
1

1

CS 537
Lecture 11

Memory

Michael Swift

2

Memory Management Topics

• Goals of memory management
– convenient abstraction for programming
– isolation between processes
– allocate scarce memory resources between competing

processes, maximize performance (minimize overhead)

• Mechanisms
– physical vs. virtual address spaces
– page table management, segmentation policies
– page replacement policies

3

Virtual Memory from 10,000 feet
• The basic abstraction that the OS provides for memory management is

virtual memory (VM)
– VM enables programs to execute without requiring their entire address

space to be resident in physical memory
• program can also execute on machines with less RAM than it “needs”

– many programs don’t need all of their code or data at once (or ever)
• e.g., branches they never take, or data they never read/write
• no need to allocate memory for it, OS should adjust amount allocated based on

its run-time behavior
– virtual memory isolates processes from each other

• one process cannot name addresses visible to others; each process has its own
isolated address space

• VM requires hardware and OS support
– MMU’s, TLB’s, page tables, …

4

Virtualizing Resources
• Physical Reality:

Different Processes/Threads share the same hardware
– Need to multiplex CPU (finished earlier: scheduling)
– Need to multiplex use of Memory (Today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is defined

by its data in memory (and registers)
– Consequently, cannot just let different threads of control use the

same memory
• Physics: two different pieces of data cannot occupy the same locations

in memory
– Probably don’t want different threads to even have access to each

other’s memory (protection)

2

5

In the beginning…

• First, there was batch programming
– programs used physical addresses directly
– OS loads job, runs it, unloads it

• Then came multiprogramming
– need multiple processes in memory at once

• to overlap I/O and computation
– memory requirements:

• protection: restrict which addresses processes can use, so they
can’t stomp on each other

• fast translation: memory lookups must be fast, in spite of
protection scheme

• fast context switching: when swap between jobs, updating
memory hardware (protection and translation) must be quick

6

Virtual Addresses
• To make it easier to manage memory of multiple processes,

make processes use virtual addresses
– virtual addresses are independent of location in physical memory

(RAM) that referenced data lives
• OS determines location in physical memory

– instructions issued by CPU reference virtual addresses
• e.g., pointers, arguments to load/store instruction, PC, …

– virtual addresses are translated by hardware into physical
addresses (with some help from OS)

• The set of virtual addresses a process can reference is its
address space
– many different possible mechanisms for translating virtual

addresses to physical addresses
• we’ll take a historical walk through them, ending up with our current

techniques
• In reality, an address space is a data structure in the kernel

7

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process 8

Important Aspects of Memory Multiplexing
• Translation:

– Ability to translate accesses from one address space
(virtual) to a different one (physical)

– When translation exists, processor uses virtual addresses,
physical memory uses physical addresses

– Side effects:
• Can be used to avoid overlap
• Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

• Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

• Kernel data protected from User programs
• Programs protected from themselves

3

9

Old technique #1: Fixed Partitions
• Physical memory is broken up into fixed partitions

– all partitions are equally sized, partitioning never changes
– hardware requirement: base register

• physical address = virtual address + base register
• base register loaded by OS when it switches to a process

– how can we ensure protection?
• Advantages

– simple, ultra-fast context switch
• Problems

– internal fragmentation: memory in a partition not used by its owning
process isn’t available to other processes

– partition size problem: no one size is appropriate for all processes
• fragmentation vs. fitting large programs in partition

10

Fixed Partitions (K bytes)

partition 0

partition 1

partition 2

partition 3

partition 4

partition 5

0

K

2K

3K

4K

5K

physical memory

offset +
virtual address

3K
base register

11

Old technique #2: Variable Partitions
• Obvious next step: physical memory is broken up into variable-

sized partitions
– hardware requirements: base register, limit register
– physical address = virtual address + base register
– how do we provide protection?

• if (physical address > base + limit) then… ?
• Advantages

– no internal fragmentation
• simply allocate partition size to be just big enough for process
• (assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered throughout
physical memory

12

Variable Partitions

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base
base register

P3’s size
limit register

<?

raise
 protection fault

no

yes

4

13

Modern technique: Paging

• Solve the external fragmentation problem by using
fixed sized units in both physical and virtual memory

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory

…

page 3

14

User’s Perspective

• Processes view memory as a contiguous address
space from bytes 0 through N
– virtual address space (VAS)

• In reality, virtual pages are scattered across physical
memory frames
– virtual-to-physical mapping
– this mapping is invisible to the program

• Protection is provided because a program cannot
reference memory outside of it’s VAS
– the virtual address 0xDEADBEEF maps to different physical

addresses for different processes

15

Paging
• Translating virtual addresses

– a virtual address has two parts: virtual page number & offset
– virtual page number (VPN) is index into a page table
– page table entry contains page frame number (PFN)
– physical address is PFN::offset

• Page tables
– managed by the OS
– map virtual page number (VPN) to page frame number (PFN)

• VPN is simply an index into the page table
– one page table entry (PTE) per page in virtual address space

• i.e., one PTE per VPN

16

Paging

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame #page frame #

page table

offset
virtual address

virtual page #

5

17

Paging example
• assume 32 bit addresses

– assume page size is 4KB (4096 bytes, or 212 bytes)
– VPN is 20 bits long (220 VPNs), offset is 12 bits long

• let’s translate virtual address 0x13325328

– VPN is 0x13325, and offset is 0x328
– assume page table entry 0x13325 contains value 0x03004

• page frame number is 0x03004
• VPN 0x13325 maps to PFN 0x03004

– physical address = PFN::offset = 0x03004328

18

Page Table Entries (PTEs)

• PTE’s control mapping
– the valid bit says whether or not the PTE can be used

• says whether or not a virtual address is valid
• it is checked each time a virtual address is used

– the reference bit says whether the page has been accessed
• it is set when a page has been read or written to

– the modify bit says whether or not the page is dirty
• it is set when a write to the page has occurred

– the protection bits control which operations are allowed
• read, write, execute

– the page frame number determines the physical page
• physical page start address = PFN << (#bits/page)

page frame numberprotMRV
202111

19

Multi-level Translation

• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap

• Could have any number of levels
– x86 has 2
– x64 has 4

20

Physical
Address: OffsetPhysical

Page #

4KB

Another common example:
two-level page table

10 bits 10 bits 12 bits
Virtual

Address: OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single PageTablePtr
register

• Valid bits on Page Table Entries
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside

on disk if not in use
4 bytes

6

21

Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we

need for application
• In other wards, sparse address spaces are easy

– Easy memory allocation
– Easy Sharing

• Share at segment or page level (need additional reference
counting)

• Cons:
– One pointer per page (typically 4K – 16K pages today)
– Two (or more, if >2 levels) lookups per reference

• Seems very expensive!

22

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory allocated

to processes
– Physical memory may be much less

• Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Inverted Page Table

23

Paging Advantages
• Easy to allocate physical memory

– physical memory is allocated from free list of frames
• to allocate a frame, just remove it from its free list

– external fragmentation is not a problem!
• complication for kernel contiguous physical memory allocation

– many lists, each keeps track of free regions of particular size
– regions’ sizes are multiples of page sizes
– “buddy algorithm”

• Easy to “page out” chunks of programs
– all chunks are the same size (page size)
– use valid bit to detect references to “paged-out” pages
– also, page sizes are usually chosen to be convenient

multiples of disk block sizes

24

Paging Disadvantages
• Can still have internal fragmentation

– process may not use memory in exact multiples of pages
• Memory reference overhead

– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table lookups

• translation lookaside buffer (TLB) – next class
• Memory required to hold page tables can be large

– need one PTE per page in virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– solution: page the page tables (!!!)
• (ow, my brain hurts…more later)

