
1

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 16

File Systems Internals

Michael Swift

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Workloads
• Motivation: Workloads influence design of file system
• File characteristics (measurements of UNIX and NT)

– Most files are small (about 8KB)
– Most of the disk is allocated to large files

• (90% of data is in 10% of files)
• Access patterns

– Sequential: Data in file is read/written in order
• Most common access pattern

– Random (direct): Access block without referencing predecessors
• Difficult to optimize

– Access files in same directory together
• Spatial locality

– Access meta-data when access file
• Need meta-data to find data

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Goals
• OS allocates LBNs (logical block numbers) to meta-data, file

data, and directory data
– Workload items accessed together should be close in LBN space

• Implications
– Large files should be allocated sequentially
– Files in same directory should be allocated near each other
– Data should be allocated near its meta-data

• Meta-Data: Where is it stored on disk?
– Embedded within each directory entry
– In data structure separate from directory entry

• Directory entry points to meta-data

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Allocation Strategies
• Progression of different approaches

– Contiguous
– Extent-based
– Linked
– File-allocation Tables
– Indexed
– Multi-level Indexed

• Questions
– Amount of fragmentation (internal and external)?
– Ability to grow file over time?
– Seek cost for sequential accesses?
– Speed to find data blocks for random accesses?
– Wasted space for pointers to data blocks?

2

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Contiguous Allocation
• Allocate each file to contiguous blocks on disk

– Meta-data: Starting block and size of file
– OS allocates by finding sufficient free space

• Must predict future size of file; Should space be reserved?
– Example: IBM OS/360

• Advantages
– Little overhead for meta-data
– Excellent performance for sequential accesses
– Simple to calculate random addresses

• Drawbacks
– Horrible external fragmentation (Requires periodic compaction)
– May not be able to grow file without moving it

A A A B B B B C C C

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Extent-Based Allocation
• Allocate multiple contiguous regions (extents) per file

– Meta-data: Small array (2-6) designating each extent
• Each entry: starting block and size

• Improves contiguous allocation
– File can grow over time (until run out of extents)
– Helps with external fragmentation

• Advantages
– Limited overhead for meta-data
– Very good performance for sequential accesses
– Simple to calculate random addresses

• Disadvantages (Small number of extents):
– External fragmentation can still be a problem
– Not able to grow file when run out of extents

D A A A B B B B C C C B BD D

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Linked Allocation
• Allocate linked-list of fixed-sized blocks

– Meta-data: Location of first block of file
• Each block also contains pointer to next block

– Examples: TOPS-10, Alto

• Advantages
– No external fragmentation
– Files can be easily grown, with no limit

• Disadvantages
– Cannot calculate random addresses w/o reading previous blocks
– Sequential bandwidth may not be good

• Try to allocate blocks of file contiguously for best performance
– Sensitivity to corruption

• Trade-off: Block size (does not need to equal sector size)
– Larger --> ??
– Smaller --> ??

D A A A B B B B C C C B BD D D DB

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

File-Allocation Table (FAT)
• Variation of Linked allocation

– Keep linked-list information for all files in on-disk FAT table
– Meta-data: Location of first block of file

• And, FAT table itself

• Comparison to Linked Allocation
– Same basic advantages and disadvantages
– Disadvantage: Read from two disk locations for every data read
– Optimization: Cache FAT in main memory

• Advantage: Greatly improves random accesses

D A A A B B B B C C C B BD D D DB

3

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Indexed Allocation
• Allocate fixed-sized blocks for each file

– Meta-data: Fixed-sized array of block pointers
• Allocate space for ptrs at file creation time

• Advantages
– No external fragmentation
– Files can be easily grown, with no limit
– Supports random access

• Disadvantages
– Large overhead for meta-data:

• Wastes space for unneeded pointers (most files are small!)

D A A A B B B B C C C B BD D D DB

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Multi-Level Indexed Files
• Variation of Indexed Allocation

– Dynamically allocate hierarchy of pointers to blocks as needed
– Meta-data: Small number of pointers allocated statically

• Additional pointers to blocks of pointers
– Examples: UNIX FFS-based file systems

• Comparison to Indexed Allocation
– Advantage: Does not waste space for unneeded pointers

• Still fast access for small files
• Can grow to what size??

– Disadvantage: Need to read indirect blocks of pointers to calculate addresses
(extra disk read)

• Keep indirect blocks cached in main memory

indirect
double
indirect indirect

triple
indirect

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Free space management

• How do you remember which blocks are free?
– What operations are needed?

• Free a block
• Get a free block(s) -- in some particular location

• Free list: linked list of free blocks
– Advantages: simple, constant-time operation
– Disadvantage: rapidly loses locality
– Used in Unix UFS and FAT

• Bitmap: bitmap of all blocks indicating which are free
– Advantages: can find strings of consecutive free blocks

• X86 provides instructions to find 1 bits
– Disadvantages: space overhead
– Used in Unix FFS

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

The original Unix file system

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969
• “UNIX rose from the ashes of a multi-organizational

effort in the early 1960s to develop a dependable
timesharing operating system” -- Multics

• Designed for a “workgroup” sharing a single system
• Did its job exceedingly well

– Although it has been stretched in many directions and made
ugly in the process

• A wonderful study in engineering tradeoffs

4

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

All Unix disks are divided into five parts …

• Boot block
– can boot the system by loading from this block

• Superblock
– specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocks

• i-node area
– contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

• File contents area
– fixed-size blocks; head of freelist is in the superblock

• Swap area
– holds processes that have been swapped out of memory

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

So …

• You can attach a disk to a dead system …
• Boot it up …
• Find, create, and modify files …

– because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are

– by convention, the second i-node is the root directory of the
volume

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

i-node format
• User number
• Group number
• Protection bits
• Times (file last read, file last written, inode last written)
• File code: specifies if the i-node represents a directory,

an ordinary user file, or a “special file” (typically an I/O
device)

• Size: length of file in bytes
• Block list: locates contents of file (in the file contents

area)
– more on this soon!

• Link count: number of directories referencing this i-node

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

The flat (i-node) file system

• Each file is known by a number, which is the number
of the i-node
– seriously – 1, 2, 3, etc.!
– why is it called “flat”?

• Files are created empty, and grow when extended
through writes

5

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

The tree (directory, hierarchical) file system

• A directory is a flat file of fixed-size entries
• Each entry consists of an i-node number and a file

name

a_directory144
oh_my_god93
another_file4
my_file216
..18
.152

File namei-node number

• It’s as simple as that!
11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 18

Using directories
• How do you find files?

– Read the directory, search for the name you want (checking
for wildcards)

• How do you list files (ls)
– Read directory contents, print name field

• How do you list file attributes (ls -l)
– Read directory contents, open inodes, print name +

attributes

• How do you sort the output (ls -S, ls -t)
– The FS doesn’t do it -- ls does it!

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

The “block list” portion of the i-node
• Clearly it points to blocks in the file contents area
• Must be able to represent very small and very large files. How?
• Each inode contains 15 block pointers

– first 12 are direct blocks (i.e., 4KB blocks of file data)
– then, single, double, and triple indirect indexes

0
1

12
13
14

…

…

…

…

…

… …
11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 20

So …
• Only occupies 15 x 4B in the i-node
• Can get to 12 x 4KB = a 48KB file directly

– (12 direct pointers, blocks in the file contents area are 4KB)
• Can get to 1024 x 4KB = an additional 4MB with a

single indirect reference
– (the 13th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to blocks
holding file data)

• Can get to 1024 x 1024 x 4KB = an additional 4GB
with a double indirect reference
– (the 14th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to 4KB blocks
in the file contents area that contian 1K 4B pointers to blocks
holding file data)

• Maximum file size is 4TB

6

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

File system consistency

• Both i-nodes and file blocks are cached in memory
• The “sync” command forces memory-resident disk

information to be written to disk
– system does a sync every few seconds

• A crash or power failure between sync’s can leave an
inconsistent disk

• You could reduce the frequency of problems by
reducing caching, but performance would suffer big-
time

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

i-check: consistency of the flat file system

• Is each block on exactly one list?
– create a bit vector with as many entries as there are blocks
– follow the free list and each i-node block list
– when a block is encountered, examine its bit

• If the bit was 0, set it to 1
• if the bit was already 1

– if the block is both in a file and on the free list, remove it from the
free list and cross your fingers

– if the block is in two files, call support!

– if there are any 0’s left at the end, put those blocks on the
free list

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

d-check: consistency of the directory file system

• Do the directories form a tree?
• Does the link count of each file equal the number of

directories links to it?
– I will spare you the details

• uses a zero-initialized vector of counters, one per i-node
• walk the tree, then visit every i-node

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 24

Protection systems

• FS must implement some kind of protection system
– to control who can access a file (user)
– to control how they can access it (e.g., read, write, or exec)

• More generally:
– generalize files to objects (the “what”)
– generalize users to principals (the “who”, user or program)
– generalize read/write to actions (the “how”, or operations)

• A protection system dictates whether a given action
performed by a given principal on a given object
should be allowed
– e.g., you can read or write your files, but others cannot
– e.g., your can read /etc/motd but you cannot write to it

7

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 25

Model for representing protection
• Two different ways of thinking about it:

– access control lists (ACLs)
• for each object, keep list of principals and principals’ allowed actions
• Like a guest list (check identity of caller on each access)

– capabilities
• for each principal, keep list of objects and principal’s allowed actions
• Like a key (something you present to open a door)

• Both can be represented with the following matrix:

rguest

rrwrswift

rwrwrwroot

/home/guest/home/swift/etc/passwd

principals

objects

ACL

capability

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 26

ACLs vs. Capabilities
• Capabilities are easy to transfer

– they are like keys: can hand them off
– they make sharing easy

• ACLs are easier to manage
– object-centric, easy to grant and revoke

• to revoke capability, need to keep track of principals that have it
• hard to do, given that principals can hand off capabilities

• ACLs grow large when object is heavily shared
– can simplify by using “groups”

• put users in groups, put groups in ACLs
• you are could be in the “cs537-students” group

– additional benefit
• change group membership, affects ALL objects that have this group in

its ACL

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 27

Protection in the Unix FS

• Objects: individual files
• Principals: owner/group/world
• Actions: read/write/execute

• This is pretty simple and rigid, but it has proven to be
about what we can handle!

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 28

File sharing
• Each user has a “file descriptor table” (or “per-user open file

table”)
• Each entry in the channel table is a pointer to an entry in the

system-wide “open file table”
• Each entry in the open file table contains a file offset (file

pointer) and a pointer to an entry in the “memory-resident i-node
table”

• If a process opens an already-open file, a new open file table
entry is created (with a new file offset), pointing to the same
entry in the memory-resident i-node table

• If a process forks, the child gets a copy of the channel table
(and thus the same file offset)

8

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 29

User 1 User 2 User 3

channel table channel table channel table

open file
table

file offset file offset

memory-resident
i-node table

11/20/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 30

