

ing applications are developed, we hope that the techniques and ideas presented in this

dissertation provide a firm starting point for future developments.

110

Bibliography

[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-memory Ac-

celerator for Parallel Graph Processing,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture (ISCA), 2015.

[2] AMD, “AMD I/O Virtualization Technology (IOMMU) Specification, Revision 3.00,”

http://support.amd.com/TechDocs/48882_IOMMU.pdf, Dec. 2016.

[3] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference (AFIPS), 1967.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-

ishnan, and S. K. Weeratunga, “The NAS Parallel Benchmarks - Summary and Pre-

liminary Results,” in Proceedings of the 1991 ACM/IEEE Conference on Supercomputing

(SC), 1991.

[5] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip, Don’t Walk (the

Page Table),” in Proceedings of the 37th Annual International Symposium on Computer

Architecture (ISCA), 2010.

http://support.amd.com/TechDocs/48882_IOMMU.pdf

111

[6] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient Virtual Memory

for Big Memory Servers,” in Proceedings of the 40th Annual International Symposium

on Computer Architecture (ISCA), 2013.

[7] A. Baumann, J. Appavoo, O. Krieger, and T. Roscoe, “A Fork() in the Road,” in

Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS), 2019.

[8] J. Bennett and S. Lanning, “The Netflix Prize,” in KDD Cup and Workshop in conjunc-

tion with KDD, CA, 2017.

[9] T. Berning, “NVM Malloc: Memory Allocation for NVRAM,” https://github.com/

hyrise/nvm_malloc, 2017.

[10] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating Two-dimensional

Page Walks for Virtualized Systems,” in Proceedings of the 13th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2008.

[11] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,” in Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

2013.

[12] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-level TLBs for Chip

Multiprocessors,” in Proceedings of the IEEE 17th International Symposium on High

Performance Computer Architecture (HPCA), 2011.

[13] A. Bhattacharjee and M. Martonosi, “Inter-core Cooperative TLB for Chip Multipro-

cessors,” in Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2010.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications,” in Proceedings of the 17th International

Conference on Parallel Architectures and Compilation Techniques (PACT), 2008.

https://github.com/hyrise/nvm_malloc
https://github.com/hyrise/nvm_malloc

112

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, and D. A. Wood, “The Gem5 Simulator,” SIGARCH Computer Architecture News,

vol. 39, no. 2, Aug. 2011.

[16] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the Keys to the Intel

SGX Kingdom with Transient Out-of-Order Execution,” in 27th USENIX Security

Symposium (USENIX Security), 2018.

[17] J. Carbone, “DRAM prices set to fall,” https://www.sourcetoday.com/supply-chain/

dram-prices-set-fall, 2018.

[18] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Jagatheesan, R. K. Gupta,

A. Snavely, and S. Swanson, “Understanding the Impact of Emerging Non-Volatile

Memories on High-Performance, IO-Intensive Computing,” in Proceedings of the

2010 ACM/IEEE International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), 2010.

[19] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive Model for Graph

Mining,” in SIAM International Conference on Data Mining, 2004. [Online]. Available:

http://www.cs.cmu.edu/~christos/PUBLICATIONS/siam04.pdf

[20] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging Locks for Non-

volatile Memory Consistency,” in Proceedings of the 2014 ACM International Conference

on Object Oriented Programming Systems Languages & Applications (OOPSLA), 2014.

[21] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, “Sharing and Protection in

a Single-address-space Operating System,” ACM Transactions on Computer Systems,

vol. 12, no. 4, Nov. 1994.

https://www.sourcetoday.com/supply-chain/dram-prices-set-fall
https://www.sourcetoday.com/supply-chain/dram-prices-set-fall
http://www.cs.cmu.edu/~christos/PUBLICATIONS/siam04.pdf

113

[22] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training Deep Nets with Sublinear

Memory Cost,” arXiv preprint, 2016. [Online]. Available: http://arxiv.org/abs/1603.

05027

[23] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-efficient

Dataflow for Convolutional Neural Networks,” in Proceedings of the 43rd International

Symposium on Computer Architecture (ISCA), 2016.

[24] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Optimistic Crash Consistency,” in Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles (SOSP). New York, NY, USA: ACM, 2013. [Online].

Available: http://doi.acm.org/10.1145/2517349.2522726

[25] P. Clarke, “Intel, Micron Launch Bulk-Switching ReRAM,” https://www.eetimes.

com/document.asp?doc_id=1327289, 2015.

[26] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swan-

son, “NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation,

Non-volatile Memories,” in Proceedings of the 16th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS), 2011.

[27] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,

“Better I/O Through Byte-addressable, Persistent Memory,” in Proceedings of the

ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP), 2009.

[28] J. Cong, Z. Fang, Y. Hao, and G. Reinman, “Supporting Address Translation for

Accelerator-Centric Architectures,” in IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), Feb 2017.

[29] J. Corbet, “Two more approaches to persistent-memory writes,” https://lwn.net/

Articles/731706/, 2017.

http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1603.05027
http://doi.acm.org/10.1145/2517349.2522726
https://www.eetimes.com/document.asp?doc_id=1327289
https://www.eetimes.com/document.asp?doc_id=1327289
https://lwn.net/Articles/731706/
https://lwn.net/Articles/731706/

114

[30] A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient Algorithms for Persis-

tent Transactional Memory,” in Proceedings of the 30th on Symposium on Parallelism in

Algorithms and Architectures (SPAA), 2018.

[31] G. Cox and A. Bhattacharjee, “Efficient Address Translation for Architectures with

Multiple Page Sizes,” in Proceedings of the Twenty-Second International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS), 2017.

[32] G. Cox and A. Bhattacharjee, “Efficient Address Translation for Architectures with

Multiple Page Sizes,” in Proceedings of the Twenty-Second International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS), 2017.

[33] cppreference, “Containers Library,” https://en.cppreference.com/w/cpp/container,

2018.

[34] T. Davis, “The university of florida sparse matrix collection,” http://www.cise.ufl.

edu/research/sparse/matrices.

[35] G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates, E. Elsen, J. Engel,

A. Hannun, and S. Satheesh, “Persistent RNNs: Stashing Recurrent Weights On-

chip,” in Proceedings of the 33rd International Conference on International Conference on

Machine Learning (ICML), 2016.

[36] D. Dice, V. J. Marathe, and N. Shavit, “Flat-combining NUMA Locks,” in Proceedings of

the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA), 2011.

[37] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making Data Structures

Persistent,” Journal of Computer and System Sciences, vol. 38, 1989.

[38] I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann, P. Faraboschi,

W.-m. Hwu, T. Roscoe, and K. Schwan, “SpaceJMP: Programming with

https://en.cppreference.com/w/cpp/container
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

115

Multiple Virtual Address Spaces,” in Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). New York, NY, USA: ACM, 2016. [Online]. Available:

http://doi.acm.org/10.1145/2872362.2872366

[39] P. Fernando, A. Gavrilovska, S. Kannan, and G. Eisenhauer, “NVStream: Accelerating

HPC Workflows with NVRAM-based Transport for Streaming Objects,” in Proceed-

ings of the 27th International Symposium on High-Performance Parallel and Distributed

Computing (HPDC), 2018.

[40] C. J. Fidge, “Timestamps in message-passing systems that preserve the partial order-

ing,” in Proceedings of the 11th Australian Computer Science Conference (ACSC), 1988.

[41] K. Fraser and T. Harris, “Concurrent programming without locks,” ACM Transactions

on Computer Systems (TOCS), vol. 25, no. 2, May 2007.

[42] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “BadgerTrap: A Tool to Instrument

x86-64 TLB Misses,” SIGARCH Computer Architecture News, vol. 42, no. 2, Sep. 2014.

[43] E. R. Giles, K. Doshi, and P. Varman, “SoftWrAP: A lightweight framework for

transactional support of storage class memory,” in 2015 31st Symposium on Mass

Storage Systems and Technologies (MSST), 2015.

[44] E. Goktas, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis, C. Giuffrida,

and H. Bos, “Undermining Information Hiding (and What to Do about It),” in

USENIX Security Symposium, 2016.

[45] N. Gonzales, J. Dinh, D. Lewis, N. Gilbert, B. Pedersen, D. Kamalanathan, J. R. Jame-

son, and S. Hollmer, “An Ultra Low-Power Non-Volatile Memory Design Enabled

by Subquantum Conductive-Bridge RAM,” in 2016 IEEE 8th International Memory

Workshop (IMW), 2016.

http://doi.acm.org/10.1145/2872362.2872366

116

[46] Google Cloud, “Available first on Google Cloud: Intel Optane DC

Persistent Memory,” https://cloud.google.com/blog/topics/partners/

available-first-on-google-cloud-intel-optane-dc-persistent-memory, 2019.

[47] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on the line: Practi-

cal cache attacks on the MMU,” Network and Distributed System Security Symposium

(NDSS), 2017.

[48] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole, “The read-copy-update

mechanism for supporting real-time applications on shared-memory multiprocessor

systems with linux,” IBM Systems Journal, vol. 47, no. 2, Apr. 2008.

[49] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphicionado: A

high-performance and energy-efficient accelerator for graph analytics,” in 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Oct 2016.

[50] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE:

Efficient Inference Engine on Compressed Deep Neural Network,” in Proceedings of

the 43rd International Symposium on Computer Architecture (ISCA), 2016.

[51] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing Memory in Heterogeneous

Systems,” in Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2018.

[52] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH Computer Ar-

chitecture News, vol. 34, no. 4, Sep. 2006.

[53] M. Herlihy, “A methodology for implementing highly concurrent data objects,” ACM

Tranactions on Programming Languages and Systems (TOPLAS), vol. 15, no. 5, 1993.

[54] M. D. Hill, J. Masters, P. Ranganathan, P. Turner, and J. L. Hennessy, “On the Spectre

and Meltdown Processor Security Vulnerabilities,” IEEE Micro, vol. 39, no. 2, March

2019.

https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory

117

[55] J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-aware Logging in Transaction

Systems,” Proceedings of the VLDB Endowment, vol. 8, December 2014.

[56] A. Ilkbahar, “Intel Optane DC Persistent Memory Oper-

ating Modes Explained,” https://itpeernetwork.intel.com/

intel-optane-dc-persistent-memory-operating-modes/, 2018.

[57] E. T. Inc., “Spin-transfer Torque MRAM Technology,” https://www.everspin.com/

spin-transfer-torque-mram-technology.

[58] M. Inc., “SmartHeap and SmartHeap MC,” http://microquill.com/smartheap/,

2011.

[59] Intel, “Intel Optane technology,” https://www.intel.com/content/www/us/en/

architecture-and-technology/intel-optane-technology.html.

[60] Intel, “New release of PMDK,” https://pmem.io/2018/10/22/release-1-5.html.

[61] Intel, “Persistent Memory Development Kit,” http://pmem.io/pmdk.

[62] Intel, “PMDK issues: introduce hybrid transactions,” https://github.com/pmem/

pmdk/pull/2716.

[63] Intel, “Deprecating the PCOMMIT instruction,” https://software.intel.com/en-us/

blogs/2016/09/12/deprecate-pcommit-instruction, 2016.

[64] intel, “IntelÂ® Virtualization Technology for Directed I/O, Revision 2.4,”

https://www.intel.com/content/dam/www/public/us/en/documents/

product-specifications/vt-directed-io-spec.pdf, 2016.

[65] Intel, “5-Level paging and 5-Level EPT,” https://software.intel.com/sites/default/

files/managed/2b/80/5-level_paging_white_paper.pdf, May 2017.

https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://www.everspin.com/spin-transfer-torque-mram-technology
https://www.everspin.com/spin-transfer-torque-mram-technology
http://microquill.com/smartheap/
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://pmem.io/2018/10/22/release-1-5.html
http://pmem.io/pmdk
https://github.com/pmem/pmdk/pull/2716
https://github.com/pmem/pmdk/pull/2716
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf

118

[66] Intel, “Intel Optane DC Persistent Memory Readies for

Widespread Deployment,” https://newsroom.intel.com/news/

intel-optane-dc-persistent-memory-readies-widespread-deployment, 2018.

[67] Intel, “Intel Optane DC Persistent Memory,” https://www.intel.com/content/www/

us/en/architecture-and-technology/optane-dc-persistent-memory.html, 2019.

[68] International Roadmap for Devices and Systems, “More Moore,” 2017.

[69] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-Atomic Persistent Memory Updates via

JUSTDO Logging,” in Proceedings of the Twenty-First International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.

[70] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang,

Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic Performance Measurements

of the Intel Optane DC Persistent Memory Module,” arXiv preprint, 2019. [Online].

Available: http://arxiv.org/abs/1903.05714

[71] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian, “3D-stackable crossbar

resistive memory based on Field Assisted Superlinear Threshold (FAST) selector,” in

2014 IEEE International Electron Devices Meeting (IEDM), 2014.

[72] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient Persist Barriers for Multi-

cores,” in Proceedings of the 48th International Symposium on Microarchitecture (MICRO),

2015.

[73] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,

N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,

M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-

mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,

A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,

D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,

https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://arxiv.org/abs/1903.05714

119

K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omer-

nick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,

G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,

H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon,

“In-Datacenter Performance Analysis of a Tensor Processing Unit,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture (ISCA), 2017.

[74] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky,

M. M. Swift, and O. S. Unsal, “Energy-efficient address translation,” in 2016 IEEE

International Symposium on High Performance Computer Architecture (HPCA), March

2016.

[75] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky,

M. M. Swift, and O. Ünsal, “Redundant Memory Mappings for Fast Access to Large

Memories,” in Proceedings of the 42Nd Annual International Symposium on Computer

Architecture (ISCA), 2015.

[76] A. H. Karp and H. P. Flatt, “Measuring Parallel Processor Performance,” Communica-

tions of the ACM (CACM), vol. 33, May 1990.

[77] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting Speculative

Execution,” https://spectreattack.com/spectre.pdf, 2017.

[78] E. J. Koldinger, J. S. Chase, and S. J. Eggers, “Architecture Support for

Single Address Space Operating Systems,” in Proceedings of the Fifth International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), New York, NY, USA, 1992. [Online]. Available: http:

//doi.acm.org/10.1145/143365.143508

https://spectreattack.com/spectre.pdf
http://doi.acm.org/10.1145/143365.143508
http://doi.acm.org/10.1145/143365.143508

120

[79] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-Performance Trans-

actions for Persistent Memories,” in Proceedings of the Twenty-First International Con-

ference on Architectural Support for Programming Languages and Operating Systems (AS-

PLOS), 2016.

[80] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and T. F.

Wenisch, “Delegated Persist Ordering,” in The 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2016.

[81] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “Persistence programming

101,” in Non-volatile Memory Workshop (NVMW), 2015.

[82] D. Li, J. S. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu, and W. Yu, “Identifying

Opportunities for Byte-Addressable Non-Volatile Memory in Extreme-Scale Scientific

Applications,” in Proceedings of the 2012 IEEE 26th International Parallel and Distributed

Processing Symposium (IPDPS), 2012.

[83] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,

D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” https://meltdownattack.com/

meltdown.pdf, 2017.

[84] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren, “DudeTM: Build-

ing Durable Transactions with Decoupling for Persistent Memory,” in Proceedings

of the Twenty-Second International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2017.

[85] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung, “iDO: Compiler-

Directed Failure Atomicity for Nonvolatile Memory,” in 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2018.

[86] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “PMTest: A Fast and Flexible Testing

Framework for Persistent Memory Programs,” in Proceedings of the Twenty-Fourth

https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/meltdown.pdf

121

International Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), 2019.

[87] Y. Lu, J. Shu, and L. Sun, “Blurred Persistence: Efficient Transactions in

Persistent Memory,” Trans. Storage, vol. 12, no. 1, Jan. 2016. [Online]. Available:

http://doi.acm.org/10.1145/2851504

[88] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-Ordering Consistency for Persistent

Memory,” in IEEE International Conference on Computer Design (ICCD), 2014.

[89] F. Mattern, “Virtual Time and Global States of Distributed Systems,” in Parallel and

Distributed Algorithms, 1988.

[90] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms,” in Proceedings of the Fifteenth Annual ACM Symposium

on Principles of Distributed Computing (PODC), 1996.

[91] H. A. Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, “Chameleon: Versatile

and practical near-DRAM acceleration architecture for large memory systems,” in

2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

Oct 2016.

[92] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA Organi-

zations and Wiring Alternatives for Large Caches with CACTI 6.0,” in Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

2007.

[93] R. C. Murphy, K. B. Wheeler, B. W. Barret, and J. A. Ang, “Introducing the Graph

500,” in Cray User’s Group (CUG), 2010.

[94] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An Analysis

of Persistent Memory Use with WHISPER,” in Proceedings of the Twenty-Second Inter-

http://doi.acm.org/10.1145/2851504

122

national Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2017.

[95] F. Nawab, J. Izraelevitz, T. Kelly, C. B. M. III, D. R. Chakrabarti, and M. L. Scott, “Dalí:

A Periodically Persistent Hash Map,” in 31st International Symposium on Distributed

Computing (DISC), 2017.

[96] R. Newman and J. Tseng, “Cloud Computing and the Square Kilometre Array,”

http://www.skatelescope.org/uploaded/8762_134_Memo_Newman.pdf, 2011.

[97] S. Newsroom, “Samsung Begins Mass Producing IndustryâŁ™s

First 16Gb, 64GB DDR4 RDIMM,” https://news.samsung.com/us/

samsung-begins-mass-producing-industrys-first-16gb-64gb-ddr4-rdimm/,

2018.

[98] J. Nicas, “YouTube Tops 1 Billion Hours of Video a Day,

on Pace to Eclipse TV,” https://www.wsj.com/articles/

youtube-tops-1-billion-hours-of-video-a-day-on-pace-to-eclipse-tv-1488220851,

2011.

[99] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-Dataflow

Acceleration,” in Proceedings of the 44th Annual International Symposium on Computer

Architecture (ISCA), 2017.

[100] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but No Force: Efficient Hardware

Undo+Redo Logging for Persistent Memory Systems,” in 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2018.

[101] C. Okasaki, “Purely Functional Data Structures,” Ph.D. dissertation, Carnegie Mellon

University, 1998.

http://www.skatelescope.org/uploaded/8762_134_Memo_Newman.pdf
https://news.samsung.com/us/samsung-begins-mass-producing-industrys-first-16gb-64gb-ddr4-rdimm/
https://news.samsung.com/us/samsung-begins-mass-producing-industrys-first-16gb-64gb-ddr4-rdimm/
https://www.wsj.com/articles/youtube-tops-1-billion-hours-of-video-a-day-on-pace-to-eclipse-tv-1488220851
https://www.wsj.com/articles/youtube-tops-1-billion-hours-of-video-a-day-on-pace-to-eclipse-tv-1488220851

123

[102] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border control: Sandboxing

accelerators,” in 48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), Dec 2015.

[103] L. E. Olson, S. Sethumadhavan, and M. D. Hill, “Security Implications of Third-Party

Accelerators,” IEEE Computer Architecture Letters, vol. 15, no. 1, Jan. 2016.

[104] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-

tra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann, and

R. Stutsman, “The Case for RAMClouds: Scalable High-performance Storage Entirely

in DRAM,” SIGOPS Oper. Syst. Rev., vol. 43, no. 4, Jan. 2010.

[105] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory Persistency,” in Proceeding of the

41st Annual International Symposium on Computer Architecuture (ISCA), 2014.

[106] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT: Coalesced Large-

Reach TLBs,” in Proceedings of the 2012 45th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), 2012.

[107] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for Address Transla-

tion on GPUs: Designing Memory Management Units for CPU/GPUs with Unified

Address Spaces,” in Proceedings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2014.

[108] J. Picorel, D. Jevdjic, and B. Falsafi, “Near-Memory Address Translation,” in 26th In-

ternational Conference on Parallel Architectures and Compilation Techniques (PACT), 2017.

[109] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address translation for

100s of GPU lanes,” in 2014 IEEE 20th International Symposium on High Performance

Computer Architecture (HPCA), Feb 2014.

[110] J. P. B. Puente, “Persistence for the Masses: RRB-vectors in a Systems Language,”

Proceedings of the ACM on Programming Languages, vol. 1, September 2017.

124

[111] A. Raad and V. Vafeiadis, “Persistence Semantics for Weak Memory: Integrating

Epoch Persistency with the TSO Memory Model,” Proceedings of the ACM on Program-

ming Languages, vol. 2, no. OOPSLA, 2018.

[112] P. Ramalhete and A. Correia, “Brief Announcement: Left-Right - A Concurrency

Control Technique with Wait-Free Population Oblivious Reads,” 2015.

[113] P. Ranganathan, “From Microprocessors to Nanostores: Rethinking Data-Centric

Systems,” Computer, Jan 2011.

[114] RedHat, “Position Independent Executables (PIE),” https://access.redhat.com/

blogs/766093/posts/1975793, 2012.

[115] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM: Enabling Software-

transparent Crash Consistency in Persistent Memory Systems,” in Proceedings of the

48th International Symposium on Microarchitecture (MICRO). New York, NY, USA:

ACM, 2015. [Online]. Available: http://doi.acm.org/10.1145/2830772.2830802

[116] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-Oriented Programming:

Systems, Languages, and Applications,” ACM Trans. Inf. Syst. Secur., Mar. 2012.

[117] P. Rogers, “The programmer’s guide to the apu galaxy,” 2011.

[118] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, “Understanding POWER

Multiprocessors,” in Proceedings of the 32Nd ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI), 2011.

[119] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan, S. Sengupta,

Z. Yin, and P. Dubey, “Navigating the Maze of Graph Analytics Frameworks Us-

ing Massive Graph Datasets,” in Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data (SIGMOD), 2014.

https://access.redhat.com/blogs/766093/posts/1975793
https://access.redhat.com/blogs/766093/posts/1975793
http://doi.acm.org/10.1145/2830772.2830802

125

[120] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “X86-TSO: A Rigorous

and Usable Programmer’s Model for x86 Multiprocessors,” Communications of the

ACM (CACM), vol. 53, no. 7, 2010.

[121] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the Effec-

tiveness of Address-space Randomization,” in Proceedings of the 11th ACM Conference

on Computer and Communications Security (CCS), 2004.

[122] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A Flexible and Fast

Software Supported Hardware Logging Approach for NVM,” in Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017.

[123] S. Shin, J. Tuck, and Y. Solihin, “Hiding the Long Latency of Persist Barriers Using

Speculative Execution,” in Proceedings of the 44th Annual International Symposium on

Computer Architecture (ISCA), 2017.

[124] K. A. Shutemov, “5-level paging,” https://lwn.net/Articles/708526/, Jan. 2005.

[125] I. L. Stats. Twitter Usage Statistics. http://www.internetlivestats.com/

twitter-statistics/ (Visited on 2018-4-29).

[126] M. Steindorfer, “Efficient Immutable Collections,” Ph.D. dissertation, University of

Amsterdam, 2017.

[127] M. J. Steindorfer and J. J. Vinju, “Optimizing Hash-array Mapped Tries for Fast and

Lean Immutable JVM Collections,” in Proceedings of the 2015 ACM SIGPLAN Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), 2015.

[128] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron,

R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big Data: Astronomical or

Genomical?” PLOS Biology, vol. 13, no. 7, pp. 1–11, 07 2015. [Online]. Available:

https://doi.org/10.1371/journal.pbio.1002195

https://lwn.net/Articles/708526/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
https://doi.org/10.1371/journal.pbio.1002195

126

[129] D. B. Strukov, Snider, G. S., D. R. Stewart, and R. S. Williams, “The missing memristor

found,” Nature, vol. 453, 2008.

[130] N. Stucki, T. Rompf, V. Ureche, and P. Bagwell, “RRB Vector: A Practical General

Purpose Immutable Sequence,” in Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming (ICFP), 2015.

[131] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson, “Tradeoffs in Supporting Two

Page Sizes,” in Proceedings of the 19th Annual International Symposium on Computer

Architecture (ISCA), 1992.

[132] I. L. Taylor, “Split Stacks in GCC,” https://gcc.gnu.org/wiki/SplitStacks, Feb. 2011.

[133] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - The Development and

Verification of a Performance Abstraction for Monte Carlo Reactor Analysis,” in The

Role of Reactor Physics toward a Sustainable Future (PHYSOR), Kyoto, 2014.

[134] M. Tyson, “Intel Optane DC persistent memory starts

at 6.57 per GB,” https://hexus.net/tech/news/storage/

129284-intel-optane-dc-persistent-memory-starts-657-per-gb/, 2019.

[135] A. van de Ven, “Linux patch for virtual address space randomization,” https://lwn.

net/Articles/120966/, Jan. 2005.

[136] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Consistent and

Durable Data Structures for Non-volatile Byte-addressable Memory,” in Proceedings

of the 9th USENIX Conference on File and Stroage Technologies (FASE), 2011.

[137] V. Viswanathan, “Intel Memory Latency Checker v3.6,” https://software.intel.com/

en-us/articles/intelr-memory-latency-checker, December 2018.

[138] P. Vogel, A. Marongiu, and L. Benini, “Lightweight Virtual Memory Support for

Many-core Accelerators in Heterogeneous Embedded SoCs,” in Proceedings of the 10th

https://gcc.gnu.org/wiki/SplitStacks
https://hexus.net/tech/news/storage/129284-intel-optane-dc-persistent-memory-starts-657-per-gb/
https://hexus.net/tech/news/storage/129284-intel-optane-dc-persistent-memory-starts-657-per-gb/
https://lwn.net/Articles/120966/
https://lwn.net/Articles/120966/
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker

127

International Conference on Hardware/Software Codesign and System Synthesis (CODES),

2015.

[139] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight Persistent Mem-

ory,” in Proceedings of the Sixteenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2011.

[140] S. Vongehr and X. Meng, “The missing memristor has not been found,” Scientific

Reports, vol. 5, 2015.

[141] D. Weston and M. Miller, “Windows 10 Mitigation Improve-

ments,” https://www.blackhat.com/docs/us-16/materials/

us-16-Weston-Windows-10-Mitigation-Improvements.pdf, 2016.

[142] M. Wilcox, “DAX: Page cache bypass for filesystems on memory storage,” https:

//lwn.net/Articles/618064/, 2014.

[143] E. Witchel, J. Cates, and K. Asanović, “Mondrian Memory Protection,” in Proceedings

of the 10th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2002.

[144] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendra, M. Asheghi,

and K. E. Goodson, “Phase Change Memory,” Proceedings of the IEEE, vol. 98, no. 12,

Dec 2010.

[145] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The Architecture

and Design of a Database Processing Unit,” in Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2014.

[146] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond the Wall: Near-Data

Processing for Databases,” in Proceedings of the 11th International Workshop on Data

Management on New Hardware (DAMON), 2015.

https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/

128

[147] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “NV-Tree: Reducing

Consistency Cost for NVM-based Single Level Systems,” in Proceedings of the 13th

USENIX Conference on File and Storage Technologies (FAST), 2015.

[148] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and D. A.

Wood, “LogTM-SE: Decoupling Hardware Transactional Memory from Caches,”

in Proceedings of the 2007 IEEE 13th International Symposium on High Performance

Computer Architecture (HPCA). Washington, DC, USA: IEEE Computer Society,

2007. [Online]. Available: http://dx.doi.org/10.1109/HPCA.2007.346204

[149] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the Performance

Gap Between Systems with and Without Persistence Support,” in Proceedings of

the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

New York, NY, USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/

2540708.2540744

http://dx.doi.org/10.1109/HPCA.2007.346204
http://doi.acm.org/10.1145/2540708.2540744
http://doi.acm.org/10.1145/2540708.2540744

	Abstract
	Introduction
	Challenges of PM technologies
	Contributions
	Thesis Organization

	Persistent Memory Background
	System Model
	Hardware Primitives for Ordering and Durability
	Programming Recoverable Applications

	Hands-Off Persistence System
	Insights from Workload Analysis
	New Hardware Primitives
	Memory Persistency Model
	HOPS Design
	Evaluation
	Comparing Related Work with HOPS
	Conclusion

	Minimally Ordered Durable Datastructures for Persistent Memory
	Background on Functional Programming
	Ordering & Flushing Overheads on Optane DCPMMs
	Minimally Ordered Durable Datastructures
	Implementation Details
	Extensions for Concurrency
	Evaluation
	Comparing Related Work with MOD
	Conclusion

	Devirtualized Memory for Heterogeneous Systems
	Chapter Background
	Devirtualizing Memory
	Implementing DVM for Accelerators
	Discussion
	Evaluation
	Towards DVM across Heterogeneous Systems
	Related Work in VM for Accelerators and Vast Memory
	Conclusion

	Conclusions and Future Work
	Bibliography

