
1

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 12

Paging

Michael Swift

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Notes

• Writing assignment 1 has been posted - due next
Thursday

• I want to meet with groups this week. I’ll have a sign-
up sheet after class

• Today: Paging and TLBs
• Questions from last time:

– What is virtual memory?
– What does it do?
– What is it good for?

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Paging Advantages
• Easy to allocate physical memory

– physical memory is allocated from free list of frames
• to allocate a frame, just remove it from its free list

– external fragmentation is not a problem!
• complication for kernel contiguous physical memory allocation

– many lists, each keeps track of free regions of particular size
– regions’ sizes are multiples of page sizes
– “buddy algorithm”

• Easy to “page out” chunks of programs
– all chunks are the same size (page size)
– use valid bit to detect references to “paged-out” pages
– also, page sizes are usually chosen to be convenient

multiples of disk block sizes

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Paging Disadvantages
• Can still have internal fragmentation

– process may not use memory in exact multiples of pages
• Memory reference overhead

– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table lookups

• translation lookaside buffer (TLB)
• Memory required to hold page tables can be large

– need one PTE per page in virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– solution: page the page tables (!!!)

2

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Hardware and Kernel structures for
paging

• Hardware:
– Page table base register
– TLB (will discuss soon)

• Software:
– Page table

• Virtual --> physical or virtual --> disk mapping
– Page frame database

• One entry per physical page
• Information on page, owning process

– Swap file / Section list (will discuss under page replacement)

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Page Frame Database
/*
 * Each physical page in the system has a struct page associated with
 * it to keep track of whatever it is we are using the page for at the
 * moment. Note that we have no way to track which tasks are using
 * a page.
 */
struct page {
 unsigned long flags; // Atomic flags: locked,referenced,dirty,slab,disk
 atomic_t _count; // Usage count, see below. */
 atomic_t _mapcount; // Count of ptes mapped in mms,

// to show when page is mapped
// & limit reverse map searches.

struct {
 unsigned long private; // Used for managing pages used in file I/O
 struct address_space *mapping; // Used for memory mapped files
 };
 pgoff_t index; // Our offset within mapping. */
 struct list_head lru; // Lock on Pageout list, active_list
 void *virtual; // Kernel virtual address *
};

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Managing Page Tables

• Last lecture:
– size of a page table for 32 bit AS with 4KB pages was 4MB!

• far too much overhead
– how can we reduce this?

• observation: only need to map the portion of the address space
that is actually being used (tiny fraction of address space)

– only need page table entries for those portions
• how can we do this?

– make the page table structure dynamically extensible…

– all problems in CS can be solved with a level of indirection
• two-level page tables

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Two-level page tables
• With two-level PT’s, virtual addresses have 3 parts:

– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset + PFN = physical address

• Example:
– 4KB pages, 4 bytes/PTE

• how many bits in offset? need 12 bits for 4KB
– want master PT in one page: 4KB/4 bytes = 1024 PTE

• hence, 1024 secondary page tables
– so: master page number = 10 bits, offset = 12 bits

• with a 32 bit address, that leaves 10 bits for secondary PN

3

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Two level page tables

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page tablesecondary

page table

page frame
number

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory allocated

to processes
– Physical memory may be much less

• Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Inverted Page Table

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Addressing Page Tables

• Where are page tables stored?
– and in which address space?

• Possibility #1: physical memory
– easy to address, no translation required
– but, page tables consume memory for lifetime of VAS

• Possibility #2: virtual memory (OS’s VAS)
– cold (unused) page table pages can be paged out to disk
– but, addresses page tables requires translation

• how do we break the recursion?
– don’t page the outer page table (called wiring)

• Question: can the kernel be paged?

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Generic PTE

• PTE maps virtual page to physical page
• Includes some page properties

– Valid?, writable?, dirty?, cacheable?

Physical Page # Property bitsVirtual Page #

Some acronyms used in this lecture:
• PTE = page table entry
• PDE = page directory entry
• VA = virtual address
• PA = physical address
• VPN = virtual page number
• {R,P}PN = {real, physical} page number

4

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Real Page Tables

• Design requirements
– Minimize memory use (PT are pure overhead)
– Fast (logically accessed on every memory ref)

• Requirements lead to
– Compact data structures
– O(1) access (e.g. indexed lookup, hashtable)

• Examples: X86

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

X86-32 Address Translation

• Page tables organized as a two-level tree
– Efficient because address space is sparse
– Each level of the tree indexed using a piece of the

virtual page number for fast lookups
• One set of page tables per process

– Current set of page tables pointed to by CR3
• CPU walks the page tables to find

translations
– Accessed and dirty bits updated by CPU

• 4K or 4M (sometimes 2M) pages
– Why?

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

 X86-32 PDE and PTE Details

A
va

ila
bl

e
A

va
ila

bl
e

A
va

ila
bl

e
G

lo
ba

l
P

A
T

D
irt

y
A

cc
es

se
d

C
ac

he
 D

is
ab

le
d

W
rit

e-
th

ro
ug

h
U

se
r/S

up
er

vi
so

r
R

ea
d/

W
rit

e
P

re
se

nt

IA-32 Intel Architecture Software Developer’s Manual, Volume 3, pg. 3-24

20 bit page number of a physical memory page 12 bit properties

Where is the virtual page number?
If a page is not present, all but bit 0 are available for OS

A
va

ila
bl

e
A

va
ila

bl
e

A
va

ila
bl

e
G

lo
ba

l
4K

 o
r 4

M
 P

ag
e

R
es

er
ve

d
A

cc
es

se
d

C
ac

he
 D

is
ab

le
d

W
rit

e-
th

ro
ug

h
U

se
r/S

up
er

vi
so

r
R

ea
d/

W
rit

e
P

re
se

nt

20 bit page number of a PTE 12 bit properties

Page Directory Entry (PDE)

Page Table Entry (PDE)

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

X86-32 Page Table Lookup
• Top 10 address bits index

page directory and return a
page directory entry that
points to a page table

• Middle 10 bits index the
page table that points to a
physical memory page

• Bottom 12 bits are an offset
to a single byte in the
physical page

• Checks made at each step
to ensure desired page is
available in memory and
that the process making the
request has sufficient rights
to access the page

0
1
2
.
.
.

1024

0
1
2
.
.
.

1024

0
1
2
.
.
.

1024

0
1
2
.
.
.

1024

P
ag

e
D

ire
ct

or
y

P
ag

e
Ta

bl
es

P
hy

si
ca

l
M

em
or

y

32-bit virtual address

10-bit page dir index 10-bit page tbl index 12-bit offset of byte in page

5

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

How well does x86 work?
• How big is the minimum size page table?

• Does it support sparse address spaces well?

• Does it support paging the page table?

• How many memory lookups are required to find an
entry?

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

Making it all efficient

• Original page table schemed doubled the cost of
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware
• called a translation lookaside buffer (TLB)
• TLB is managed by the memory management unit (MMU)

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

TLBs
• Translation lookaside buffers

– translates virtual page #s into PTEs (not physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is associative cache (many entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs
– with PTE + offset, MMU can directly calculate the PA

• TLBs exploit locality
– processes only use a handful of pages at a time

• 16-48 entries in TLB is typical (64-192KB for 4kb pages)
• can hold the “hot set” or “working set” of process

– hit rates in the TLB are therefore really important

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

TLB Organization

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A
0
1
2
3
4
5
6
7

A B
0
1
2
3

A B C D

A B C D E L M N O P

Direct mapped

Fully associative

Two-way set associative

Four-way set associative

Tag (virtual page number) Value (page table entry)

TLB Entry

Various ways to organize a 16-entry TLB

Lookup
•Calculate index (index = tag % num_sets)
• Search for tag within the resulting set
• Why not use upper bits of tag value for index?

Set

In
de

x

6

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

Associativity Trade-offs
• Higher associativity

– Better utilization, fewer collisions
– Slower
– More hardware

• Lower associativity
– Fast
– Simple, less hardware
– Greater chance of collisions

• How does associativity affect OS behavior?
• How does page size affect TLB performance?

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

Managing TLBs
• Address translations are mostly handled by the TLB

– >99% of translations, but there are TLB misses occasionally
– in case of a miss, who places translations into the TLB?

• Hardware (memory management unit, MMU)
– knows where page tables are in memory

• OS maintains them, HW access them directly
– tables have to be in HW-defined format
– this is how x86 works

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation
• OS gets to pick the page table format
• SPARC works like this

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB (on several CPUs!)

• What happens on a process context switch?
– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB! (flush TLB)

• this is a big part of why process context switches are costly
– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g. LRU)

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 24

X86 TLB

• TLB management shared by processor and OS
• CPU:

– Fills TLB on demand from page table (the OS is unaware of
TLB misses)

– Evicts entries when a new entry must be added and no free
slots exist

• Operating system:
– Ensures TLB/page table consistency by flushing entries as

needed when the page tables are updated or switched (e.g.
during a context switch)

– TLB entries can be removed by the OS one at a time using
the INVLPG instruction or the entire TLB can be flushed at
once by writing a new entry into CR3

7

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 25

Example: Pentium-M TLBs
• Four different TLBs

– Instruction TLB for 4K pages
• 128 entries, 4-way set associative

– Instruction TLB for large pages
• 2 entries, fully associative

– Data TLB for 4K pages
• 128 entries, 4-way set associative

– Data TLB for large pages
• 8 entries, 4-way set associative

• All TLBs use LRU replacement policy
• Why different TLBs for instruction, data, and page sizes?

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 26

SPARC TLB

• SPARC is RISC (simpler is better) CPU
• Example of a “software-managed” TLB

– TLB miss causes a fault, handled by OS
– OS explicitly adds entries to TLB
– OS is free to organize its page tables in any way it wants

because the CPU does not use them
– E.g. Linux uses a tree like X86, Solaris uses a hash table

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 27

Minimizing Flushes

• On SPARC, TLB misses trap to OS (SLOW)
– We want to avoid TLB misses
– Retain TLB contents across context switch

• SPARC TLB entries enhanced with a context id
– Context id allows entries with the same VPN to coexist in the

TLB (e.g. entries from different process address spaces)
– When a process is switched back onto a processor, chances

are that some of its TLB state has been retained from the
last time it ran

• Some TLB entries shared (OS kernel memory)
– Mark as global
– Context id ignored during matching

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 28

Example:UltraSPARC III TLBs
• Five different TLBs
• Instruction TLBs

– 16 entries, fully associative (supports all page sizes)
– 128 entries, 2-way set associative (8K pages only)

• Data TLBs
– 16 entries, fully associative (supports all page sizes)
– 2 x 512 entries, 2-way set associative (each supports one

page size per process)
• Valid page sizes – 8K (default), 64K, 512K, and 4M
• 13-bit context id – 8192 different concurrent address

spaces
– What happens if you have > 8192 processes?

8

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 29

Hardware vs. Software TLBs

• Hardware benefits:
– TLB miss handled more quickly (without flushing pipeline)

• Software benefits:
– Flexibility in page table format
– Easier support for sparse address spaces
– Faster lookups if multi-level lookups can be avoided

• Intel Itanium has both!
– Plus reverse page tables

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 30

Segmentation

• A similar technique to paging is segmentation
– segmentation partitions memory into logical units

• stack, code, heap, …
– on a segmented machine, a VA is <segment #, offset>
– segments are units of memory, from the user’s perspective

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process

• Hardware support:
– multiple base/limit pairs, one per segment

• stored in a segment table
– segments named by segment #, used as index into table

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 31

Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
 protection fault

no

yes

offset

baselimit

segment table

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 32

Combining Segmentation and Paging
• Can combine these techniques

– x86 architecture supports both segments and paging
• Use segments to manage logically related units

– stack, file, module, heap, …?
– segment vary in size, but usually large (multiple pages)

• Use pages to partition segments into fixed chunks
– makes segments easier to manage within PM

• no external fragmentation
• segments are “pageable”- don’t need entire segment in memory at

same time
• Linux:

– 1 kernel code segment, 1 kernel data segment
– 1 user code segment, 1 user data segment
– 1 task state segments (stores registers on context switch)
– 1 “local descriptor table” segment (not really used)
– all of these segments are paged

9

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 33

Cool Paging Tricks
• Exploit level of indirection between VA and PA

– shared memory
• regions of two separate processes’ address spaces map to the

same physical frames
– read/write: access to share data
– execute: shared libraries!

• will have separate PTEs per process, so can give different
processes different access privileges

• must the shared region map to the same VA in each process?
– copy-on-write (COW), e.g. on fork()

• instead of copying all pages, created shared mappings of
parent pages in child address space

– make shared mappings read-only in child space
– when child does a write, a protection fault occurs, OS takes over

and can then copy the page and resume client

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 34

Why should you care?

• Paging impacts performance
– Managing virtual memory costs ~ 3%

• TLB management impacts performance
– If you address more than fits in your TLB
– If you context switch

• Page table layout impacts performance
– Some architectures have natural amounts of data to share:

• 4mb on x86

