CS 537
Lecture 10
Scheduling

Michael Swift

Scheduling

+ In discussion process management, we talked about
context switching between threads/process on the
ready queue

— but, we glossed over the details of which process or thread
is chosen next

— making this decision is called scheduling
« scheduling is policy
« context switching is mechanism

» Today, we'll look at:

— the goals of scheduling
« starvation

— well-known scheduling algorithms
« standard UNIX scheduling

Types of Resources

Resources can be classified into one of two groups
Type of resource determines how the OS manages it
Non-preemptible resources

Once given resource, cannot be reused until voluntarily relinquished
Resource has complex or costly state associated with it
Need many instances of this resource
Example: Blocks on disk
OS management: allocation
« Decide which process gets which resource

Preemptible resources

Can take resource away, give it back later
Resource has little state associated with it
May only have one of this resource
Example: CPU
OS management: scheduling
« Decide order in which requests are serviced
« Decide how long process keeps resource

Multiprogramming and Scheduling

» Multiprogramming increases resource utilization and
job throughput by overlapping 1/0 and CPU
— We look at scheduling policies
« which process/thread to run, and for how long
— schedulable entities are usually called jobs
« processes, threads, people, disk arm movements, ...
» There are two time scales of scheduling the CPU:
— long term: determining the multiprogramming level
« how many jobs are loaded into primary memory
« act of loading in a new job (or loading one out) is swapping
— short-term: which job to run next to result in “good service”
« happens frequently, want to minimize context-switch overhead
« good service could mean many things

Scheduling

* The scheduler is the module that moves jobs from
queue to queue
— the scheduling algorithm determines which job(s) are chosen
to run next, and which queues they should wait on
— the scheduler is typically run when:
« ajob switches from running to waiting
« when an interrupt occurs
— especially a timer interrupt
« when a job is created or terminated

» There are two major classes of scheduling systems
— in preemptive systems, the scheduler can interrupt a job and
force a context switch
— in non-preemptive systems, the scheduler waits for the
running job to explicitly (voluntarily) block

Levels of CPU Management

Dispatcher
— Low-level mechanism
— Performs context-switch
Save execution state of old thread in TCB
Add TCB to appropriate queue (ready or blocked)
Load state of next thread from TCB to registers
Switch from kernel to user mode
Jump to instruction in user thread
Scheduler
— Policy to determine which thrad gets CPU when
Allocator
— Policy to determine which threads compete for which CPU
— Needed for multiprocessor, parallel, and distributed systems

Process Model

» Workload contains collection of jobs (processes)

« Process alternates between CPU and 1/O bursts
— CPU-bound jobs: Long CPU bursts

— 1/O-bound: Short CPU bursts

— 1/0 burst = process idle, switch to another “for free”
— Problem: don’t know job’s type before running

« Need job scheduling for each ready job
» Schedule each CPU burst

Scheduling Goals

Scheduling algorithms can have many different goals (which
sometimes conflict)
— maximize CPU utilization
— maximize job throughput (#3jobs/s)
— minimize job turnaround time (T ...,
— minimize job waiting time (Avg (T
— minimize response time (Avg (T
— Maximize resource utilization
+ Keep expensive devices busy
— Minimize overhead
« Reduce number of context switches
— Maximize fairness
+ All jobs get same amount of CPU over some time interval
Goals may depend on type of system
— batch system: strive to maximize job throughput and minimize turnaround
time
— interactive systems: minimize response time of interactive jobs (such as
editors or web browsers)

= Totare)
waic) 1 @verage time spent on wait queue)
: average time spent on ready queue)

resp)

Scheduler Non-goals

+ Schedulers typically try to prevent starvation
— starvation occurs when a process is prevented from making
progress, because another process has a resource it needs
» A poor scheduling policy can cause starvation
— e.g., if a high-priority process always prevents a low-priority
process from running on the CPU

Gantt Chart

* lllustrates how jobs are scheduled over time on CPU

Example:

0
Time 10 12 16

First-Come-First-Served (FCFS)

 Idea: Maintain FIFO list of jobs as they arrive
— Non-preemptive policy
— Allocate CPU to job at head of list

Job |Arrival | CPU . .
bust | Average wait fime:

A |o 10 (0 + (10-1) + (12-2))/3=6.33
B |1 2 Average turnaround time:
c 12 2 (10 + (12-1) + (16-2))/3=11.67

| A B I

0
Time 10 12 16

FCFS Discussion

Advantage: Very simple implementation
Disadvantage
— Waiting time depends on arrival order
— Potentially long wait for jobs that arrive later
— Convoy effect: Short jobs stuck waiting for long jobs
* Hurts waiting time of short jobs
» Reduces utilization of I/O devices
« Example: 1 mostly CPU-bound job, 3 mostly I/0-bound jobs

cPU
|) A [scD]

Disk

| de WEBEBP 1e K [BE D
12

Time

»
'

Shortest-Job-First (SJF)

+ |dea: Minimize average wait time by running shortest
CPU-burst next
— Non-preemptive
— Use FCFS if jobs are of same length

Job | Arrival | CPU X
bust | Average wait:
A |0 10
B |0 2 Average turnaround:
c |o 4
EN ¢ | A |
2 6 16

Time

\ 4

SJF Discussion

» Advantages
— Provably optimal for minimizing average wait time (with no
preemption)
« Moving shorter job before longer job improves waiting time of
short job more than it harms waiting time of long job

— Helps keep /O devices busy
+ Disadvantages
— Not practical: Cannot predict future CPU burst time
« OS solution: Use past behavior to predict future behavior
— Starvation: Long jobs may never be scheduled

Shortest-Time-to-Completion-First (STCF
or SCTF)

+ Idea: Add preemption to SJF
— Schedule newly ready job if shorter than remaining burst for

running job
R I i SJF Average wait:
n o s STCF Average wait:
B 1 4
Cc 2 9
D 3 5
Z
0 8 12 17 26 SJF
AREETET] A [e]

Time >

Round-Robin (RR)

+ Idea: Run each job for a time-slice and then move to
back of FIFO queue

— Preempt job if still running at end of time-slice

Job | Arrival | cPU
| Average wait:
A [0 |10
B |1 |2
c |2 |4
Time

A 4

=)

RR Discussion

+ Advantages

— Jobs get fair share of CPU
— Shortest jobs finish relatively quickly

Disadvantages

— Poor average waiting time with similar job lengths
« Example: 10 jobs each requiring 10 time slices
* RR: All complete after about 100 time slices
* FCFS performs better!

— Performance depends on length of time-slice

« If time-slice too short, pay overhead of context switch
« If time-slice too long, degenerate to FCFS

RR Time-Slice

« IF time-slice too long, degenerate to FCFS
— Example:
+ Job A w/ 1 ms compute and 10ms I/O
« Job B always computes
« Time-slice is 50 ms

cPU

Disk
‘ ‘ A ‘ Idle ‘ A ‘ Idle
Time
Goal: Adjust length of time-slice to match CPU burst 18

Priority-Based

Idea: Each job is assigned a priority
— Schedule highest priority ready job
— May be preemptive or non-preemptive
— Priority may be static or dynamic
Advantages
— Static priorities work well for real time systems
— Dynamic priorities work well for general workloads
Disadvantages
— Low priority jobs can starve
— How to choose priority of each job?
Goal: Adjust priority of job to match CPU burst
— Approximate SCTF by giving short jobs high priority

Scheduling Algorithms

» Multi-level Queue Scheduling
« Implement multiple ready queues based on job “type”
— interactive processes
— CPU-bound processes
— batch jobs
— system processes
— student programs
« Different queues may be scheduled using different algorithms
« Intra-queue CPU allocation is either strict or proportional
« Problem: Classifying jobs into queues is difficult
— A process may have CPU-bound phases as well as interactive ones

20

Multilevel Queue Scheduling

Highest priority

[SystemProcesses |

|::>| Interactive Processes |::>
|::>| Batch Processes |::>

|::>| Student Processes |::>

Lowest priority

21

Scheduling Algorithms

Multi-level Feedback Queues

Implement multiple ready queues

— Different queues may be scheduled using different algorithms

— Just like multilevel queue scheduling, but assignments are not static
Jobs move from queue to queue based on feedback

— Feedback = The behavior of the job,
« e.g. does it require the full quantum for computation, or
« does it perform frequent 1/0 ?

Very general algorithm

Need to select parameters for:
— Number of queues
— Scheduling algorithm within each queue
— When to upgrade and downgrade a job

22

Multilevel Feedback Queues

Highest priority
=l Quantum=2 [57
_|
u Quantum = 4 IT'
Ll Quantum = 8 |‘|

|[d FCFS =

Lowest priority
23

A Multi-level System

I/0 bound jobs

high
priority
CPU bound jobs
high
low timeslice ' o

UNIX Scheduling

+ Canonical scheduler uses a MLFQ
— 3-4 classes spanning ~170 priority levels
« timesharing: first 60 priorities
« system: next 40 priorities
« real-time: next 60 priorities
— priority scheduling across queues, RR within
« process with highest priority always run first
« processes with same priority scheduled RR
— processes dynamically change priority
« increases over time if process blocks before end of quantum
« decreases if process uses entire quantum
* Goals:

— reward interactive behavior over CPU hogs
« interactive jobs typically have short bursts of CPU

25

