
1

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 13

Paging and Page Replacement

Michael Swift

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Saving memory to disk
• When there is not enough memory for all our processes, the OS

can copy data to disk and re-use the memory for something else
– Copying a whole process is called “swapping”
– Copying a single page is called “paging”

• Where does data go?
– If it came from a file and was read only, it stays in the file

• E.g. executable code
– Unix: a swap partition

• A region of the disk reserved for “backing store”
– Windows: a swap file

• A designated file in the regular file system

• When does data move?
– Swapping: in advance of running a process
– Paging: when a virtual page is accessed

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

 A cool trick

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file
• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Demand Paging
• We’ve hinted that pages can be moved between

memory and disk
– this process is called demand paging
– OS uses main memory as a (page) cache of all of the data

allocated by processes in the system
• initially, pages are allocated from physical memory frames
• when physical memory fills up, allocating a page in requires

some other page to be evicted from its physical memory frame
– evicted pages go to disk (only need to write if they are dirty)

• to a swap file
• movement of pages between memory / disk is done by the OS
• is transparent to the application

– except for performance…

2

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Page Faults
• What happens to a process that references a VA in a page that

has been evicted?
– when the page was evicted, the OS sets the PTE as invalid and

stores (in PTE) the location of the page in the swap file
– when a process accesses the page, the invalid PTE will cause an

exception (page fault) to be thrown
– the OS will run the page fault handler in response

• handler uses invalid PTE to locate page in swap file
– With multiple files, how do you know which?

• handler reads page into a physical frame, updates PTE to point to it
and to be valid

• handler restarts the faulted process
• But: where does the page that’s read in go?

– have to evict something else (page replacement algorithm)
• OS typically tries to keep a pool of free pages around so that

allocations don’t inevitably cause evictions

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Why does this work?

• Locality!
– temporal locality

• locations referenced recently tend to be referenced again soon
– spatial locality

• locations near recently references locations are likely to be
referenced soon (think about why)

• Locality means paging can be infrequent
– once you’ve paged something in, it will be used many times
– on average, you use things that are paged in
– but, this depends on many things:

• degree of locality in application
• page replacement policy and application reference pattern
• amount of physical memory and application footprint

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Why is this “demand” paging?

• Think about when a process first starts up:
– it has a brand new page table, with all PTE valid bits ‘false’
– no pages are yet mapped to physical memory
– when process starts executing:

• instructions immediately fault on both code and data pages
• faults stop when all necessary code/data pages are in memory
• only the code/data that is needed (demanded!) by process

needs to be loaded
• what is needed changes over time, of course…

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Evicting the best page

• The goal of the page replacement algorithm:
– reduce fault rate by selecting best victim page to remove
– the best page to evict is one that will never be touched again

• as process will never again fault on it
– “never” is a long time

• Belady’s proof: evicting the page that won’t be used for the
longest period of time minimizes page fault rate

• Rest of this lecture:
– survey a bunch of replacement algorithms

3

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

#1: Belady’s Algorithm

• Pick the page that won’t be used for longest time in
future
– Provably optimal lowest fault rate (remember SJF?)

• Why?
– Problem: impossible to predict future

• Why is Belady’s algorithm useful?
– as a yardstick to compare other algorithms to optimal

• if Belady’s isn’t much better than yours, yours is pretty good

• Is there a lower bound?
– unfortunately, lower bound depends on workload

• but, random replacement is pretty bad

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

#2: FIFO

• FIFO is obvious, and simple to implement
– when you page in something, put in on tail of list
– on eviction, throw away page on head of list

• Why might this be good?
– maybe the one brought in longest ago is not being used

• Why might this be bad?
– then again, maybe it is being used
– have absolutely no information either way

• FIFO suffers from Belady’s Anomaly
– fault rate might increase when algorithm is given more

physical memory
• a very bad property

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Example of Belady’s Anomaly

4423330123Oldest Page

11422230123

001444230123Newest Page

401234230123Page
Requests

(red italics indicates page fault)
234012333Oldest Page
1234012223
01234011123
401234000123Newest Page

401234230123Page
Requests

3 pages

4 pages

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

#3: Least Recently Used (LRU)

• LRU uses reference information to make a more
informed replacement decision
– idea: past experience gives us a guess of future behavior
– on replacement, evict the page that hasn’t been used for the

longest amount of time
• LRU looks at the past, Belady’s wants to look at future

– when does LRU do well?
• when does it suck?

• Implementation
– to be perfect, must grab a timestamp on every memory

reference and put it in the PTE (way too $$)
– so, we need an approximation…

4

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Approximating LRU

• Many approximations, all use the PTE reference bit
– keep a counter for each page
– at some regular interval, for each page, do:

• if ref bit = 0, increment the counter (hasn’t been used)
• if ref bit = 1, zero the counter (has been used)
• regardless, zero ref bit

– the counter will contain the # of intervals since the last
reference to the page

• page with largest counter is least recently used

• Some architectures don’t have PTE reference bits
– can simulate reference bit using the valid bit to induce faults

• hack, hack, hack

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

#4: LRU Clock
• AKA Not Recently Used (NRU) or Second Chance

– replace page that is “old enough”
• Arrange all physical page frames in a big circle (clock)

• just a circular linked list
– a “clock hand” is used to select a good LRU candidate

• sweep through the pages in circular order like a clock
• if ref bit is off, it hasn’t been used recently, we have a victim

– so, what is minimum “age” if ref bit is off?
• if the ref bit is on, turn it off and go to next page

– arm moves quickly when pages are needed
– low overhead if have plenty of memory

• if memory is large, “accuracy” of information degrades
– add more hands to fix

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

Another Problem: allocation of frames

• In a multiprogramming system, we need a way to
allocate physical memory to competing processes
– what if a victim page belongs to another process?
– family of replacement algorithms that takes this into account

• Fixed space algorithms
– each process is given a limit of pages it can use
– when it reaches its limit, it replaces from its own pages
– local replacement: some process may do well, others suffer

• Variable space algorithms
– processes’ set of pages grows and shrinks dynamically
– global replacement: one process can ruin it for the rest

• linux uses global replacement

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

#5: 2nd Chance FIFO
• LRU Clock is a global algorithm

– It looks at all physical pages, from all processes
– Every process gets its memory taken away gradually

• Local algorithms: run page replacement separately for each process
• 2nd Chance FIFO:

– Maintain 2 FIFO queues per process
– On first access, pages go at end of queue 1
– When the drop off queue 1, page are invalidated and move to queue 2
– When they drop off queue 2, they are replaced
– If they are accessed in queue 2, they are put back on queue 1

• Comparison to LRU clock:
– Per-process, not whole machine
– No scanning
– Replacement order is FIFO, not PFN
– Used in Windows NT, VMS

5

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

Important concept: working set model

• A working set of a process is used to model the
dynamic locality of its memory usage
– i.e., working set = set of pages process currently “needs”
– formally defined by Peter Denning in the 1960’s

• Definition:
– WS(t,w) = {pages P such that P was referenced in the time

interval (t, t-w)}
• t – time, w – working set window (measured in page refs)
• a page is in the working set (WS) only if it was referenced in the

last w references

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

#6: Working Set Size
• The working set size changes with program locality

– during periods of poor locality, more pages are referenced
– within that period of time, the working set size is larger

• Intuitively, working set must be in memory, otherwise you’ll
experience heavy faulting (thrashing)
– when people ask “How much memory does Netscape need?”,

really they are asking “what is Netscape’s average (or worst case)
working set size?”

• Hypothetical algorithm:
– associate parameter “w” with each process
– only allow a process to start if it’s “w”, when added to all other

processes, still fits in memory
• use a local replacement algorithm within each process (e.g. clock, 2nd

chance FIFO)

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

Thrashing
• What the OS does if page replacement algo’s fail

– happens if most of the time is spent by an OS paging data back
and forth from disk

• no time is spent doing useful work
• the system is overcommitted
• no idea which pages should be in memory to reduced faults
• could be that there just isn’t enough physical memory for all processes

– solutions?
• Yields some insight into systems research[ers]

– if system has too much memory
• page replacement algorithm doesn’t matter (overprovisioning)

– if system has too little memory
• page replacement algorithm doesn’t matter (overcommitted)

– problem is only interesting on the border between overprovisioned
and overcommitted

• many research papers live here, but not many real systems do…

10/30/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

Summary
• demand paging

– start with no physical pages mapped, load them in on demand
• page replacement algorithms

– #1: Belady’s – optimal, but unrealizable
– #2: Fifo – replace page loaded furthest in past
– #3: LRU – replace page referenced furthest in past

• approximate using PTE reference bit
– #4: LRU Clock – replace page that is “old enough”
– #: 2nd Chance FIFO – replace local page that is “old enough”
– #6: working set – keep set of pages in memory that induces the minimal

fault rate
• local vs. global replacement

– should processes be allowed to evict each other’s pages?

