
1

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 5

Threads and Cooperation

Michael Swift

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Notes

• OS news
– MS lost antitrust in EU: harder to integrate features

• Quiz tomorrow on material from chapters 2 and 3 in
the book
– Hardware support for OS
– OS structure
– Processes

• Project due Thursday, 11 PM
– I will turn off permission to write to the handin directories

then.

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Questions answered in this lecture:

• Why are threads useful?
• How does one use POSIX pthreads?
• What are user-level versus kernel-level threads?
• How do processes (or threads) communicate (IPC)?

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

What’s in a process?
• A process consists of (at least):

– User ID
– state flags
– an address space
– the code for the running program
– the data for the running program
– an execution stack and stack pointer (SP)

• traces state of procedure calls made
– the program counter (PC), indicating the next instruction
– a set of general-purpose processor registers and their values
– a set of OS resources

• open files, network connections, sound channels, …

• That’s a lot of concepts bundled together!

2

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Organizing a Process
• Scheduling / execution

– state flags
– an execution stack and stack pointer (SP)
– the program counter (PC), indicating the next instruction
– a set of general-purpose processor registers and their

values
• Resource ownership / naming

– user ID
– an address space
– the code for the running program
– the data for the running program
– a set of OS resources

• open files, network connections, sound channels, …

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Concurrency
• Imagine a web server, which might like to handle multiple requests

concurrently
– While waiting for the credit card server to approve a purchase for one client,

it could be retrieving the data requested by another client from disk, and
assembling the response for a third client from cached information

• Imagine a web client (browser), which might like to initiate multiple
requests concurrently

– The CS home page has 66 “src= …” html commands, each of which is
going to involve a lot of sitting around! Wouldn’t it be nice to be able to
launch these requests concurrently?

• Imagine a parallel program running on a multiprocessor, which might
like to concurrently employ multiple processors

– For example, multiplying a large matrix – split the output matrix into k
regions and compute the entries in each region concurrently using k
processors

• Image a program with two independent tasks: saving (or
printing) data and editing text

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Why support Threads?
• Divide large task across several cooperative threads
• Multi-threaded task has many performance benefits

– Adapt to slow devices
One thread waits for device while other threads computes

– Defer work
One thread performs non-critical work in the background, when
idle

– Parallelism
Each thread runs simultaneously on a multiprocessor

– Modularity
Independent tasks can be untangled

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Common Programming Models
• Multi-threaded programs tend to be structured in one of three

common models:
– Manager/worker

Single manager handles input and assigns work to the worker
threads

– Producer/consumer
Multiple producer threads create data (or work) that is handled by
one of the multiple consumer threads

– Pipeline
Task is divided into series of subtasks, each of which is handled in
series by a different thread

3

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

What’s needed?
• In each of these examples of concurrency (web server, web

client, parallel program):
– Everybody wants to run the same code
– Everybody wants to access the same data
– Everybody has the same privileges
– Everybody uses the same resources (open files, network

connections, etc.)
• But you’d like to have multiple hardware execution states:

– an execution stack and stack pointer (SP)
• traces state of procedure calls made

– the program counter (PC), indicating the next instruction
– a set of general-purpose processor registers and their values

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

How could we achieve this?

• Given the process abstraction as we know it:
– fork several processes
– cause each to map to the same address space to share data

• see the shmget() system call for one way to do this (kind of)

• This is like making a pig fly – it’s really inefficient
– space: PCB, page tables, etc.
– time: creating OS structures, fork and copy addr space, etc.

• Some equally bad alternatives for some of the cases:
– Entirely separate web servers
– Asynchronous programming in the web client (browser)

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Can we do better?

• Key idea:
– separate the concept of a process (address space, etc.)
– from that of a minimal “thread of control” (execution state:

PC, etc.)

• This execution state is usually called a thread, or
sometimes, a lightweight process

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Threads and processes
• Most modern OS’s (Mach, Chorus, Windows XP, modern Unix

(not Linux)) therefore support two entities:
– the process, which defines the address space and general process

attributes (such as open files, etc.)
– the thread, which defines a sequential execution stream within a

process
• A thread is bound to a single process

– processes, however, can have multiple threads executing within
them

– sharing data between threads is cheap: all see same address
space

• Threads become the unit of scheduling
– processes are just containers in which threads execute

4

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

The design space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

(new) Address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

Process/thread separation
• Concurrency (multithreading) is useful for:

– handling concurrent events (e.g., web servers and clients)
– building parallel programs (e.g., matrix multiply, ray tracing)
– improving program structure (the Java argument)

• Multithreading is useful even on a uniprocessor
– even though only one thread can run at a time

• Supporting multithreading – that is, separating the
concept of a process (address space, files, etc.) from
that of a minimal thread of control (execution state),
is a big win
– creating concurrency does not require creating new

processes
– “faster better cheaper”

5

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

Thread states

• Threads have states like processes

• Example: a web server

Ready Running

Blocked

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

“Where do threads come from, Mommy?”
• Natural answer: the kernel is responsible for

creating/managing threads
– for example, the kernel call to create a new thread would

• allocate an execution stack within the process address space
• create and initialize a Thread Control Block

– stack pointer, program counter, register values
• stick it on the ready queue

– we call these kernel threads

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

• Threads can also be managed at the user level (that
is, entirely from within the process)
– a library linked into the program manages the threads

• because threads share the same address space, the thread
manager doesn’t need to manipulate address spaces (which
only the kernel can do)

• threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

• Thread package multiplexes user-level threads on top of kernel
thread(s), which it treats as “virtual processors”

– we call these user-level threads

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

Kernel threads
• OS now manages threads and processes

– all thread operations are implemented in the kernel
– OS schedules all of the threads in a system

• if one thread in a process blocks (e.g., on I/O), the OS knows
about it, and can run other threads from that process

• possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
– less state to allocate and initialize

• But, they’re still pretty expensive for fine-grained use
(e.g., orders of magnitude more expensive than a
procedure call)
– thread operations are all system calls

• context switch
• argument checks

– must maintain kernel state for each thread

6

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

User-level threads

• To make threads cheap and fast, they need to be
implemented at the user level
– managed entirely by user-level library, e.g. libpthreads.a

• User-level threads are small and fast
– each thread is represented simply by a PC, registers, a

stack, and a small thread control block (TCB)
– creating a thread, switching between threads, and

synchronizing threads are done via procedure calls
• no kernel involvement is necessary!

– user-level thread operations can be 10-100x faster than
kernel threads as a result

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

Thread context switch

• Very simple for user-level threads:
– save context of currently running thread

• push machine state onto thread stack
– restore context of the next thread

• pop machine state from next thread’s stack
– return as the new thread

• execution resumes at PC of next thread

• This is all done by assembly language
– it works at the level of the procedure calling convention

• thus, it cannot be implemented using procedure calls

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

Performance example

• On a 3GHz Pentium running Linux 2.6.9:

– Processes
• fork/exit/waitpid: 120 µs

– Kernel threads
• clone/waitpid: 13 µs

– User-level threads
• pthread_create()/pthread_join: < 1 µs

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 24

User-level thread implementation

• The kernel thread (the kernel-controlled executable
entity associated with the address space) executes
the code in the address space

• This code includes the thread support library and its
associated thread scheduler

• The thread scheduler determines when a thread runs
– it uses queues to keep track of what threads are doing: run,

ready, wait
• just like the OS and processes
• but, implemented at user-level as a library

7

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 25

User-Level Threads
• For speed, implement threads at the user level
• A user-level thread is managed by the run-time system

– user-level code that is linked with your program
• Each thread is represented simply by:

– PC
– Registers
– Stack
– Small control block

• All thread operations are at the user-level:
– Creating a new thread
– switching between threads
– synchronizing between threads

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 26

User-Level vs. Kernel Threads
User-Level
• Managed by application
• Kernel not aware of thread
• Context switching cheap
• Create as many as needed
• Must be used with care

Kernel-Level
• Managed by kernel
• Consumes kernel resources
• Context switching expensive
• Number limited by kernel resources
• Simpler to use

Key issue: kernel threads provide virtual processors to user-level threads,
 but if all of kthreads block, then all user-level threads will block
 even if the program logic allows them to proceed

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 27

Thread interface
• This is taken from the POSIX pthreads API:

– t = pthread_create(attributes, start_procedure)
• creates a new thread of control
• new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable)
• the calling thread blocks, sometimes called thread_block()

– pthread_signal(condition_variable)
• starts the thread waiting on the condition variable

– pthread_exit()
• terminates the calling thread

– pthread_wait(t)
• waits for the named thread to terminate

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 28

Real OS threads

• Windows: just like pthreads
• Linux: tasks

– clone() API takes a set of resources to share
• address space
• signal handlers
• open files
• file system
• …

– When 2 tasks:
• Share everything: kernel threads
• Share nothing: fork

8

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 29

• Strategy 1: force everyone to cooperate
– a thread willingly gives up the CPU by calling yield()
– yield() calls into the scheduler, which context switches to

another ready thread
– what happens if a thread never calls yield()?

• Strategy 2: use preemption
– scheduler requests that a timer interrupt be delivered by the

OS periodically
• usually delivered as a UNIX signal (man signal)
• signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware
– at each timer interrupt, scheduler gains control and context

switches as appropriate

How to keep a thread from hogging the CPU?

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 30

Cooperative Threads
A cooperative thread runs until it decides to give up the CPU
main()
{

tid t1 = CreateThread(fn, arg);
…
Yield(t1);

}
fn(int arg)
{

…
Yield(any);

}

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 31

Cooperative Threads
• Cooperative threads use non pre-emptive scheduling

• Advantages:
– Simple

• Scientific apps

• Disadvantages:
– For badly written code

• Scheduler gets invoked only when Yield is called
• A thread could yield the processor when it blocks for I/O

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 32

What if a thread tries to do I/O?

• The kernel thread “powering” it is lost for the duration
of the (synchronous) I/O operation!

• Could have one kernel thread “powering” each user-
level thread
– “common case” operations (e.g., synchronization) would be

quick

• Could have a limited-size “pool” of kernel threads
“powering” all the user-level threads in the address
space
– the kernel will be scheduling its threads obliviously to what’s

going on at user-level

9

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 33

What if the kernel preempts a thread
holding a lock?

• Other threads will be unable to enter the critical
section and will block (stall)
– tradeoff, as with everything else

• Solving this requires coordination between the kernel
and the user-level thread manager
– “scheduler activations”

• a research paper from UW with huge effect on industry
• each process can request one or more kernel threads

– process is given responsibility for mapping user-level threads onto
kernel threads

– kernel promises to notify user-level before it suspends or destroys
a kernel thread

• ACM TOCS 10,1

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 34

Summary
• You really want multiple threads per address space
• Kernel threads are much more efficient than

processes, but they’re still not cheap
– all operations require a kernel call and parameter verification

• User-level threads are:
– fast as blazes
– great for common-case operations

• creation, synchronization, destruction
– can suffer in uncommon cases due to kernel obliviousness

• I/O
• preemption of a lock-holder

• Scheduler activations are the answer
– pretty subtle though

9/18/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 35

Multithreading Issues
• Semantics of fork() and exec() system calls
• Thread cancellation

– Asynchronous vs. Deferred Cancellation

• Signal handling
– Which thread to deliver it to?

• Thread pools
– Creating new threads, unlimited number of threads

• Thread specific data
• Scheduler activations

– Maintaining the correct number of scheduler threads

