CS 537
Lecture 9
Deadlock

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift

Quiz Answers

» Use of disabling interrupts

— Not allowed by processor --> requires system call

— Not safe is usermode code buggy and allowed by processor
» Locking

— Just lock manipulation of list, nothing else
» Double-checked locking

— Is safe here - assuming fine never gets closed and CPU
doesn’t reorder things or leave values in registers

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 2

Readers and Writers Monitor Example

Monitor ReadersNWriters {
int WaitingWriters, WaitingReaders,
NReaders, NWriters;

Condition CanRead, CanWrite; Void BeginRead() {
if(NWriters == 1 ||
Void BeginWrite() { WaitingWriters > 0) {
if (NWriters == 1 || ++WaitingReaders;
NReaders > 0) { Wait(CanRead);
++WaitingWriters; --WaitingReaders;
wait(CanWrite);
--WaitingWriters; ++NReaders;
} Signal(CanRead);
NWriters = 1;
}
Void EndRead() {
Void EndWrite() { if (--NReaders == 0)
NWriters = 0; Signal(CanWrite);
if(WaitingReaders) }
Signal(CanRead) ;
else Signal(CanWrite);
}
10/9/07 ©2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift

What can go wrong?

» For example: dining philosphers
 Primarily, we worry about:

— Starvation: A policy that can leave some philosopher
hungry in some situation (even one where the others
collaborate)

— Deadlock: A policy that leaves all the philosophers “stuck”,
so that nobody can do anything at all

— Livelock: A policy that makes them all do something
endlessly without ever eating!

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 4

Starvation vs Deadlock

« Starvation vs. Deadlock
— Starvation: thread waits indefinitely

« Example, low-priority thread waiting for resources constantly in use
by high-priority threads

— Deadlock: circular waiting for resources

« Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

— Deadlock = Starvation but not vice versa
« Starvation can end (but doesn’t have to)
« Deadlock can’t end without external intervention

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 5

Real World Deadlocks?

L

Gridlock

10/9/07 - - T 2005200 wargj An

Remzi Arpaci-Dussea, Michael Swift

Testing for deadlock

* How do cars doit?

— Never block an intersection

— Must back up if you find yourself doing so
* Why does this work?

— “Breaks” a wait-for relationship

— lllustrates a sense in which intransigent waiting (refusing to
release a resource) is one key element of true deadlock!

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 7

Testing for deadlock

» Steps
— Collect “process state” and use it to build a graph
< Ask each process “are you waiting for anything”?
< Put an edge in the graph if so
— We need to do this in a single instant of time, not while
things might be changing

* Now need a way to test for cycles in our graph

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift

Testing for deadlock

+ One way to find cycles
— Look for a node with no outgoing edges
— Erase this node, and also erase any edges coming into it

« ldea: This was a process people might have been waiting for,
but it wasn’t waiting for anything else

— If (and only if) the graph has no cycles, we’ll eventually be
able to erase the whole graph!

» This is called a graph reduction algorithm

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 9

Graph reduction example

i \@/@
S

@

This graph can be “fully reduced”, hence there was
no deadlock at the time the graph was drawn.

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 10

Graph reduction example

+ This is an example of an
“irreducible” graph °®
+ It contains a cycle and
represents a deadlock,
although only some [)
processes are in the cycle

10/9/07 ©2004-2007 Ed Lazowska, Hank Levy, Andrea and 11

Remzi Arpaci-Dussea, Michael Swift

Some questions you might ask

+ If a system is deadlocked, could this go away?

— No, unless someone kills one of the threads or something causes a
process to release a resource

— Many real systems put time limits on “waiting” precisely for this
reason. When a process gets a timeout exception, it gives up
waiting and this also can eliminate the deadlock

— But that process may be forced to terminate itself because often, if
a process can’'t get what it needs, there are no other options
available!

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 12

Some questions you might ask

» Suppose a system isn’t deadlocked at time T.

« Can we assume it will still be free of deadlock at time
T+1?
— No, because the very next thing it might do is to run some
process that will request a resource...
... establishing a cyclic wait
... and causing deadlock

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 13

Deadlocks

+ Definition: Deadlock exists among a set of processes
if
— Every process is waiting for an event
— This event can be caused only by another process in the set
« Event is the acquire or release of another resource

One-lane bridge

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 14

Four Conditions for Deadlock

* Coffman et. al. 1971

* Necessary conditions for deadlock to exist:
— Mutual Exclusion
« At least one resource must be held is in non-sharable mode
— Hold and wait
« There exists a process holding a resource, and waiting for another
— No preemption
* Resources cannot be preempted
— Circular wait

« There exists a set of processes {P,, P,, ... P}, such that
— P, is waiting for P,, P, for P, and Py for P,

All four conditions must hold for deadlock to occur

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 15

Dealing with Deadlocks

» Reactive Approaches: detect and recover
— Periodically check for evidence of deadlock
« For example, using a graph reduction algorithm
— Then need a way to recover
« Could blue screen and reboot the computer
« Could pick a “victim” and terminate that thread

— But this is only possible in certain kinds of applications

— Basically, thread needs a way to clean up if it gets terminated and
has to exit in a hurry!

« Often thread would then “retry” from scratch
» Despite drawbacks, database systems do this

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 16

Dealing with Deadlocks

» Proactive Approaches:
— Deadlock Prevention
< Prevent one of the 4 necessary conditions from arising
« This will prevent deadlock from occurring
— Deadlock Avoidance
« Carefully allocate resources based on future knowledge
« Deadlocks are prevented
* Ignore the problem
— Pretend deadlocks will never occur
— Ostrich approach... but surprisingly common!

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 17

Representing Deadlock

« Two common ways of representing deadlock
— Vertices:
« Threads (or processes) in system
+ Resources (anything of value, including locks and semaphores)
— Edges: Indicate thread is waiting for the other
— WFG: good for locks, RAG: good for buffers, devices

Wait-For Graph Resource-Allocation Graph
‘waiting fo® Wﬁ' y ld b
&, e ” X
‘waiting for held by wants
10/9/07 2004-2007 Ed Lazowska, Hank Levy, Andrea and 18

Remzi Arpaci-Dussea, Michael Swift

Deadlock Prevention #1

» Approach
— Ensure 1 of 4 conditions cannot occur
— Negate each of the 4 conditions

* No single approach is appropriate (or possible) for all
circumstances

* No mutual exclusion --> Make resource sharable
— Example: Read-only files

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 19

Deadlock Prevention #2

. No Hold-and-wait --> Two possibilities
* 1) Only request resources when have none
— Release resource before requesting next one

Thread 1 Thread 2
lock(x); lock(y);
A +=10; B += 10;
unlock(x); unlock(y);
lock(y); lock(x);
B += 20; A += 20;
unlock(y); unlock(x);
lock(x); lock(y):
A += 30; B += 30;
unlock(x); unlock(y);
10/9/07 ©2004-2007 Ed Lazowska, Hank Levy, Andrea and 20

Remzi Arpaci-Dussea, Michael Swift

Deadlock Prevention #2

* No Hold-and-wait

+ 2) Atomically acquire all resources at once
— Example #1: Single lock to protect all

Thread 1 Thread 2
lock(z); lock(z);
A +=10; B += 10;
B += 20; A += 20;
A += Bj A += B;
A += 30; B += 30;

unlock(z); unlock(z);

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 21

Deadlock Prevention #2

* No Hold-and-wait

+ 2) Atomically acquire all resources at once
— Example #2: New primitive to acquire two locks

Thread 1 Thread 2
lock(x,y)i lock(x,y);
A += 10; B += 10;
B += 20; A += 20;
A += B; A += B;
unlock(y); unlock(x);
A += 30; B += 30;
unlock(x); unlock(y);
10/9/07 2004-2007 Ed Lazowska, Hank Levy, Andrea and 22

Remzi Arpaci-Dussea, Michael Swift

Deadlock Prevention #2

» Problems w/ acquiring many resources atomically
— Low resource utilization
« Must make pessimistic assumptions about resource usage
if (condl) {
lock(x);
}
if (cond2) {
lock(y);
}
— Starvation

« If need many resources, others might keep getting one of them

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 23

Deadlock Prevention #3

* No “no preemption” --> Preempt resources

+ Example: A waiting for something held by B, then take resource
away from B and give to A

— Only works for some resources (e.g., CPU and memory)
— Not possible if resource cannot be saved and restored
< Can't take away a lock without causing problems

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 24

Deadlock Prevention #4

* No circular wait --> Impose ordering on resources

— Give all resources a ranking; must acquire highest ranked
first

— How to change Example?

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift

25

Deadlock Avoidance

+ Dijkstra’s Banker’s Algorithm
+ Avoid unsafe states of processes holding resources

Unsafe states might lead to deadlock if processes make
certain future requests

When process requests resource, only give if doesn’t cause

unsafe state

Problem: Requires processes to specify all possible future
resource demands

Banker’s Algorithm example

* When a request is made
— pretend you granted it
— pretend all other legal requests were made
— can the graph be reduced?
« if so, allocate the requested resource
« if not, block the thread

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift

27

101907 A 2
1. | request a pot
[[]
Pots
Max: [J [Max:
1 pot 2 pots
2 pans 1 pan
Pans

10/9/07

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

28

Allocation is OK; there is a

2. You request a pot

way for me to complete,
and then you can complete
[J [
/ - §
Max: \ o o / Max:
1 pot 2 pots
2 pans 1 pan
Pans
1019107 Sk oL szt ko et 2
Allocation is OK; there is a
way for me to complete,
and then you can complete
[J [
/ Pots %
Max: \ e o Max:
1 pot 2 pots
2 pans 1 pan
Pans
10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 31

Remzi Arpaci-Dussea, Michael Swift

[[
Pots
Max: [J [Max:
1 pot 2 pots
2 pans 1 pan
Pans
101907 A %
3a. You request a pan
[[]
Pots
Max: [J [Max:
1 pot 2 pots
2 pans 1 pan
Pans
10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 32

Remzi Arpaci-Dussea, Michael Swift

NO! Both of us might be

3b. I request a pan

[[
Pots
Max: [J [Max:
1 pot 2 pots
2 pans 1 pan
Pans
10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 34

Remzi Arpaci-Dussea, Michael Swift

unable to complete!
[J [
/ Pots
Max: \ e o Max:
1 pot 2 pots
2 pans 1 pan
Pans
1019107 Sk oL szt ko et 3
Allocation is OK; there is a
way for me to complete,
and then you can complete
[J [
/ Pots \
Max: \ e o / Max:
1 pot 2 pots
2 pans 1 pan
Pans
10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 35

Remzi Arpaci-Dussea, Michael Swift

Deadlock Detection and Recovery

+ Detection
— Maintain wait-for graph of requests
— Run algorithm looking for cycles
« When should algorithm be run?
* Recovery: Terminate deadlock
— Reboot system (Abort all processes)
— Abort all deadlocked processes
— Abort one process in cycle
+ Challenges

— How to take resource away from process? Undo effects of process
(e.g., removing money from account)
« Must roll-back state to safe state (checkpoint memory of job)
— Could starve process if repeatedly abort it

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 36

When to run Detection Algorithm?

» For every resource request?

» For every request that cannot be immediately
satisfied?

» Once every hour?

+ When CPU utilization drops below 40%?

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 37

Deadlock Recovery

+ Killing one/all deadlocked processes
— Crude, but effective
— Keep killing processes, until deadlock broken
— Repeat the entire computation

» Preempt resource/processes until deadlock broken
— Selecting a victim (# resources held, how long executed)
— Rollback (partial or total)
— Starvation (prevent a process from being executed)

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 38

Summary: Handing Deadlock

» Deadlock prevention

— Ensure deadlock does not happen

— Ensure at least one of 4 conditions does not occur
+ Deadlock avoidance

— Ensure deadlock does not happen

— Use information about resource requests to dynamically avoid
unsafe situations

» Deadlock detection and recovery
— Allow deadlocks, but detect when occur
— Recover and continue

+ Ignore
— Easiest and most common approach

2004-2007 Ed Lazowska, Hank Levy, Andrea and
10/9/07 Remzi Arpaci-Dussea, Michael Swift 39

10

