
1

1

CS 537
Lecture 10
Scheduling

Michael Swift

2

Scheduling
• In discussion process management, we talked about

context switching between threads/process on the
ready queue
– but, we glossed over the details of which process or thread

is chosen next
– making this decision is called scheduling

• scheduling is policy
• context switching is mechanism

• Today, we’ll look at:
– the goals of scheduling

• starvation
– well-known scheduling algorithms

• standard UNIX scheduling

3

Types of Resources
• Resources can be classified into one of two groups
• Type of resource determines how the OS manages it
1) Non-preemptible resources

– Once given resource, cannot be reused until voluntarily relinquished
– Resource has complex or costly state associated with it
– Need many instances of this resource
– Example: Blocks on disk
– OS management: allocation

• Decide which process gets which resource
2) Preemptible resources

– Can take resource away, give it back later
– Resource has little state associated with it
– May only have one of this resource
– Example: CPU
– OS management: scheduling

• Decide order in which requests are serviced
• Decide how long process keeps resource

4

Multiprogramming and Scheduling
• Multiprogramming increases resource utilization and

job throughput by overlapping I/O and CPU
– We look at scheduling policies

• which process/thread to run, and for how long
– schedulable entities are usually called jobs

• processes, threads, people, disk arm movements, …

• There are two time scales of scheduling the CPU:
– long term: determining the multiprogramming level

• how many jobs are loaded into primary memory
• act of loading in a new job (or loading one out) is swapping

– short-term: which job to run next to result in “good service”
• happens frequently, want to minimize context-switch overhead
• good service could mean many things

2

5

Scheduling
• The scheduler is the module that moves jobs from

queue to queue
– the scheduling algorithm determines which job(s) are chosen

to run next, and which queues they should wait on
– the scheduler is typically run when:

• a job switches from running to waiting
• when an interrupt occurs

– especially a timer interrupt
• when a job is created or terminated

• There are two major classes of scheduling systems
– in preemptive systems, the scheduler can interrupt a job and

force a context switch
– in non-preemptive systems, the scheduler waits for the

running job to explicitly (voluntarily) block

6

Levels of CPU Management
• Dispatcher

– Low-level mechanism
– Performs context-switch

• Save execution state of old thread in TCB
• Add TCB to appropriate queue (ready or blocked)
• Load state of next thread from TCB to registers
• Switch from kernel to user mode
• Jump to instruction in user thread

• Scheduler
– Policy to determine which thrad gets CPU when

• Allocator
– Policy to determine which threads compete for which CPU
– Needed for multiprocessor, parallel, and distributed systems

7

Process Model
• Workload contains collection of jobs (processes)
• Process alternates between CPU and I/O bursts

– CPU-bound jobs: Long CPU bursts

– I/O-bound: Short CPU bursts

– I/O burst = process idle, switch to another “for free”
– Problem: don’t know job’s type before running

• Need job scheduling for each ready job
• Schedule each CPU burst

Matrix multiply

emacsemacs

8

Scheduling Goals
• Scheduling algorithms can have many different goals (which

sometimes conflict)
– maximize CPU utilization
– maximize job throughput (#jobs/s)
– minimize job turnaround time (Tfinish – Tstart)
– minimize job waiting time (Avg(Twait): average time spent on wait queue)
– minimize response time (Avg(Tresp): average time spent on ready queue)
– Maximize resource utilization

• Keep expensive devices busy
– Minimize overhead

• Reduce number of context switches
– Maximize fairness

• All jobs get same amount of CPU over some time interval

• Goals may depend on type of system
– batch system: strive to maximize job throughput and minimize turnaround

time
– interactive systems: minimize response time of interactive jobs (such as

editors or web browsers)

3

9

Scheduler Non-goals

• Schedulers typically try to prevent starvation
– starvation occurs when a process is prevented from making

progress, because another process has a resource it needs

• A poor scheduling policy can cause starvation
– e.g., if a high-priority process always prevents a low-priority

process from running on the CPU

10

Gantt Chart

• Illustrates how jobs are scheduled over time on CPU

Example:

A B C
Time 10 12 160

11

First-Come-First-Served (FCFS)

C

B

A

Job

2

1

0

Arrival

4

2

10

CPU
burst

A B C
Time 10 12 160

Average wait time:
(0 + (10-1) + (12-2))/3=6.33
Average turnaround time:
(10 + (12-1) + (16-2))/3=11.67

• Idea: Maintain FIFO list of jobs as they arrive
– Non-preemptive policy
– Allocate CPU to job at head of list

12

FCFS Discussion
• Advantage: Very simple implementation
• Disadvantage

– Waiting time depends on arrival order
– Potentially long wait for jobs that arrive later
– Convoy effect: Short jobs stuck waiting for long jobs

• Hurts waiting time of short jobs
• Reduces utilization of I/O devices
• Example: 1 mostly CPU-bound job, 3 mostly I/O-bound jobs

CB DA CB DA

CB DIdle A Idle CB DA

CPU

Disk

Time

4

13

Shortest-Job-First (SJF)
• Idea: Minimize average wait time by running shortest

CPU-burst next
– Non-preemptive
– Use FCFS if jobs are of same length

C

B

A

Job

0

0

0

Arrival

4

2

10

CPU
burst

AB C
Time 160

Average wait:

Average turnaround:

2 6 14

SJF Discussion

• Advantages
– Provably optimal for minimizing average wait time (with no

preemption)
• Moving shorter job before longer job improves waiting time of

short job more than it harms waiting time of long job
– Helps keep I/O devices busy

• Disadvantages
– Not practical: Cannot predict future CPU burst time

• OS solution: Use past behavior to predict future behavior
– Starvation: Long jobs may never be scheduled

15

Shortest-Time-to-Completion-First (STCF
or SCTF)

• Idea: Add preemption to SJF
– Schedule newly ready job if shorter than remaining burst for

running job

92C

D

B

A

Job

3

1

0

Arrival

5

4

8

CPU
burst

Time

SJF Average wait:
STCF Average wait:

A B CD

A B D A C

0 8 12

26

2617

17101 50

SJF

16

Round-Robin (RR)

• Idea: Run each job for a time-slice and then move to
back of FIFO queue
– Preempt job if still running at end of time-slice

C

B

A

Job

2

1

0

Arrival

4

2

10

CPU
burst

A B C A B C A C A C A

Average wait:

Time

5

17

RR Discussion
• Advantages

– Jobs get fair share of CPU
– Shortest jobs finish relatively quickly

• Disadvantages
– Poor average waiting time with similar job lengths

• Example: 10 jobs each requiring 10 time slices
• RR: All complete after about 100 time slices
• FCFS performs better!

– Performance depends on length of time-slice
• If time-slice too short, pay overhead of context switch
• If time-slice too long, degenerate to FCFS

18

RR Time-Slice
• IF time-slice too long, degenerate to FCFS

– Example:
• Job A w/ 1 ms compute and 10ms I/O
• Job B always computes
• Time-slice is 50 ms

BA BA

CPU

Disk

A Idle A Idle

Goal: Adjust length of time-slice to match CPU burst

Time

19

Priority-Based
• Idea: Each job is assigned a priority

– Schedule highest priority ready job
– May be preemptive or non-preemptive
– Priority may be static or dynamic

• Advantages
– Static priorities work well for real time systems
– Dynamic priorities work well for general workloads

• Disadvantages
– Low priority jobs can starve
– How to choose priority of each job?

• Goal: Adjust priority of job to match CPU burst
– Approximate SCTF by giving short jobs high priority

20

Scheduling Algorithms

• Multi-level Queue Scheduling
• Implement multiple ready queues based on job “type”

– interactive processes
– CPU-bound processes
– batch jobs
– system processes
– student programs

• Different queues may be scheduled using different algorithms
• Intra-queue CPU allocation is either strict or proportional
• Problem: Classifying jobs into queues is difficult

– A process may have CPU-bound phases as well as interactive ones

6

21

Multilevel Queue Scheduling

System Processes

Interactive Processes

Batch Processes

Student Processes
Lowest priority

Highest priority

22

Scheduling Algorithms
• Multi-level Feedback Queues
• Implement multiple ready queues

– Different queues may be scheduled using different algorithms
– Just like multilevel queue scheduling, but assignments are not static

• Jobs move from queue to queue based on feedback
– Feedback = The behavior of the job,

• e.g. does it require the full quantum for computation, or
• does it perform frequent I/O ?

• Very general algorithm
• Need to select parameters for:

– Number of queues
– Scheduling algorithm within each queue
– When to upgrade and downgrade a job

23

Multilevel Feedback Queues

Quantum = 2

Quantum = 4

Quantum = 8

FCFS

Lowest priority

Highest priority

24

A Multi-level System

low

high

high

priority

timeslice

I/O bound jobs

CPU bound jobs

7

25

UNIX Scheduling
• Canonical scheduler uses a MLFQ

– 3-4 classes spanning ~170 priority levels
• timesharing: first 60 priorities
• system: next 40 priorities
• real-time: next 60 priorities

– priority scheduling across queues, RR within
• process with highest priority always run first
• processes with same priority scheduled RR

– processes dynamically change priority
• increases over time if process blocks before end of quantum
• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU

