
1

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 8
Monitors

Michael Swift

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Two Classes of Synchronization
Problems

• Uniform resource usage with simple scheduling constraints
– No other variables needed to express relationships
– Use one semaphore for every constraint
– Examples: thread join and producer/consumer

• Complex patterns of resource usage
– Cannot capture relationships with only semaphores
– Need extra state variables to record information
– Use semaphores such that

• One is for mutual exclusion around state variables
• One for each class of waiting

• Always try to cast problems into first, easier type
• Today: Two examples using second approach

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Thread Join with Semaphores
• General case: One thread waits for another to reach some point
• Example: Implement thread_join()

– Parent thread calls thread_join(), which must wait for child thread to
call exit();

– Shared sem between parent and child (created when child thread is
created)
To what value is sem initialized???

Parent thread
Thread_join() {

sem_wait(&sem);

}

Child thread
exit() {

sem_signal(&sem);

}

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Dining Philosophers
• Problem Statement:

– N Philosophers sitting at a round table
– Each philosopher shares a chopstick with neighbor
– Each philosopher must have both chopsticks to eat
– Neighbors can’t eat simultaneously
– Philosophers alternate between thinking and eating

• Each philosopher/thread i runs following code:
while (1) {

think();
take_chopsticks(i);
eat();
put_chopsticks(i);

}

2

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Dining Philosophers: Attempt #1
• Two neighbors can’t use chopstick at same time
• Must test if chopstick is there and grab it atomically

– Represent each chopstick with a semaphore
– Grab right chopstick then left chopstick

• Code for 5 philosophers:
sem_t chopstick[5]; // Initialize each to 1
take_chopsticks(int i) {

wait(&chopstick[i]);
wait(&chopstick[(i+1)%5]);

}
put_chopsticks(int i) {

signal(&chopstick[i]);
signal(&chopstick[(i+1)%5]);

}

• What is wrong with this solution???

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Dining Philosophers: Attempt #2
• Approach

– Grab lower-numbered chopstick first, then higher-numbered
• Code for 5 philosophers:
• sem_t chopstick[5]; // Initialize to 1

take_chopsticks(int i) {
if (i < 4) {
wait(&chopstick[i]);
wait(&chopstick[i+1]);

} else {
wait(&chopstick[0]);
wait(&chopstick[4]);

}

• What is wrong with this solution???

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Dining Philosophers:
How to Approach

• Guarantee two goals
– Safety: Ensure nothing bad happens (don’t violate constraints of

problem)
– Liveness: Ensure something good happens when it can (make as

much progress as possible)
• Introduce state variable for each philosopher i

– state[i] = THINKING, HUNGRY, or EATING

• Safety: No two adjacent philosophers eat simultaneously
– for all i: !(state[i]==EATING && state[i+1%5]==EATING)

• Liveness: Not the case that a philosopher is hungry and his
neighbors are not eating
– for all i: !(state[i]==HUNGRY &&

(state[i+4%5]!=EATING && state[i+1%5]!=EATING))

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Dining Philosophers: Solution
sem_t mayEat[5]; // how to initialize?
sem_t mutex; // how to init?
int state[5] = {THINKING};
take_chopsticks(int i) {

wait(&mutex); // enter critical section
state[i] = HUNGRY;
testSafetyAndLiveness(i); // check if I can run
signal(&mutex); // exit critical section
wait(&mayEat[i]);

}
put_chopsticks(int i) {

wait(&mutex); // enter critical section
state[i] = THINKING;
test(i+1 %5); // check if neighbor can run now
test(i+4 %5);
signal(&mutex); // exit critical section

}
testSafetyAndLiveness(int i) {

if (state[i]==HUNGRY && state[i+4%5]!=EATING&&state[i+1%5]!=EATING) {
state[i] = EATING;
signal(&mayEat[i]);

}
}

3

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Dining Philosophers:
Example Execution

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Monitors
• A programming language construct that supports

controlled access to shared data
– synchronization code added by compiler, enforced at

runtime
– why does this help?

• Monitor is a software module that encapsulates:
– shared data structures
– procedures that operate on the shared data
– synchronization between concurrent processes that invoke

those procedures
• Monitor protects the data from unstructured access

– guarantees only access data through procedures, hence in
legitimate ways

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

A monitor

shared data

waiting queue of processes
trying to enter the monitor

operations (procedures)at most one
process in monitor

at a time

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Monitor facilities
• Mutual exclusion

– only one process can be executing inside at any time
• thus, synchronization implicitly associated with monitor

– if a second process tries to enter a monitor procedure, it
blocks until the first has left the monitor

• more restrictive than semaphores!
• but easier to use most of the time

• Once inside, a process may discover it can’t
continue, and may wish to sleep
– or, allow some other waiting process to continue
– condition variables provided within monitor

• processes can wait or signal others to continue
• condition variable can only be accessed from inside monitor

4

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Implementation
• As a library (pthreads)

pthread_mutex_t mu;
 pthread_cond_t co;
 boolean ready;
 void foo() {
 pthread_mutex_lock(&mu);
 if (!ready)
 pthread_cond_wait(&co, &mu);
 …
 ready = TRUE;
 pthread_cond_signal(&co); // unlock and signal
 pthread_mutex_unlock(&mu);

• As a language (Java)
synchronized withdraw(int amount) {

while (balance < amount) {
wait();

balance -= amount;
if (balance == 0) {
notify();

}

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

Condition Variables
• A place to wait; sometimes called a rendezvous point

– Always used with a monitor lock
– No value (history) associated with condition variable

• Three operations on condition variables
– wait(c)

• release monitor lock, so somebody else can get in
• wait for somebody else to signal condition
• thus, condition variables have wait queues

– signal(c)
• wake up at most one waiting process/thread
• if no waiting processes, signal is lost
• this is different than semaphores: no history!

– broadcast(c)
• wake up all waiting processes/threads

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

Signaling
• Mesa monitors: signal(c) means

– Wake one thread waiting on this condition variable (if any)
• Signaller can keep lock and CPU

– waiter is made ready, but the signaller continues
• waiter runs when signaller leaves monitor (or waits)
• condition is not necessarily true when waiter runs again

– signaller need not restore invariant until it leaves the monitor
– being woken up is only a hint that something has changed

• must recheck conditional case
• Broadcast (or NotifyAll)

– Wake all threads waiting on condition variable
– Avoids need for multiple condition variables

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

Producer/Consumer: pthread monitors
• Another thread may be scheduled and acquire lock before signalled thread runs
• Implication: Must recheck condition with while() loop instead of if()

Producer

While (1) {
 mutex_lock(&lock);
 while (slots==N)
 cond_wait(&empty,&lock);
 myi = findempty(&buffer);
 Fill(&buffer[myi]);
 slots++;
 cond_signal(&full);
 mutex_unlock(&lock);
}

Consumer

While (1) {
 mutex_lock(&lock);
 while(slots==0)
 cond_wait(&full,&lock);
 myj = findfull(&buffer);
 Use(&buffer[myj]);
 slots--;
 cond_signal(&empty);
 mutex_unlock(&lock);
}

Shared variables
cond_t empty, full;
int slots = 0;

5

10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

Traffic light
monitor traffic_light;

enum direction = {left, right};
 enum color = {green, yellow, red};

color current_color[direction] = {green, red};
cond_t changed[direction];
direction current_dir = left;
int in_intersection = 0;

enter_left(dir)
while ((current_dir != dir) && (current_color != green))

cond_wait(changed[dir]);
in_intersection++;
return;

exit(dir)
in_intersection--;
if (in_intersection == 0) && (current_color[dir] == red)

broadcast(changed[other_dir(dir)]);

timer()
switch(current_color[direction]) {

case green:
current_color[current_dir] = yellow;

case yellow:
current_color[current_dir] = red;
current_dir = other_dir(current_dir);
current_color[current_dir] = green;
if (in_intersection == 0) {

broadcast(changed[current_dir]);
} 10/2/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 18

Examples

• Traffic light
– Only one direction of traffic can flow at a time

• Try more at home from the book!
– I will correct them if you would like

