CS 537 Lecture 15 Disks

Michael Swift

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

1

Secondary storage

- · Secondary storage typically:
 - is anything that is outside of "primary memory"
 - does not permit direct execution of instructions or data retrieval via machine load/store instructions
- · Characteristics:
 - it's large: 80GB-1TBit's cheap: 0.30¢/GB
 - it's persistent: data survives power loss
 - it's slow: milliseconds to access
 - · why is this slow??

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift _

Another trip down memory lane ...

11/13/2007 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

Disk trends

- Disk capacity, 1975-1989
 - doubled every 3+ years
 - 25% improvement each year
 - factor of 10 every decade
 - exponential, but far less rapid than processor performance
- · Disk capacity since 1990
 - doubling every 12 months
 - 100% improvement each year
 - factor of 1000 every decade
 - 10x as fast as processor performance!

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

4

Disks and the OS

- · Disks are messy, messy devices
 - errors, bad blocks, missed seeks, etc.
- Job of OS is to hide this mess from higher-level software
 - low-level device drivers (initiate a disk read, etc.)
 - higher-level abstractions (files, databases, etc.)
- OS may provide different levels of disk access to different clients
 - physical disk block (surface, cylinder, sector)
 - disk logical block (disk block #)
 - file logical (filename, block or record or byte #)

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 5

Device Drivers

- · Mechanism: Encapsulate details of device
 - File system not aware of device details
 - Much of OS code is in device drivers
 - · Responsible for many of the errors as well!
- Device driver interacts with device controller
 - Read status registers, read data
 - Write control registers, provide data for write operations
- · How does device driver access controller?
 - Special instructions
 - · Valid only in kernel mode, No longer popular
 - Memory-mapped

11/13/2007

- · Read and write to special memory addresses
- · Protect by placing in kernel address space only
 - May map part of device in user address space for fast access

I/O System

device controller

disk

6

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

Device Drivers: Starting I/O

- Programmed I/O (PIO)
 - Must initiate and watch every byte
 - Disadvantage: Large overhead for large transfers
- Direct Memory Access (DMA)
 - Offload work from CPU to to special-purpose processor responsible for large transfers
 - CPU: Write DMA command block into main memory
 - Pointer to source and destination address
 - · Size of transfer
 - CPU: Inform DMA controller of address of command block
 - DMA controller: Handles transfer with I/O device controller
 - Can use physical or virtual addresses (DVMA)
 - Disadvantages of each approach??

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Aroaci-Dussea. Michael Swift 11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea. Michael Swift

Device Drivers: When is I/O complete?

- Polling
 - Handshake by setting and clearing flags
 - · Controller sets flag when done
 - · CPU repeatedly checks flag
 - Disadvantage: Busy-waiting
 - · CPU wastes cycles when I/O device is slow
 - · Must be attentive to device, or could lose data
- · Interrupts: Handle asynchronous events
 - Controller asserts interrupt request line when done
 - CPU jumps to appropriate interrupt service routine (ISR)
 - · Interrupt vector: Table of ISR addresses
 - · Index by interrupt number
 - Low priority interrupts postponed until higher priority finished
 - Combine with DMA: Do not interrupt CPU for every byte

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

Disk Terminology

ZBR (Zoned bit recording): More sectors on outer tracks

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea. Michael Swift 11/13/2007

Example disk characteristics

· IBM Ultrastar 36XP drive

- form factor: 3.5" - capacity: 36.4 GB

- rotation rate: 7,200 RPM (120 RPS)

- platters: 10 - surfaces: 20

- sector size: 512-732 bytes

- cylinders: 11,494

- cache: 4MB

- transfer rate: 17.9 MB/s (inner) - 28.9 MB/s (outer)

- full seek: 14.5 ms - head switch: 0.3 ms

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

11

Disk Performance

- · How long to read or write n sectors?
 - Positioning time + Transfer time (n)
 - Positioning time: Seek time + Rotational Delay
 - Transfer time: n / (RPM * bytes/track)

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

Disk performance

- Performance depends on a number of steps
 - seek: moving the disk arm to the correct cylinder
 - · depends on how fast disk arm can move
 - seek times aren't diminishing very quickly (why?)
 - rotation (latency): waiting for the sector to rotate under head
 - · depends on rotation rate of disk
 - rates are increasing, but slowly (why?)
 - transfer: transferring data from surface into disk controller, and from there sending it back to host
 - · depends on density of bytes on disk - increasing, and very quickly
- When the OS uses the disk, it tries to minimize the cost of all of these steps
 - particularly seeks and rotation

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 11/13/2007

Interacting with disks

- · In the old days...
 - OS would have to specify cylinder #, sector #, surface #,
 - i.e., OS needs to know all of the disk parameters
- Modern disks are even more complicated
 - not all sectors are the same size, sectors are remapped, ...
 - disk provides a higher-level interface, e.g., SCSI
 - exports data as a logical array of blocks [0 ... N]
 - · maps logical blocks to cylinder/surface/sector
 - . OS only needs to name logical block #, disk maps this to cvlinder/surface/sector
 - · on-board cache
 - · as a result, physical parameters are hidden from OS
 - both good and bad

Disk Calculations

· Example disk:

- #surfaces: 4
- #tracks/surface: 64K
- #sectors/track: 1K (assumption??)
- #bvtes/sector: 512
- RPM: 7200 = 120 tracks/sec
- Seek cost: 1.3ms 16ms

· Questions

- How many disk heads? How many cylinders?
- How many sectors/cylinder? Capacity?
- What is the maximum transfer rate (bandwidth)?
- Average positioning time for random request?
- Time and bandwidth for random request of size:
 - 4KB?
 - 128 KB?
 - 1 MB?

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

14

Disk Controller

- · Responsible for interface between OS and disk drive
 - Common interfaces: ATA/IDE vs. SCSI
 - · ATA/IDE used for personal storage
 - · SCSI for enterprise-class storage
- Basic operations
 - Read block
 - Write block
- OS does not know of internal complexity of disk
 - Disk exports array of Logical Block Numbers (LBNs)
 - Disks map internal sectors to LBNs
- · Implicit contract:
 - Large sequential accesses to contiguous LBNs achieve much better performance than small transfers or random accesses

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Aroaci-Dussea. Michael Swift

15

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and

16

11/13/2007

Disk Abstraction

- · How should disk map internal sectors to LBNs?
- Goal: Sequential accesses (or contiguous LBNs) should achieve best performance
- · Approaches:
 - Traditional ordering
 - Serpentine ordering

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 17

Buffering

- · Disks contain internal memory (2MB-16MB) used as cache
- · Read-ahead: "Track buffer"
 - Read contents of entire track into memory during rotational delay
- · Write caching with volatile memory
 - Immediate reporting: Claim written to disk when not
 - Data could be lost on power failure
 - · Use only for user data, not file system meta-data
- · Command queueing
 - Have multiple outstanding requests to the disk
 - Disk can reorder (schedule) requests for better performance

Reliability

- · Disks fail more often....
 - When continuously powered-on
 - With heavy workloads
 - Under high temperatures
- How do disks fail?
 - Whole disk can stop working (e.g., motor dies)
 - Transient problem (cable disconnected)
 - Individual sectors can fail (e.g., head crash or scratch)
 - · Data can be corrupted or block not readable/writable
- · Disks can internally fix some sector problems
 - ECC (error correction code): Detect/correct bit flips
 - Retry sector reads and writes: Try 20-30 different offset and timing combinations for heads
 - Remap sectors: Do not use bad sectors in future
 - · How does this impact performance contract??

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 18

20

Disk Scheduling

- Goal: Minimize positioning time
 - Performed by both OS and disk itself; Why?
- · FCFS: Schedule requests in order received
 - Advantage: Fair
 - Disadvantage: High seek cost and rotation
- Shortest seek time first (SSTF):
 - Handle nearest cylinder next
 - Advantage: Reduces arm movement (seek time)
 - Disadvantage: Unfair, can starve some requests

11/13/2007 © 2004-2007 Ed Lazowska, Herk Ley, Andrea and 19 11/13/2007 © 2004-2007 Ed Lazowska, Herk Ley, Andrea and 19 11/13/2007 Remark Answer Susses Michael Switt 19 11/13/2007 Remark Answer Switt 19 11/13/2

Disk Scheduling

- SCAN (elevator): Move from outer cylinder in, then back out again
 - Advantage: More fair to requests, similar performance as SSTF
 - Variation: Circular-Scan (C-Scan)
 - Move head only from outer cylinder inward (then start over)
 - Why??? (Two reasons)
- · LOOK: SCAN, except stop at last request
- Calculate seek distance for workload with cylinder #s: 10, 2, 0, 85, 50, 40, 1, 37, 41; Start at #43, moving up

11/13/2007

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift