
1

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 9
Deadlock

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Quiz Answers

• Use of disabling interrupts
– Not allowed by processor --> requires system call
– Not safe is usermode code buggy and allowed by processor

• Locking
– Just lock manipulation of list, nothing else

• Double-checked locking
– Is safe here - assuming fine never gets closed and CPU

doesn’t reorder things or leave values in registers

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Readers and Writers Monitor Example
Monitor ReadersNWriters {
 int WaitingWriters, WaitingReaders,
 NReaders, NWriters;
 Condition CanRead, CanWrite;

Void BeginWrite() {
 if(NWriters == 1 ||
 NReaders > 0) {
 ++WaitingWriters;
 wait(CanWrite);
 --WaitingWriters;
 }
 NWriters = 1;
}

Void EndWrite() {
 NWriters = 0;
 if(WaitingReaders)
 Signal(CanRead);
 else Signal(CanWrite);
}

Void BeginRead() {
 if(NWriters == 1 ||
 WaitingWriters > 0) {
 ++WaitingReaders;
 Wait(CanRead);
 --WaitingReaders;
 }
 ++NReaders;
 Signal(CanRead);
}

Void EndRead() {
 if(--NReaders == 0)
 Signal(CanWrite);
}

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

What can go wrong?

• For example: dining philosphers
• Primarily, we worry about:

– Starvation: A policy that can leave some philosopher
hungry in some situation (even one where the others
collaborate)

– Deadlock: A policy that leaves all the philosophers “stuck”,
so that nobody can do anything at all

– Livelock: A policy that makes them all do something
endlessly without ever eating!

2

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
• Example, low-priority thread waiting for resources constantly in use

by high-priority threads
– Deadlock: circular waiting for resources

• Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock ⇒ Starvation but not vice versa
• Starvation can end (but doesn’t have to)
• Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Real World Deadlocks?

• Gridlock

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Testing for deadlock

• How do cars do it?
– Never block an intersection
– Must back up if you find yourself doing so

• Why does this work?
– “Breaks” a wait-for relationship
– Illustrates a sense in which intransigent waiting (refusing to

release a resource) is one key element of true deadlock!

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Testing for deadlock

• Steps
– Collect “process state” and use it to build a graph

• Ask each process “are you waiting for anything”?
• Put an edge in the graph if so

– We need to do this in a single instant of time, not while
things might be changing

• Now need a way to test for cycles in our graph

3

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Testing for deadlock

• One way to find cycles
– Look for a node with no outgoing edges
– Erase this node, and also erase any edges coming into it

• Idea: This was a process people might have been waiting for,
but it wasn’t waiting for anything else

– If (and only if) the graph has no cycles, we’ll eventually be
able to erase the whole graph!

• This is called a graph reduction algorithm

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Graph reduction example

8

10

4

11

7

12

5

6

1

0

2

3

9

This graph can be “fully reduced”, hence there was
no deadlock at the time the graph was drawn.

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Graph reduction example
• This is an example of an

“irreducible” graph
• It contains a cycle and

represents a deadlock,
although only some
processes are in the cycle

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Some questions you might ask
• If a system is deadlocked, could this go away?

– No, unless someone kills one of the threads or something causes a
process to release a resource

– Many real systems put time limits on “waiting” precisely for this
reason. When a process gets a timeout exception, it gives up
waiting and this also can eliminate the deadlock

– But that process may be forced to terminate itself because often, if
a process can’t get what it needs, there are no other options
available!

4

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Some questions you might ask

• Suppose a system isn’t deadlocked at time T.
• Can we assume it will still be free of deadlock at time

T+1?
– No, because the very next thing it might do is to run some

process that will request a resource…
… establishing a cyclic wait
… and causing deadlock

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

Deadlocks

• Definition: Deadlock exists among a set of processes
if
– Every process is waiting for an event
– This event can be caused only by another process in the set

• Event is the acquire or release of another resource

One-lane bridge

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

Four Conditions for Deadlock

• Coffman et. al. 1971
• Necessary conditions for deadlock to exist:

– Mutual Exclusion
• At least one resource must be held is in non-sharable mode

– Hold and wait
• There exists a process holding a resource, and waiting for another

– No preemption
• Resources cannot be preempted

– Circular wait
• There exists a set of processes {P1, P2, … PN}, such that

– P1 is waiting for P2, P2 for P3, …. and PN for P1

All four conditions must hold for deadlock to occur
10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 16

Dealing with Deadlocks

• Reactive Approaches: detect and recover
– Periodically check for evidence of deadlock

• For example, using a graph reduction algorithm
– Then need a way to recover

• Could blue screen and reboot the computer
• Could pick a “victim” and terminate that thread

– But this is only possible in certain kinds of applications
– Basically, thread needs a way to clean up if it gets terminated and

has to exit in a hurry!
• Often thread would then “retry” from scratch

• Despite drawbacks, database systems do this

5

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

Dealing with Deadlocks

• Proactive Approaches:
– Deadlock Prevention

• Prevent one of the 4 necessary conditions from arising
• …. This will prevent deadlock from occurring

– Deadlock Avoidance
• Carefully allocate resources based on future knowledge
• Deadlocks are prevented

• Ignore the problem
– Pretend deadlocks will never occur
– Ostrich approach… but surprisingly common!

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

Representing Deadlock

• Two common ways of representing deadlock
– Vertices:

• Threads (or processes) in system
• Resources (anything of value, including locks and semaphores)

– Edges: Indicate thread is waiting for the other
– WFG: good for locks, RAG: good for buffers, devices

T1 T2

“waiting for”

“waiting for”

Wait-For Graph Resource-Allocation Graph

T1 T2
wants

held by

y

x
wants

held by

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

Deadlock Prevention #1

• Approach
– Ensure 1 of 4 conditions cannot occur
– Negate each of the 4 conditions

• No single approach is appropriate (or possible) for all
circumstances

• No mutual exclusion --> Make resource sharable
– Example: Read-only files

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

Deadlock Prevention #2
• No Hold-and-wait --> Two possibilities
• 1) Only request resources when have none

– Release resource before requesting next one

Thread 1
lock(x);
A += 10;
unlock(x);
lock(y);
B += 20;
unlock(y);
lock(x);
A += 30;
unlock(x);

Thread 2
lock(y);
B += 10;
unlock(y);
lock(x);
A += 20;
unlock(x);
lock(y);
B += 30;
unlock(y);

6

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

Deadlock Prevention #2

• No Hold-and-wait
• 2) Atomically acquire all resources at once

– Example #1: Single lock to protect all

Thread 1
lock(z);
A += 10;
B += 20;
A += B;
A += 30;
unlock(z);

Thread 2
lock(z);
B += 10;
A += 20;
A += B;
B += 30;
unlock(z);

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

Deadlock Prevention #2

• No Hold-and-wait
• 2) Atomically acquire all resources at once

– Example #2: New primitive to acquire two locks

Thread 1
lock(x,y);
A += 10;
B += 20;
A += B;
unlock(y);
A += 30;
unlock(x);

Thread 2
lock(x,y);
B += 10;
A += 20;
A += B;
unlock(x);
B += 30;
unlock(y);

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

Deadlock Prevention #2
• Problems w/ acquiring many resources atomically

– Low resource utilization
• Must make pessimistic assumptions about resource usage
if (cond1) {

lock(x);
}

if (cond2) {
lock(y);

}

– Starvation
• If need many resources, others might keep getting one of them

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 24

Deadlock Prevention #3
• No “no preemption” --> Preempt resources
• Example: A waiting for something held by B, then take resource

away from B and give to A
– Only works for some resources (e.g., CPU and memory)
– Not possible if resource cannot be saved and restored

• Can’t take away a lock without causing problems

7

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 25

Deadlock Prevention #4
• No circular wait --> Impose ordering on resources

– Give all resources a ranking; must acquire highest ranked
first

– How to change Example?

• Problems?

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 26

Deadlock Avoidance

• Dijkstra’s Banker’s Algorithm
• Avoid unsafe states of processes holding resources

– Unsafe states might lead to deadlock if processes make
certain future requests

– When process requests resource, only give if doesn’t cause
unsafe state

– Problem: Requires processes to specify all possible future
resource demands

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 27

Banker’s Algorithm example

• When a request is made
– pretend you granted it
– pretend all other legal requests were made
– can the graph be reduced?

• if so, allocate the requested resource
• if not, block the thread

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 28

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

1. I request a pot

8

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 29

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 30

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

2. You request a pot

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 31

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 32

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

3a. You request a pan

9

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 33

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

NO! Both of us might be
unable to complete!

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 34

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

3b. I request a pan

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 35

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 36

Deadlock Detection and Recovery
• Detection

– Maintain wait-for graph of requests
– Run algorithm looking for cycles

• When should algorithm be run?
• Recovery: Terminate deadlock

– Reboot system (Abort all processes)
– Abort all deadlocked processes
– Abort one process in cycle

• Challenges
– How to take resource away from process? Undo effects of process

(e.g., removing money from account)
• Must roll-back state to safe state (checkpoint memory of job)

– Could starve process if repeatedly abort it

10

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 37

When to run Detection Algorithm?

• For every resource request?
• For every request that cannot be immediately

satisfied?
• Once every hour?
• When CPU utilization drops below 40%?

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 38

Deadlock Recovery

• Killing one/all deadlocked processes
– Crude, but effective
– Keep killing processes, until deadlock broken
– Repeat the entire computation

• Preempt resource/processes until deadlock broken
– Selecting a victim (# resources held, how long executed)
– Rollback (partial or total)
– Starvation (prevent a process from being executed)

10/9/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 39

Summary: Handing Deadlock
• Deadlock prevention

– Ensure deadlock does not happen
– Ensure at least one of 4 conditions does not occur

• Deadlock avoidance
– Ensure deadlock does not happen
– Use information about resource requests to dynamically avoid

unsafe situations
• Deadlock detection and recovery

– Allow deadlocks, but detect when occur
– Recover and continue

• Ignore
– Easiest and most common approach

