
11/13/2007

1

CS 537 Operating

Systems

Fall 2007

File Systems

Mike Swift

11/08/07 © 2005 Steve Gribble

Motivation:

I/O is Important

Applications have two essential components:
– Processing

– Input/Output (I/O)‏

• What applications have no input? no output?

I/O performance predicts application performance
– Amdahl’s‏Law:‏If‏continually‏improve‏only‏part‏of‏application‏(e.g.,‏

processing), then achieve diminishing returns in speedup

– f: portion of application that is improved (e.g., processing)‏

– speedupf: speedup of portion of application

– SpeedupApplication = 1/ ((1-f) + (f/speedupf))‏

• Example:

– f = 1/2, speedupf = 2, speedupapp = 1.33

– f = 1/3, speedupf = 2, speedupapp = 1.20

11/08/07 © 2005 Steve Gribble

Role of OS for I/O

Standard library
– Provide abstractions, consistent interface

– Simplify access to hardware devices

Resource coordination
– Provide protection across users/processes

– Provide fair and efficient performance

• Requires understanding of underlying device characteristics

User processes do not have direct access to devices
– Could crash entire system

– Could read/write data without appropriate permissions

– Could hog device unfairly

OS exports higher-level functions
– File system: Provides file and directory abstractions

– File system operations: mkdir, create, read, write

11/08/07 © 2005 Steve Gribble 4

File systems

• The concept of a file system is simple

– the implementation of the abstraction for secondary storage

• abstraction = files

– logical organization of files into directories

• the directory hierarchy

– sharing of data between processes, people and machines

• access‏control,‏consistency,‏…

11/13/2007

2

11/08/07 © 2005 Steve Gribble 5

Files
• A file is a collection of data with some properties

– contents,‏size,‏owner,‏last‏read/write‏time,‏protection‏…

• Files may also have types
– understood by file system

• device, directory, symbolic link

– understood by other parts of OS or by runtime libraries

• executable,‏dll,‏source‏code,‏object‏code,‏text‏file,‏…

• Type‏can‏be‏encoded‏in‏the‏file’s‏name‏or‏contents
– Encoded in name: .com, .exe, .bat, .dll, .jpg, .mov, .mp3,‏…

– In content: #! for scripts

Operating system view

– Map bytes as collection of blocks on physical non-volatile

storage device

• Magnetic disks, tapes, NVRAM, battery-backed RAM

• Persistent across reboots and power failures

11/08/07 © 2005 Steve Gribble

File Operations

Create file with given pathname /a/b/file
– Traverse pathname, allocate meta-data and directory entry

Read from (or write to) offset in file
– Find (or allocate) blocks of file on disk; update meta-data

Delete
– Remove directory entry, free disk space allocated to file

Truncate file (set size to 0, keep other attributes)‏
– Free disk space allocated to file

Rename file
– Change directory entry

Copy file
– Allocate new directory entry, find space on disk and copy

Change access permissions
– Change permissions in meta-data

11/08/07 © 2005 Steve Gribble 7

Basic operations

NT

• CreateFile(name, CREATE)‏

• CreateFile(name, OPEN)‏

• ReadFile(handle,‏…)‏

• WriteFile(handle,‏…)‏

• FlushFileBuffers(handle,‏…)‏

• SetFilePointer(handle,‏…)‏

• CloseHandle(handle,‏…)‏

• DeleteFile(name)‏

• CopyFile(name)‏

• MoveFile(name)‏

Unix

• create(name)‏

• open(name, mode)‏

• read(fd, buf, len)‏

• write(fd, buf, len)‏

• sync(fd)‏

• seek(fd, pos)‏

• close(fd)‏

• unlink(name)‏

• rename(old, new)‏

11/08/07 © 2005 Steve Gribble

Opening Files

Expensive to access files with full pathnames
– On every read/write operation:

• Traverse directory structure

• Check access permissions

Open() file before first access
– User specifies mode: read and/or write

– Search directories for filename and check permissions

– Copy relevant meta-data to open file table in memory

– Return index in open file table to process (file descriptor)‏

– Process uses file descriptor to read/write to file

Per-process open file table
– Current position in file (offset for reads and writes)‏

– Open mode

Enables redirection from stdout to particular file

11/13/2007

3

11/08/07 © 2005 Steve Gribble 9

File access methods

• Some file systems provide different access methods
that specify ways the application will access data
– sequential access

• read bytes one at a time, in order

– direct access

• random access given a block/byte #

– record access

• file is array of fixed- or variable-sized records

– indexed access

• FS contains an index to a particular field of each record in a file

• apps can find a file based on value in that record (similar to DB)‏

• Why do we care about distinguishing sequential from
direct access?
– what might the FS do differently in these cases?

11/08/07 © 2005 Steve Gribble 10

Directories

• Directories provide:

– a way for users to organize their files

– a‏convenient‏file‏name‏space‏for‏both‏users‏and‏FS’s

• Most file systems support multi-level directories

– naming‏hierarchies‏(/,‏/usr,‏/usr/local,‏/usr/local/bin,‏…)‏

• Most file systems support the notion of current

directory

– absolute names: fully-qualified starting from root of FS
bash$ cd /usr/local

– relative names: specified with respect to current directory
bash$ cd /usr/local (absolute)‏

bash$ cd bin (relative, equivalent to cd /usr/local/bin)‏

11/08/07 © 2005 Steve Gribble

Abstraction: Directories

Organization technique: Map file name to blocks of file data
on disk
– Actually, map file name to file meta-data (which enables one to find

data on disk)‏

Simplest approach: Single-level directory
– Each file has unique name

– Special part of disk holds directory listing

• Contains <file name, meta-data index> pairs

• How should this data structure be organized???

Two-level directory
– Directory for each user

– Specify file with user name and file name

11/08/07 © 2005 Steve Gribble 12

Directory internals

• A directory is typically just a file that happens to

contain special metadata

– directory = list of (name of file, file attributes)‏

– attributes include such things as:

• size,‏protection,‏location‏on‏disk,‏creation‏time,‏access‏time,‏…

– the directory list is usually unordered (effectively random)‏

• when‏you‏type‏“ls”,‏the‏“ls”‏command‏sorts‏the‏results‏for‏you

11/13/2007

4

11/08/07 © 2005 Steve Gribble

Directories: Tree-Structured

Directory listing contains <name, index>, but name can be
directory
– Directory is stored and treated like a file

– Special bit set in meta-data for directories

• User programs can read directories

• Only system programs can write directories

– Specify full pathname by separating directories and files with
special characters (e.g., \ or /)‏

Special directories
– Root: Fixed index for meta-data (e.g., 2)‏

– This directory: .

– Parent directory: ..

11/08/07 © 2005 Steve Gribble 14

Path name translation

• Let’s‏say‏you‏want‏to‏open‏“/one/two/three”
fd = open(“/one/two/three”, O_RDWR);

• What goes on inside the file system?

– open‏directory‏‏”/“‏(well‏known,‏can‏always‏find)‏

– search‏the‏directory‏for‏“one”,‏get‏location‏of‏“one”

– open‏directory‏“one”,‏search‏for‏“two”,‏get‏location‏of‏“two”

– open‏directory‏“two”,‏search‏for‏“three”,‏get‏loc.‏of‏“three”

– open‏file‏“three”

– (of course, permissions are checked at each step)‏

• FS spends lots of time walking down directory paths

– this is why open is separate from read/write (session state)‏

– OS will cache prefix lookups to enhance performance

• /a/b,‏/a/bb,‏/a/bbb‏all‏share‏the‏“/a”‏prefix

11/08/07 © 2005 Steve Gribble

Acyclic-Graph Directories

Symbolic‏(soft)‏link:‏“ln -s a b”

– Can‏use‏name‏“a”‏or‏“b”‏to‏get‏to‏same‏file‏data,‏if‏“a”‏exists

– When‏reference‏“b”,‏‏lookup‏soft‏link‏pathname‏

– b: Special file (designated by bit in meta-data)‏

• Contents‏of‏b‏contain‏name‏of‏“a”

• Optimization:‏In‏directory‏entry‏for‏“b”,‏put‏soft‏link‏filename‏“a”

11/08/07 © 2005 Steve Gribble

Acyclic-Graph Directories

More general than tree structure

– Add connections across the tree (no cycles)‏

– Create links from one file (or directory) to another

Hard‏link:‏“ln a b”‏(“a”‏must‏exist‏already)‏

– Idea:‏Can‏use‏name‏“a”‏or‏“b”‏to‏get‏to‏same‏file‏data

– Implementation: Multiple directory entries point to same meta-data

– What happens when you remove a? Does b still exist?

• How is this feature implemented???

– Unix: Does not create hard links to directories. Why?

