
1

CS 537: Operating Systems
Fall 2007

Course Introduction

Mike Swift

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

2

Today’s agenda

• Administrivia
– course overview

• course staff
• general structure
• your to-do list

• OS overview
– functional

• resource mgmt, major issues
– historical

• batch systems, multiprogramming, time shared OS’s
• PCs, networked computers

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

3

Course overview

• Everything you need to know will be on the course web
page:

http://www.cs.wisc.edu/~cs537-2

– Schedule
– Readings
– Writings
– Projects

2

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

4

• But to tide you over for the next hour …
– course staff

• Mike Swift
• Sriram Subramanian

– general structure
• read the text after to class
• class will supplement rather than regurgitate the text
• sections will focus on the project, quizzes, writing
• we really want to encourage discussion, both in class and in

section

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

5

– your to-do list …
• please read the entire course web thoroughly, today
• project 1 is posted on the web now and will be discussed in

section next week; due two weeks from Thursday

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

6

Registration Stuff

• This class has a significant amount of work
– 4 programming projects
– 8 Quizzes
– Writing assignments
– Dates are not flexible

• If you’re going to drop this course
– please do it soon!

3

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

7

Readings

• Textbook: Operating Systems Concepts
• Readings are assigned to be done after lecture

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

8

Grades

• Exams: 22-47%
• No midterm
• Final is optional
• 8 quizzes throughout the semester

• I will drop your lowest score
• Projects: 38-50%

• 4 projects, roughly every 4 weeks
• Programming will be in C

• Quizzes: 22-30%
• During section
• 1 question per quiz will come from the textbook problems

• Writing: 15-20%
• There will be two short (3-5 page) research papers

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

9

Schedule

1. Overview of operating systems
2. System calls and OS structure
3. Processes/threads/synchronization
4. Memory management
5. Disks
6. File systems
7. Security
8. Advanced topics

4

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

10

What is an Operating System?

• An operating system (OS) is:
– a software layer to abstract away and manage details of

hardware resources
– a set of utilities to simplify application development

– “all the code you didn’t write” in order to implement your
application

Applications

OS

Hardware

9/3/07 11

DOS

What is Windows?

Application

© John DeTreville, Microsoft Corp.

9/3/07 12

DOS

What is Windows?

Windows

Installer

COM

Printing

TCP/IPBrowser

……

……

Application

Application

© John DeTreville, Microsoft Corp.

5

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

13

The OS and hardware

• An OS mediates programs’ access to hardware
resources
– Computation (CPU)
– Volatile storage (memory) and persistent storage (disk, etc.)
– Network communications (TCP/IP stacks, ethernet cards, etc.)
– Input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
– processes (CPU, memory)
– files (disk)

• programs (sequences of instructions)
– sockets (network)

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

14

Why bother with an OS?
• Application benefits

– programming simplicity
• see high-level abstractions (files) instead of low-level hardware

details (device registers)
• abstractions are reusable across many programs

– portability (across machine configurations or architectures)
• device independence: 3Com card or Intel card?

• User benefits
– safety

• program “sees” own virtual machine, thinks it owns computer
• OS protects programs from each other
• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

15

What Functionality belongs in OS?

• No single right answer
– Desired functionality depends on outside factors
– OS must adapt to both user expectations and technology

changes
• Change abstractions provided to users
• Change algorithms to implement those abstractions
• Change low-level implementation to deal with hardware

• Current operating systems driven by evolution

6

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

16

The major OS issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources

ensured?
– protection: how is one user/program protected from another?

• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with

hardware or with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information,

including across a network?

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

17

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each

other?
• accounting: how do we keep track of resource usage, and

perhaps charge for it?

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

18

Progression of concepts and form factors

© Silberschatz, Galvin and Gagne

7

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

19

Why is this material critical?

• Concurrency
– Therac-25, Ariane 5 rocket (June 96)

• Communication
– Air Traffic Control System

• Virtual Memory
– Blue Screens of Death

• Security
– Credit card data

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

20

Where’s the OS? Melbourne

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

21

Where’s the OS? Mesquite, TX

8

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

22

Multiple trends at work

• “Ontogeny recapitulates phylogeny”
– Ernst Haeckel (1834-1919)

• (“always quotable, even when wrong”)

• “Those who cannot remember the past are
condemned to repeat it”
– George Santayana (1863-1952)

• But new problems arise, and old problems re-define
themselves
– The evolution of PCs recapitulated the evolution of

minicomputers, which had recapitulated the evolution of
mainframes

– But the ubiquity of PCs re-defined the issues in protection
and security

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

23

Protection and security as an example

• none
• OS from my program
• your program from my program
• my program from my program
• access by intruding individuals
• access by intruding programs
• denial of service
• distributed denial of service
• spoofing
• spam
• worms
• viruses
• stuff you download and run knowingly (bugs, trojan horses)
• stuff you download and run unknowingly (cookies, spyware)

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

24

History of the OS

• Two distinct phases of history
– Phase 1: Computers are expensive

• Goal: Use computer’s time efficiently
• Maximize throughput (I.e., jobs per second)
• Maximize utilization (I.e., percentage busy)

– Phase 2: Computers are inexpensive
• Goal: Use people’s time efficiently
• Minimize response time

9

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

25

OS history

• In the very beginning…
– OS was just a library of

code that you linked into
your program; programs
were loaded in their entirety
into memory, and executed

– interfaces were literally
switches and blinking lights

– Programming done by
connecting wires to plugs

• Not much need for an OS

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

26

First commercial systems

• 1950s Hardware
– Enormous, expensive, and slow
– Input/Output: Punch cards and line printers

• Goal of OS
– Get the hardware working
– Single operator/programmer/user runs and debugs interactively

• OS Functionality
– Standard library only (no sharing or coordination of resources)
– Monitor that is always resident; transfer control to programs

• Advantages
– Worked and allowed interactive debugging

• Problems
– Inefficient use of hardware (throughput and utilization)

Compute
I/O Load Load

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

27

Batch Processing

• Goal of OS: Better throughput and utilization
• Batch: Group of jobs submitted together

– Operator collects jobs; orders efficiently; runs one at a time
• Advantages

– Amortize setup costs over many jobs
– Operator more skilled at loading tapes
– Keep machine busy while programmer thinks
– Improves throughput and utilization

• Problems
– User must wait until batch is done for results
– Machine idle when job is reading from cards and writing to printers

Compute
I/O

10

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

28

Spooling
• Hardware

– Mechanical I/O devices much slower than CPU
– Read 17 cards/sec vs. execute 1000s instructions/sec
– Disks were much faster than card readers and printers

• Problem
– Machine idle when job waits for I/O to/from disk

• Goal of OS
– Improve performance by overlapping I/O with CPU execution

• Spooling: Simultaneous Peripheral Operations On-Line
1. Read card punches to disk
2. Compute (while reading and writing to disk)
3. Write output from disk to printer

• OS Functionality
– Buffering and interrupt handling
– Choose which job to run next

Compute
I/O

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

29

Multiprogrammed Batch Systems
• Observation: Spooling provides pool of ready jobs
• Goal of OS

– Improve performance by always running a job
– Keep multiple jobs resident in memory
– When job waits for disk I/O, OS switches to another job

• OS Functionality
– Job scheduling policies
– Memory management and protection

• Hardware: asynchronous I/O devices
– Need some way to know when devices are done

• interrupts
• polling

• Advantage: Improves throughput and utilization
• Disadvantage: Machine not interactive

Compute

I/O

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

30

Inexpensive Peripherals
• 1960s Hardware

– Expensive mainframes, but inexpensive keyboards and monitors
• multiple terminals into one machine

– Enables text editors and interactive debuggers
• Problems

– Programmer productivity
• Goal of OS

– Improve user’s response time
• OS Functionality

– Time-sharing: switch between jobs to give appearance of dedicated machine each
user has illusion of entire machine to him/herself

• divide CPU equally among the users
• if job is truly interactive (e.g. editor), then can jump between programs and users faster than

users can generate load

– Concurrency control and synchronization
• Advantage

– Users easily submit jobs and get immediate feedback

Compute

11

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

31

Inexpensive Personal Computers

• 1980s Hardware
– Entire machine is inexpensive
– One dedicated machine per user

• Goal of OS
– Give user control over machine

• OS Functionality
– Abstract the hardware
– Remove: time-sharing of jobs, protection, and virtual memory

• Advantages
– Simplicity
– Works with little main memory
– Machine is all your own (performance is predictable)

• Disadvantages
– No time-sharing or protection between jobs

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

32

Inexpensive, Powerful Computers

• 1990s+ Hardware
– PCs with increasing computation and storage
– Users connected to the web

• Goal of OS
– Allow single user to run several applications simultaneously
– Provide security from malicious attacks
– Efficiently support web servers

• OS Functionality
– Add back time-sharing, protection, and virtual memory
– New security problems:

• Protecting people from code

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

33

Current Systems

• Conclusion: OS changes due to both hardware and users
• Current trends

– Multiprocessors
– Networked systems
– Virtual machines

• OS code base is large
– Millions of lines of code (118 million for Vista)
– 1000 person-years of work (5000 programmers for Vista)

• Code is complex and poorly understood
– System outlives any of its builders
– System will always contain bugs
– Behavior is hard to predict, tuning is done by guessing

12

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

34

Other Types of OS

• Distributed OS
– distributed systems to facilitate use of geographically distributed

resources
• workstations on a LAN
• servers across the Internet

– supports communications between jobs
• Parallel OS

– Some applications can be written as multiple parallel threads or
processes

– can speed up the execution by running multiple threads/processes
simultaneously on multiple CPUs

– need OS and language primitives for dividing program into multiple
parallel activities

– need OS primitives for fast communication between activities
• degree of speedup dictated by communication/computation ratio

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

35

Other types of OS

• Embedded OS
– Pervasive computing

• cheap processors embedded everywhere
– cell phones, PDAs, games, iPod, network computers, …

– Typically very constrained hardware resources
• slow processors, little memory (8 KB - 1 MB)

• Real-time OS
– Device control

• Cars, planes, space shuttles
– Must be dependable

• A crash can cost lives
– Must hit deadlines

• Airplane must respond to pilot

9/3/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

36

CS 537

• In this class we will learn:
– what are the major components of most OS’s?
– how are the components structured?
– what are the most important (common?) interfaces?
– what policies are typically used in an OS?
– what algorithms are used to implement policies?

• Philosophy
– you may not ever build an OS
– but as a computer scientist or computer engineer you need

to understand the foundations
– most importantly, operating systems exemplify the sorts of

engineering design tradeoffs that you’ll need to make
throughout your careers – compromises among and within
cost, performance, functionality, complexity, schedule …

