CS 537: Operating Systems
Fall 2007

Course Introduction

Mike Swift

Today’s agenda

* Administrivia
— course overview
« course staff
« general structure
« your to-do list
+ OS overview
— functional
« resource mgmt, major issues
— historical
« batch systems, multiprogramming, time shared OS’s
* PCs, networked computers

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3/07 Amaci-Dussea, Michael Swift

Course overview

« Everything you need to know will be on the course web
page:

http://www.cs.wisc.edu/~cs537-2

— Schedule
— Readings
— Writings
— Projects

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift

+ But to tide you over for the next hour ...
— course staff
« Mike Swift
« Sriram Subramanian

— general structure
« read the text after to class
« class will supplement rather than regurgitate the text
« sections will focus on the project, quizzes, writing

« we really want to encourage discussion, both in class and in
section

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift

— your to-do list ...
« please read the entire course web thoroughly, today

« project 1 is posted on the web now and will be discussed in
section next week; due two weeks from Thursday

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3/07 Amaci-Dussea, Michael Swift

Registration Stuff

+ This class has a significant amount of work
— 4 programming projects
— 8 Quizzes
— Writing assignments
— Dates are not flexible
+ If you're going to drop this course
— please do it soon!

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift

Readings

» Textbook: Operating Systems Concepts
« Readings are assigned to be done after lecture

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift

Grades

+ Exams: 22-47%

« No midterm

« Final is optional

« 8 quizzes throughout the semester

« | will drop your lowest score

+ Projects: 38-50%

« 4 projects, roughly every 4 weeks

« Programming will be in C
* Quizzes: 22-30%

« During section

« 1 question per quiz will come from the textbook problems
+ Writing: 15-20%

« There will be two short (3-5 page) research papers

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3/07 Amaci-Dussea, Michael Swift

Schedule

. Overview of operating systems

. System calls and OS structure
Processes/threads/synchronization
Memory management

Disks

File systems

. Security

. Advanced topics

PN O A®N

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift

What is an Operating System?

+ An operating system (OS) is:
— a software layer to abstract away and manage details of
hardware resources
— a set of utilities to simplify application development

Applications
os

Hardware

— “all the code you didn’t write” in order to implement your
application

9/3/07

What is Windows?

Application

9/3/07 © John DeTreville, Microsoft Corp. 11

What is Windows?

i__ V‘ﬁasoﬁ' ‘__‘
Application \Mﬂ L‘m‘

| e [

Installer Printing

9/3/07 © John DeTreville, Microsoft Corp. 12

The OS and hardware

* An OS mediates programs’ access to hardware
resources

— Computation (CPU)

— Volatile storage (memory) and persistent storage (disk, etc.)
— Network communications (TCP/IP stacks, ethernet cards, etc.)
— Input/output devices (keyboard, display, sound card, etc.)
* The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
— processes (CPU, memory)
— files (disk)
« programs (sequences of instructions)
— sockets (network)

9/3/07

©2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

Why bother with an OS?
» Application benefits
— programming simplicity

« see high-level abstractions (files) instead of low-level hardware
details (device registers)
« abstractions are reusable across many programs
— portability (across machine configurations or architectures)
« device independence: 3Com card or Intel card?
+ User benefits

— safety
« program “sees” own virtual machine, thinks it owns computer
« OS protects programs from each other
« OS fairly multiplexes resources across programs
— efficiency (cost and speed)
+ share one computer across many users
« concurrent execution of multiple programs

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3/07 Amaci-Dussea, Michael Swift

What Functionality belongs in OS?

* No single right answer

— Desired functionality depends on outside factors

— OS must adapt to both user expectations and technology
changes

« Change abstractions provided to users

« Change algorithms to implement those abstractions
« Change low-level implementation to deal with hardware

+ Current operating systems driven by evolution

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift

The major OS issues

structure: how is the OS organized?
sharing: how are resources shared across users?

naming: how are resources named (by users or programs)?
security: how is the integrity of the OS and its resources
ensured?

— protection: how is one user/program protected from another?
performance: how do we make it all go fast?

reliability: what happens if something goes wrong (either with
hardware or with a program)?
extensibility: can we add new features?
communication: how do programs exchange information,
including across a network?

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 16

More OS issues...

concurrency: how are parallel activities (computation and 1/0)
created and controlled?

scale: what happens as demands or resources increase?
persistence: how do you make data last longer than program
executions?

distribution: how do multiple computers interact with each
other?

accounting: how do we keep track of resource usage, and
perhaps charge for it?

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3/07 Amaci-Dussea, Michael Swift 7

Progression of concepts and form factors

1950 1960 1970 1980 1990 2000
MULTICS
no compilers time N\ distributed
software shared multiuser systems
batch multiprocessor
resident networked fault tolrant
monitors
UNIX
no compilers
software /
time multiuser multiprocessor
resident ~ shared Haterked fault tolerant
monitors
clustered
UNIX
desktop computers N,
no compilers
software interactive multiprocessor
multiuser N e
UNIX
handheld computers N
compilers ~ no
software
interactive
networked

9/3/07 © Silberschatz, Galvin and Gagne 18

Why is this material critical?

« Concurrency
— Therac-25, Ariane 5 rocket (June 96)
« Communication
— Air Traffic Control System
« Virtual Memory
— Blue Screens of Death
« Security
— Credit card data

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 19

Where’s the OS? Melbourne

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3/07 Amaci-Dussea, Michael Swift 20

Where’s the OS? Mesquite, TX

Multiple trends at work

+ “Ontogeny recapitulates phylogeny”
— Ernst Haeckel (1834-1919)
« (“always quotable, even when wrong”)
* “Those who cannot remember the past are
condemned to repeat it”
— George Santayana (1863-1952)
» But new problems arise, and old problems re-define
themselves
— The evolution of PCs recapitulated the evolution of
minicomputers, which had recapitulated the evolution of
mainframes
— But the ubiquity of PCs re-defined the issues in protection
and security

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 22

Protection and security as an example

* none
« OS from my program

< your program from my program

« my program from my program

« access by intruding individuals

« access by intruding programs

« denial of service

« distributed denial of service

« spoofing

« spam

« worms

« viruses

« stuff you download and run knowingly (bugs, trojan horses)
« stuff you download and run unknowingly (cookies, spyware)

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3/07 Amaci-Dussea, Michael Swift 23

History of the OS

+ Two distinct phases of history
— Phase 1: Computers are expensive
« Goal: Use computer’s time efficiently
« Maximize throughput (l.e., jobs per second)
« Maximize utilization (l.e., percentage busy)
— Phase 2: Computers are inexpensive
« Goal: Use people’s time efficiently
« Minimize response time

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 24

OS history

« Inthe very beginning...

— OS was just a library of
code that you linked into
your program; programs
were loaded in their entirety
into memory, and executed

— interfaces were literally
switches and blinking lights

— Programming done by
connecting wires to plugs

« Not much need for an OS

University of
Pennsylvania

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 25

First commercial systems

« 1950s Hardware
— Enormous, expensive, and slow
— Input/Output: Punch cards and line printers
* Goal of OS
— Get the hardware working
— Single operator/programmer/user runs and debugs interactively
« OS Functionality
— Standard library only (no sharing or coordination of resources)
— Monitor that is always resident; transfer control to programs
« Advantages
— Worked and allowed interactive debugging
« Problems
— Inefficient use of hardware (throughput and utilization)

Compute —
110 } ; i
— i Load Load
9/3/07 920042007 £ Lz Hork Loy f and s 2%

Batch Processing

« Goal of OS: Better throughput and utilization
» Batch: Group of jobs submitted together
— Operator collects jobs; orders efficiently; runs one at a time
« Advantages
— Amortize setup costs over many jobs
— Operator more skilled at loading tapes
— Keep machine busy while programmer thinks
— Improves throughput and utilization
« Problems
— User must wait until batch is done for results
— Machine idle when job is reading from cards and writing to printers

Compute
110

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 27

Spooling
* Hardware
— Mechanical I/O devices much slower than CPU
— Read 17 cards/sec vs. execute 1000s instructions/sec
— Disks were much faster than card readers and printers
« Problem
— Machine idle when job waits for 1/O to/from disk
+ Goal of 0OS
— Improve performance by overlapping I/O with CPU execution
+ Spooling: Simultaneous Peripheral Operations On-Line
1. Read card punches to disk
2. Compute (while reading and writing to disk)
3. Write output from disk to printer
« OS Functionality
— Buffering and interrupt handling
— Choose which job to run next

Compute —_— E:> —— —
HE | H HE
110 i { i P
9/3/07 ©2004-2007 Ed Lazowska, Hank Levy, Ancrea and Remzi 28

Arpaci-Dussea, Michael Swift

Multiprogrammed Batch Systems

« Observation: Spooling provides pool of ready jobs
* Goal of OS
— Improve performance by always running a job
— Keep multiple jobs resident in memory
— When job waits for disk /0, OS switches to another job
« OS Functionality
— Job scheduling policies
— Memory management and protection
* Hardware: asynchronous /O devices
— Need some way to know when devices are done
+ interrupts
«+ polling
« Advantage: Improves throughput and utilization
« Disadvantage: Machine not interactive

Compute +
110 i i il L
913007 007 gL, ok e vk nd s 2

Inexpensive Peripherals

1960s Hardware
- i i but inexpensive keyboards and monitors
multiple terminals into one machine
— Enables text editors and interactive debuggers
Problems
— Programmer productivity
Goal of OS
— Improve user’s response time
OS Functionality

— Time-sharing: switch between jobs to give appearance of dedicated machine each
user has illusion of entire machine to him/herself
+ divide CPU equally among the users

if job is truly interactive (e.g. editor), then can jump between programs and users faster than
users can generate load

— Concurrency control and synchronization
Advantage
— Users easily submit jobs and get immediate feedback

|
| | Y
Compute & \ 2 [:> \

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 30

10

Inexpensive Personal Computers

« 1980s Hardware

— Entire machine is inexpensive

— One dedicated machine per user
* Goal of OS

— Give user control over machine
« OS Functionality

— Abstract the hardware

— Remove: time-sharing of jobs, protection, and virtual memory
« Advantages

— Simplicity

— Works with little main memory ;

— Machine is all your own (performance is predictable) |
« Disadvantages

— No time-sharing or protection between jobs

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift

Inexpensive, Powerful Computers

« 1990s+ Hardware
— PCs with increasing computation and storage
— Users connected to the web
* Goal of OS
— Allow single user to run several applications simultaneously
— Provide security from malicious attacks
— Efficiently support web servers

« OS Functionality
— Add back time-sharing, protection, and virtual memory
— New security problems:
« Protecting people from code

93/07 920042007 £ Lz Hork Loy f and s 22
Current Systems
« Conclusion: OS changes due to both hardware and users
« Current trends
— Multiprocessors
— Networked systems
— Virtual machines
« OS code base is large
— Millions of lines of code (118 million for Vista)
— 1000 person-years of work (5000 programmers for Vista)
« Code is complex and poorly understood
— System outlives any of its builders
— System will always contain bugs
— Behavior is hard to predict, tuning is done by guessing
93/07 ©2004-2007 Ed Lazowska, Hank Levy, Ancrea and Remzi 23

Arpaci-Dussea, Michael Swift

11

Other Types of OS

« Distributed OS
— distributed systems to facilitate use of geographically distributed
resources
« workstations on a LAN
« servers across the Internet
— supports communications between jobs
« Parallel OS

Some applications can be written as multiple parallel threads or
processes

— can speed up the execution by running multiple threads/processes
simultaneously on multiple CPUs

— need OS and language primitives for dividing program into multiple
parallel activities

— need OS primitives for fast communication between activities
« degree of speedup dictated by communication/computation ratio

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 34

Other types of OS

+ Embedded OS
— Pervasive computing
« cheap processors embedded everywhere
— cell phones, PDAs, games, iPod, network computers, ...
— Typically very constrained hardware resources
« slow processors, litle memory (8 KB - 1 MB)
* Real-time OS
— Device control
« Cars, planes, space shuttles
— Must be dependable
« Acrash can cost lives
— Must hit deadlines
« Airplane must respond to pilot

©2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
9/3/07 :ms o i Levy. M d 35

ci-Dussea, Michael Swi

CS 537

* In this class we will learn:
— what are the major components of most OS’s?
— how are the components structured?
— what are the most important (common?) interfaces?
— what policies are typically used in an OS?
— what algorithms are used to implement policies?
* Philosophy
— you may not ever build an OS

— but as a computer scientist or computer engineer you need
to understand the foundations

— most importantly, operating systems exemplify the sorts of
engineering design tradeoffs that you'll need to make
throughout your careers — compromises among and within
cost, performance, functionality, complexity, schedule ...

©2004:2007 ELazowska, Hank Levy, Andea and Remz
r3i07 Amaci-Dussea, Michael Swift 36

12

