
1

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 6

Synchronization and IPC

Michael Swift

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Questions for this Lecture

• How can multiple processes cooperate?
• How can multiple threads cooperate?

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Interprocess Communication (IPC)

• To cooperate usefully, threads must communicate
with each other

• How do processes and threads communicate?
– Shared Memory
– Message Passing
– Signals

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

IPC: Shared Memory
• Processes

– Each process has private address space
– Explicitly set up shared memory segment within each address

space
• Threads

– Always share address space (use heap for shared data)
• Advantages

– Fast and easy to share data
• Disadvantages

– Must synchronize data accesses; error prone
• Synchronization: Topic for next few lectures



2

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

IPC: Message Passing
• Message passing most commonly used between processes

– Explicitly pass data btween sender (src) + receiver (destination)
– Example: Unix pipes, Windows LPC

• Advantages:
– Makes sharing explicit
– Improves modularity (narrow interface)
– Does not require trust between sender and receiver

• Disadvantages:
– Performance overhead to copy messages

• Issues:
– How to name source and destination?

• One process, set of processes, or mailbox (port)
– Does sending process wait (I.e., block) for receiver?

• Blocking: Slows down sender
• Non-blocking: Requires buffering between sender and receiver

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

IPC: Signals
• Signal

– Software interrupt that notifies a process of an event
– Examples: SIGFPE, SIGKILL, SIGUSR1, SIGSTOP, SIGCONT

• What happens when a signal is received?
– Catch: Specify signal handler to be called
– Ignore: Rely on OS default action

• Example: Abort, memory dump, suspend or resume process
– Mask: Block signal so it is not delivered

• May be temporary (while handling signal of same type)

• Disadvantage
– Does not specify any data to be exchanged
– Complex semantics with threads
– Not implemented in Windows

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Threads and Signals
• Problem: To which thread should OS deliver signal?
• Option 1: Require sender to specify thread id (instead of

process id)
– Sender may not know about individual threads

• Option 2: OS picks destination thread
– POSIX: Each thread has signal mask (disable specified signals)
– OS delivers signal to all threads without signal masked
– Application determines which thread is most appropriate for

handing signal

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Shared Memory Thread Synchronization
• Threads cooperate in multithreaded programs

– to share resources, access shared data structures
• e.g., threads accessing a memory cache in a web server

– also, to coordinate their execution
• e.g., a disk reader thread hands off a block to a network writer

• For correctness, we have to control this cooperation
– must assume threads interleave executions arbitrarily and at

different rates
• scheduling is not under application writers’ control

– we control cooperation using synchronization
• enables us to restrict the interleaving of executions

• Note: this also applies to processes, not just threads
– and it also applies across machines in a distributed system



3

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Shared Resources
• We’ll focus on coordinating access to shared

resources
– basic problem:

• two concurrent threads are accessing a shared variable
• if the variable is read/modified/written by both threads, then

access to the variable must be controlled
• otherwise, unexpected results may occur

• We’ll look at:
– mechanisms to control access to shared resources

• low level mechanisms like locks
• higher level mechanisms like mutexes, semaphores, monitors,

and condition variables
– patterns for coordinating access to shared resources

• bounded buffer, producer-consumer, …

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

The classic example
• Suppose we have to implement a function to

withdraw money from a bank account:

int withdraw(account, amount) {

  balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}

• Now suppose that you and your S.O. share a bank
account with a balance of $100.00
– what happens if you both go to separate ATM machines,

and simultaneously withdraw $10.00 from the account?

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Example continued

• Represent the situation by creating a separate thread
for each person to do the withdrawals
– have both threads run on the same bank mainframe:

• What’s the problem with this?
– what are the possible balance values after this runs?

int withdraw(account, amount) {

  balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}

int withdraw(account, amount) {

  balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Interleaved Schedules

• The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you?  ;)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

Execution sequence
as seen by CPU

context switch

context switch



4

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

What just happened?
• Threads share global memory
• When a process contains multiple threads, they have

– Private registers and stack memory (the context switching
mechanism needs to save and restore registers when
switching from thread to thread)

– Shared access to the remainder of the process “state”
• This can result in race conditions

– Race condition: Result depends upon ordering of execution
• Non-deterministic bug, very difficult to find

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

The crux of the matter

• The problem is that two concurrent threads (or
processes) access a shared resource (account)
without any synchronization
– creates a race condition

• output is non-deterministic, depends on timing

• We need mechanisms for controlling access to
shared resources in the face of concurrency
– so we can reason about the operation of programs

• essentially, re-introducing determinism

• Synchronization is necessary for any shared data
structure
– buffers, queues, lists, hash tables, …

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

When are Resources Shared?

• Local variables are not shared
– refer to data on the stack, each thread has its own stack
– But… you must never pass/share/store a pointer to a local

variable on another thread’s stack

• Global variables are shared
– stored in the static data segment, accessible by any thread

• Dynamic objects are shared
– stored in the heap, shared if you can name it

• in C, can conjure up the pointer
–  e.g.  void *x = (void *) 0xDEADBEEF

• in Java, strong typing prevents this
– must pass references explicitly

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

Mutual Exclusion

• We want to use mutual exclusion to synchronize
access to shared resources

• Code that uses mutual exclusion to synchronize its
execution is called a critical section
– only one thread at a time can execute in the critical section
– all other threads are forced to wait on entry
– when a thread leaves a critical section, another can enter



5

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

If i is shared, and initialized to 0
– Who wins?
– Is it guaranteed that someone wins?
– What if both threads run on identical speed CPU

• executing in parallel

Scheduler assumptions

Process b:
     while(i > -10)

i = i - 1;
     print “B won!”;

Process a:
     while(i < 10)

i = i +1;
     print “A won!”;

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

Scheduler Assumptions

• Normally we assume that
– A scheduler always gives every executable thread

opportunities to run
• In effect, each thread makes finite progress

– But schedulers aren’t always fair
• Some threads may get more chances than others

– To reason about worst case behavior we sometimes think of
the scheduler as an adversary trying to “mess up” the
algorithm

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

Critical Section Requirements
• Critical sections have the following requirements

– mutual exclusion
• at most one thread is in the critical section

– progress
• if thread T is outside the critical section, then T cannot prevent thread S

from entering the critical section
– bounded waiting (no starvation)

• if thread T is waiting on the critical section, then T will eventually enter
the critical section

– assumes threads eventually leave critical sections

– performance
• the overhead of entering and exiting the critical section is small with

respect to the work being done within it
• Do not busy wait (I.e., spin wait)

– Fair
• Don’t make some processes wait longer than others

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

Mechanisms for Building Crit. Sections

• Locks
– very primitive, minimal semantics; used to build others

• Semaphores
– basic, easy to get the hang of, hard to program with

• Monitors
– high level, requires language support, implicit operations
– easy to program with; Java “synchronized()” as example

• Messages
– simple model of communication and synchronization based

on (atomic) transfer of data across a channel
– direct application to distributed systems



6

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

Locks
• A lock is a object (in memory) that provides the

following two operations:
– acquire( ): a thread calls this before entering a critical

section
– release( ): a thread calls this after leaving a critical section

• Threads pair up calls to acquire( ) and release( )
– between acquire( ) and release( ), the thread holds the lock
– acquire( ) does not return until the caller holds the lock

• at most one thread can hold a lock at a time (usually)
– so: what can happen if the calls aren’t paired?

• Two basic flavors of locks
– spinlock
– blocking  (a.k.a. “mutex”)

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

Using Locks

• What happens when green tries to acquire the lock?
• Why is the “return” outside the critical section?

– is this ok?

int withdraw(account, amount) {

  acquire(lock);

  balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  release(lock);

  return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);

release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

Critical Section: Attempt #1
• Code uses a single shared lock variable

Boolean lock = false; // shared variable
Void withdraw(int amount) {

while (lock) /* wait */ ;
lock = true;

balance -= amount; // critical section

lock = false;
}

• Why doesn’t this work? Which principle is violated?

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 24

Attempt #2
• Each thread has its own lock; lock indexed by tid (0, 1)

Boolean lock[2] = {false, false}; // shared
Void withdraw(int amount) {

lock[tid] = true;
while (lock[1-tid]) /* wait */ ;

balance -= amount; // critical section

lock[tid] = false;
}

• Why doesn’t this work? Which principle is violated?



7

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 25

Attempt #3
• Turn variable determines which thread can enter

Int turn = 0; // shared
Void withdraw(int amount) {

while (turn == 1-tid) /* wait */ ;

balance -= amount; // critical section

turn = 1-tid;
}

• Why doesn’t this work? Which principle is violated?

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 26

Peterson’s Algorithm:
Solution for Two Threads

• Combine approaches 2 and 3: Separate locks and turn variable
Int turn = 0; // shared
Boolean lock[2] = {false, false};

Void withdraw(int amount) {
lock[tid] = true;

turn = 1-tid;
while (lock[1-tid] && turn == 1-tid) /* wait */ ;

balance -= amount; // critical section

lock[tid] = false;

}

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 27

Peterson’s Algorithm:
Intuition

• Mutual exclusion: Enter critical section if and only if
– Other thread does not want to enter
– Other thread wants to enter, but your turn

• Progress: Both threads cannot wait forever at while()
loop
– Completes if other process does not want to enter
– Other process (matching turn) will eventually finish

• Bouded waiting
– Each process waits at most one critical section

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 28

Postscript

• These  algorithm will not work with many modern CPUs
– CPUs execute their instructions in an out-of-order (OOO) fashion
– This algorithm won't work on Symmetric MultiProcessors (SMP) CPUs equipped

with OOO without the use of memory barriers
• Compiler optimizations can break these algorithms

– What if the compiler puts a variable in a register?
– What if the compiler sees that a variable does not change inside a loop and

removes the test?



8

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 29

Hardware Support: Test-and-Set

• CPU provides the following as one atomic instruction:

• So, to fix our broken spinlocks, do:

bool test_and_set(bool *flag) {

  bool old = *flag;

  *flag = True;

  return old;

}

struct lock {

  int held = 0;

}

void acquire(lock) {

   while(test_and_set(&lock->held));

}

void release(lock) {

  lock->held = 0;

}

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 30

Problems with spinlocks

• Horribly wasteful!
– if a thread is spinning on a lock, the thread holding the lock

cannot make process

• How did lock holder yield the CPU in the first place?
– calls yield( ) or sleep( )
– involuntary context switch

• Only want spinlocks as primitives to build higher-level
synchronization constructs

9/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 31

Disabling Interrupts
• An alternative:

• Can two threads disable interrupts simultaneously?
• What’s wrong with interrupts?

– only available to kernel (why? how can user-level use?)
– insufficient on a multiprocessor

• back to atomic instructions

• Like spinlocks, only use to implement higher-level
synchronization primitives

struct lock {

}

void acquire(lock) {

   cli();   // disable interrupts

}

void release(lock) {

  sti();    // reenable interupts

}


