
1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

CS 537
Lecture 2

Computer Architecture and Operating
Systems

Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Administrivia

• First reading assignment is up on web

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

What you should learn

• How do architectural trends impact operating
systems?

• How does architecture support OS functionality?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

• Processing power
– doubling every 18 months
– 60% improvement each year
– factor of 100 every decade

Even coarse architectural trends
impact tremendously the design of systems

2

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

• Primary memory capacity
– same story, same reason (Moore’s Law)

• 1978: 512K of VAX-11/780 memory for $30,000
• today:

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

• Disk capacity, 1975-1989
– doubled every 3+ years
– 25% improvement each year
– factor of 10 every decade
– Still exponential, but far less rapid than processor

performance

• Disk capacity since 1990
– doubling every 12 months
– 100% improvement each year
– factor of 1000 every decade
– 10x as fast as processor performance!

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

• Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

• Today, 1 GB (a billion bytes) costs $1 from Dell
(except you have to buy in increments of 20 GB)
– => 1 TB costs $1K, 1 PB costs $1M

• In 3 years, 1 GB will cost $.10
– => 1 TB for $100, 1 PB for $100K

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

• Optical bandwidth today
– Doubling every 9 months
– 150% improvement each year
– Factor of 10,000 every decade
– 10x as fast as disk capacity!
– 100x as fast as processor performance!!

• What are some of the implications of these trends?
– Just one example: We have always designed systems so

that they “spend” processing power in order to save “scarce”
storage and bandwidth!

– What else?

3

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

How do arch. trends impact OS design?
• Human:computer ratio

– Batch - time sharing - personal computers - embedded / pervasive
computing

– Single job - time shared - internetworked
• Programmer:processor cost ratio

– assembly to C to Java to Perl languages
– command line to GUI to pen / voice interfaces

• Networking
– Isolation to dialup to LAN to WAN

• OS must devote more effort to communications
– Disconnected to wired to wireless

• OS must manage connectivity more
– Isolated to shared to attacked

• OS must provide more security / protection

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

More trends

• Disk size: data size
– Deleting is not as important
– Extra space is available for metadata
– Finding data is as important as storing it

• Disk speed: memory speed
– Important apps don’t page

4

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Processor Trends

• CPU performance improved 52% per year from 1986-
2002

• From 2002-2006, performance improved less than
20% per year

• Modern trend: multi-core, multi-threading
– Pentium 4: hyperthreading
– Core II Duo: 2 cores
– Sun Niagara II: 8 cores, 8 threads per core

• Single thread performance has stopped growing
• All future performance gains from compilers, OS,

multithreading

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Low-level architecture support for OS

• Operating system functionality is dictated, at least in
part, by the underlying hardware architecture
– includes instruction set (synchronization, I/O, …)
– also hardware components like MMU or DMA controllers

• Architectural support can vastly simplify (or
complicate!) OS tasks
– e.g.: early PC operating systems (DOS, MacOS) lacked

support for virtual memory, in part because at that time PCs
lacked necessary hardware support

– e.g.: virtual machines arrived on PCs 25 years after they
arrived on mainframes because X86 processors lacked
support for virtualization

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Architectural features affecting OS’s

• These features were built primarily to support OS’s:
– timer (clock) operation
– synchronization instructions (e.g., atomic test-and-set)
– memory protection
– I/O control operations
– interrupts and exceptions
– protected modes of execution (kernel vs. user)
– protected instructions
– system calls (and software interrupts)

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Protected instructions
• some instructions are restricted to the OS

– known as protected or privileged instructions
• e.g., only the OS can:

– directly access I/O devices (disks, network cards)
• why?

– manipulate memory state management
• page table pointers, TLB loads, etc.
• why?

– manipulate special ‘mode bits’
• interrupt priority level
• why?

– halt instruction
• why?

5

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

OS protection
• So how does the processor know if a protected

instruction should be executed?
– the architecture must support at least two modes of

operation: kernel mode and user mode
• VAX, x86 support 4 protection modes
• why more than 2?

– mode is set by status bit in a protected processor register
• user programs execute in user mode
• OS executes in kernel mode (OS == kernel)

• Protected instructions can only be executed in the
kernel mode
– what happens if user mode executes a protected

instruction?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Crossing protection boundaries
• So how do user programs do something privileged?

– e.g., how can you write to a disk if you can’t do I/O
instructions?

• User programs must call an OS procedure
– OS defines a sequence of system calls
– how does the user-mode to kernel-mode transition happen?

• There must be a system call instruction, which:
– causes an exception (throws a software interrupt), which

vectors to a kernel handler
– passes a parameter indicating which system call to invoke
– saves caller’s state (regs, mode bit) so they can be restored
– OS must verify caller’s parameters (e.g., pointers)
– must be a way to return to user mode once done

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

A kernel crossing illustrated

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return
Mode bit = 1

Resume process
User Mode

Mode bit = 1

Kernel Mode
Mode bit = 0

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

System call details

• How does the kernel
know which system
call?
– In a register

• Where are the
parameters?
– in a register
– on the stack
– in a memory block

 # system call handler stub
ENTRY(system_call)
 pushl %eax # save orig_eax
 SAVE_ALL
 GET_THREAD_INFO(%ebp)
 cmpl $(nr_syscalls), %eax
 jae syscall_badsys
 syscall_call:
 call *sys_call_table(,%eax,4)
 movl %eax,EAX(%esp) # store the return value

<open>: push %ebx
<open+1>: mov 0x10(%esp),%edx
<open+5>: mov 0xc(%esp),%ecx
<open+9>: mov 0x8(%esp),%ebx
<open+13>: mov $0x5,%eax
<open+18>: int $0x80
<open+20>: pop %ebx
<open+21>: cmp $0xfffff001,%eax
<open+26>: jae 0x2a189d <open+29>
<open+28>: ret

6

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

System call issues

• What would happen if kernel didn’t save state?
• Why must the kernel verify arguments?
• How can you reference kernel objects as arguments

or results to/from system calls?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

What functions are system calls?
• Process control

– Create process, allocate memory
• File management

– Create, read, delete file
• Device management

– Open device, read/write device, mount device
• Information maintenance

– Get time, get system data/parameters
• Communications

– Create/delete channel, send/receive message

• Programmers generally do not use system calls directly
– They use runtime libraies (e.g. Java, C)
– Why?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Memory protection

• OS must protect user programs from each other
– maliciousness, ineptitude

• OS must also protect itself from user programs
– integrity and security
– what about protecting user programs from OS?

• Simplest scheme: base and limit registers
– are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

More sophisticated memory protection

• coming later in the course
• paging, segmentation, virtual memory

– page tables, page table pointers
– translation lookaside buffers (TLBs)
– page fault handling

7

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

OS control flow

• after the OS has booted, all entry to the kernel
happens as the result of an event
– event immediately stops current execution
– changes mode to kernel mode, event handler is called

• kernel defines handlers for each event type
– specific types are defined by the architecture

• e.g.: timer event, I/O interrupt, system call trap
– when the processor receives an event of a given type, it

• transfers control to handler within the OS
• handler saves program state (PC, regs, etc.)
• handler functionality is invoked
• handler restores program state, returns to program

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Interrupts and exceptions

• Two main types of events: interrupts and exceptions
– exceptions are caused by software executing instructions

• e.g., the x86 ‘int’ instruction
• e.g., a page fault, write to a read-only page
• an expected exception is a “trap”, unexpected is a “fault”

– interrupts are caused by hardware devices
• e.g., device finishes I/O
• e.g., timer fires

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

I/O control
• Issues:

– how does the kernel start an I/O?
• special I/O instructions
• memory-mapped I/O

– how does the kernel notice an I/O has finished?
• polling
• interrupts

• Interrupts are basis for asynchronous I/O
– device performs an operation asynch to CPU
– device sends an interrupt signal on bus when done
– in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
• who populates the vector table, and when?

– CPU switches to address indicated by vector specified by interrupt
signal

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Timers

• How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
– use a hardware timer that generates a periodic interrupt
– before it transfers to a user program, the OS loads the timer

with a time to interrupt
• “quantum”: how big should it be set?

– when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next
• very interesting policy question: we’ll dedicate a class to it

• Should the timer be privileged?
– for reading or for writing?

8

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Synchronization
• Interrupts cause a wrinkle:

– may occur any time, causing code to execute that interferes
with code that was interrupted

– OS must be able to synchronize concurrent processes
• Synchronization:

– guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

– one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts

• architecture must support disabling interrupts
– another method: have special complex atomic instructions

• read-modify-write
• test-and-set
• load-linked store-conditional

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

“Concurrent programming”

• Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”
– modern “event-oriented” application programming is a

middle ground

• Arises from the architecture
• Can be sugar-coated, but cannot be totally

abstracted away
• Huge intellectual challenge

– Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

