
Hands-Off Persistence System (HOPS)

Abstract

Programming persistent memory (PM) applications is chal-
lenging as programmers have to reason about crash consis-
tency and use low-level programming models. To remove some
of these constraints, we propose the Hands-off Persistence Sys-
tem to efficiently order PM updates in hardware using persist
buffers. HOPS also provides high-level ISA primitives for
applications to express durability and ordering constraints
separately, to enable the use of ACID transactions.

1. Introduction
Non-volatile memory (NVM) technologies, like NVDIMMs,
phase-change-memory and others [2, 6] are increasingly at-
tached to processors on the memory bus [9, 8]. We refer to
this implementation as Persistent Memory, and it allows direct,
low-latency access via regular load/store instructions to NVM.

Unfortunately, the potential of PM is marred by the pro-
gramming challenges associated with it. For creating recov-
erable applications, programmers need to reason about the
order of updates to persistent data structures. Epochs are com-
monly used, which are ordered groups of updates to PM which
are made durable before later epochs. The low-level epoch
programming model combined with manual data movement
between different levels of the memory hierarchy drastically
reduces programmer productivity. These also increase the
likelihood of application bugs affecting recovery after a crash.
Finally, the performance of PM applications is degraded from
frequent, long-latency cacheline flushes to PM.

Based on an analysis of real-world PM applications, we
propose the Hands-Off Persistence System (HOPS) design [7].
HOPS enables ACID transactions by supporting two distinct
hardware primitives – a more common, light-weight, ordering
fence (OFENCE) and the rarer durability fence (DFENCE).
HOPS facilitates these primitives by tracking PM updates in
hardware, and flushing in the background of program execu-
tion. Our evaluation shows that with HOPS, applications can
achieve a 20% speedup over current approaches.

2. Hands-Off Persistence System
To drive our hardware design, we leverage insights gleaned
from concurrent work [7] on analyzing real-world PM appli-
cations, which we briefly summarize here.

2.1. Insights

We observed the following trends in our analysis of PMBench.
• In PM applications, accesses to volatile DRAM make up

about 96% of all accesses. Any PM-specific additions to

Figure 1: Persist Buffer Design to track and order persistent
writes

caches and other structures shared between PM and DRAM
should not adversely impact volatile memory accesses.

• ACID transactions are made up of 5-50 epochs. Ordering
guarantees suffice between most epochs, and durability is
only needed at transaction commit.

• Epochs from different threads rarely conflict with each other.
Thus, in the common case, ordering and durability can be
ensured locally, although inter-thread conflicts need to be
handled for correctness.

• There are frequent conflicts between epochs from the same
thread. Such conflicts lead to flushing on the critical path,
as dirty cachelines from older epochs have to be flushed out
to avoid reordering epochs.
Lastly, commercial hardware only supports primitives for

flushing cachelines (e.g., clwb in x86-64). Thus, programmers
have to conscious of data layout across cachelines.

2.2. Design Details

HOPS is composed of hardware extensions in the form of Per-
sist Buffers and two ISA primitives—OFENCE and DFENCE.
Persist Buffers (Figure 1) transparently persist PM updates
while enforcing write ordering as per programmer-specified
constraints. The OFENCE primitive enables Buffered Epoch
Persistency (BEP) [3], allowing multiple epochs to be buffered
in volatile structures, while DFENCE provides durability guar-
antees when needed (e.g., ACID transactions).
ISA primitives. HOPS separates but supports both ordering
and durability ISA primitives — Ordering FENCE (OFENCE)
and Durability FENCE (DFENCE). These primitives are based
on the Persist/Sync Barriers [3, 4] used to demarcate software
epochs. OFENCE orders stores preceding it before later stores,
while DFENCE makes the stores preceding it durable. The



former is implemented as an asynchronous flush of buffered
PM stores, and the latter as a synchronous flush. Both are
handled locally in the absence of the rare cross-thread depen-
dencies. Programmers can use OFENCE to end the current
epoch and begin a new epoch, and use DFENCE at the end of
transactions or before performing irreversible I/O operations.

Writes from different threads are made persistent in the
background of execution (except on a DFENCE) and in a
concurrent manner. Two writes are only ordered if they belong
to different epochs from the same thread, or RaW and WaW
dependencies exist between their epochs on different threads.
This ordering is enforced by the Persist Buffers (PBs).
Persist buffers. HOPS orders and persists buffered PM up-
dates in hardware to allow programmers to incorporate crash-
consistency in their applications easily. Ordering is tracked
in per-thread PBs, as it is more commonly enforced between
epochs from the same thread. Each PM store updates the PB at
the core in addition to the L1 cache. This redundancy allows
caches to service any data reuse, while keeping additional state
and complexity for tracking writes out of the caches. However,
the modified data is only written to PM by the PBs, and is
dropped by the LLC on eviction.

The PBs rely on OFENCEs for intra-thread ordering, and
monitor coherence activity for recording any cross-thread de-
pendencies for the buffered epochs. Self-dependencies are
also handled without flushing as the PBs are multi-versioned.
Thus, PBs can buffer multiple updates to the same PM address
from different epochs from a thread. Finally, buffered updates
are flushed concurrently while respecting these orderings.

As an example, consider the following code sequence:

mov A, 10 ; orderPB

mov A, 20 ; durable PB

The first store to A brings the cache line into the L1 cache,
updates the cached value of A to 10 and creates an entry
in the thread’s PB of {epoch:1, Address:A, value:10}.
When orderPB executes, it marks the start of a new epoch.
The second store to A updates the cached value and creates an
entry in the PB with {epoch:2, Address:A, value:20}.
Finally, the durablePB waits for the PB to drain. The PB
writes the value 10 address A in PM and when it receives an
ACK from the memory controller that the update is durable,
the PB writes 20 to address A. When the second ACK reaches
the PB, the durablePB completes.

2.3. Evaluation

We evaluate the performance benefits of HOPS using the gem5
micro-architectural simulator [1]. Our simulated system is a
four-core, 8-way, out-of-order x86 processor with 32 entry
PBs, two-level cache hierarchy and two memory controllers.
A subset of applications from WHISPER [7] were simulated.

We compare HOPS to the current x86-64 approach of using
clwb and sfence instructions to persist data, and to an ideal
implementation (Figure 2). Our ideal implementation obviates
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Figure 2: Performance of HOPS Persist Buffer relative to exist-
ing writeback and fence instructions.

clwb and sfence, thus ignoring all order between PM writes
and is not crash-consistent. This allows the ideal case to
improve performance by 40% compared to x86-64. HOPS
shows a 20% speedup on average compared to the x86-64
approach. This improvement comes from moving most flushes
off the critical path of execution. As such, the individual
speedups observed are proportional to the frequency of PM
accesses and flushes in our workloads.

3. Related work
There have been prior proposals for facilitating PM accesses
in hardware. Efficient Persist Barriers (EPB) [3] provide
lightweight epoch ordering and handle inter-thread depen-
dencies. However, EPB adds state proportional to the number
of cores and inflight epochs to the cache tags. Delegated Per-
sist Ordering (DPO) [5] is concurrent work which also orders
PM updates in hardware. Neither proposal provides durability
primitives, preventing the implementation of ACID transac-
tions. Also, DPO is optimized for systems with one memory
controller (MC), and does not scale well to multiple MCs.
HOPS is designed to scale to multiple MCs easily, particularly
due to the BEP model and PB design.
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